Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 626
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(11): e2214834120, 2023 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-36893272

RESUMO

Human cortical expansion has occurred non-uniformly across the brain. We assessed the genetic architecture of cortical global expansion and regionalization by comparing two sets of genome-wide association studies of 24 cortical regions with and without adjustment for global measures (i.e., total surface area, mean cortical thickness) using a genetically informed parcellation in 32,488 adults. We found 393 and 756 significant loci with and without adjusting for globals, respectively, where 8% and 45% loci were associated with more than one region. Results from analyses without adjustment for globals recovered loci associated with global measures. Genetic factors that contribute to total surface area of the cortex particularly expand anterior/frontal regions, whereas those contributing to thicker cortex predominantly increase dorsal/frontal-parietal thickness. Interactome-based analyses revealed significant genetic overlap of global and dorsolateral prefrontal modules, enriched for neurodevelopmental and immune system pathways. Consideration of global measures is important in understanding the genetic variants underlying cortical morphology.


Assuntos
Estudo de Associação Genômica Ampla , Imageamento por Ressonância Magnética , Adulto , Humanos , Córtex Cerebral/anatomia & histologia , Córtex Pré-Frontal , Encéfalo
2.
J Neurosci ; 44(22)2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38527807

RESUMO

Adaptive behavior relies both on specific rules that vary across situations and stable long-term knowledge gained from experience. The frontoparietal control network (FPCN) is implicated in the brain's ability to balance these different influences on action. Here, we investigate how the topographical organization of the cortex supports behavioral flexibility within the FPCN. Functional properties of this network might reflect its juxtaposition between the dorsal attention network (DAN) and the default mode network (DMN), two large-scale systems implicated in top-down attention and memory-guided cognition, respectively. Our study tests whether subnetworks of FPCN are topographically proximal to the DAN and the DMN, respectively, and how these topographical differences relate to functional differences: the proximity of each subnetwork is anticipated to play a pivotal role in generating distinct cognitive modes relevant to working memory and long-term memory. We show that FPCN subsystems share multiple anatomical and functional similarities with their neighboring systems (DAN and DMN) and that this topographical architecture supports distinct interaction patterns that give rise to different patterns of functional behavior. The FPCN acts as a unified system when long-term knowledge supports behavior but becomes segregated into discrete subsystems with different patterns of interaction when long-term memory is less relevant. In this way, our study suggests that the topographical organization of the FPCN and the connections it forms with distant regions of cortex are important influences on how this system supports flexible behavior.


Assuntos
Encéfalo , Rede Nervosa , Humanos , Masculino , Feminino , Adulto , Rede Nervosa/fisiologia , Rede Nervosa/diagnóstico por imagem , Encéfalo/fisiologia , Imageamento por Ressonância Magnética , Atenção/fisiologia , Adulto Jovem , Rede de Modo Padrão/fisiologia , Rede de Modo Padrão/diagnóstico por imagem , Memória de Longo Prazo/fisiologia , Mapeamento Encefálico/métodos , Lobo Parietal/fisiologia , Memória de Curto Prazo/fisiologia
3.
J Neurosci ; 44(15)2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38395615

RESUMO

Threat cues have been widely shown to elicit increased sensory and attentional neural processing. However, whether this enhanced recruitment leads to measurable behavioral improvements in perception is still in question. Here, we adjudicate between two opposing theories: that threat cues do or do not enhance perceptual sensitivity. We created threat stimuli by pairing one direction of motion in a random dot kinematogram with an aversive sound. While in the MRI scanner, 46 subjects (both men and women) completed a cued (threat/safe/neutral) perceptual decision-making task where they indicated the perceived motion direction of each moving dot stimulus. We found strong evidence that threat cues did not increase perceptual sensitivity compared with safe and neutral cues. This lack of improvement in perceptual decision-making ability occurred despite the threat cue resulting in widespread increases in frontoparietal BOLD activity, as well as increased connectivity between the right insula and the frontoparietal network. These results call into question the intuitive claim that expectation automatically enhances our perception of threat and highlight the role of the frontoparietal network in prioritizing the processing of threat-related environmental cues.


Assuntos
Atenção , Motivação , Masculino , Humanos , Feminino , Afeto , Sinais (Psicologia)
4.
J Neurosci ; 43(2): 293-307, 2023 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-36639907

RESUMO

Fluid intelligence, the ability to solve novel, complex problems, declines steeply during healthy human aging. Using fMRI, fluid intelligence has been repeatedly associated with activation of a frontoparietal brain network, and impairment following focal damage to these regions suggests that fluid intelligence depends on their integrity. It is therefore possible that age-related functional differences in frontoparietal activity contribute to the reduction in fluid intelligence. This paper reports on analysis of the Cambridge Center for Ageing and Neuroscience data, a large, population-based cohort of healthy males and females across the adult lifespan. The data support a model in which age-related differences in fluid intelligence are partially mediated by the responsiveness of frontoparietal regions to novel problem-solving. We first replicate a prior finding of such mediation using an independent sample. We then precisely localize the mediating brain regions, and show that mediation is specifically associated with voxels most activated by cognitive demand, but not with voxels suppressed by cognitive demand. We quantify the robustness of this result to potential unmodeled confounders, and estimate the causal direction of the effects. Finally, exploratory analyses suggest that neural mediation of age-related differences in fluid intelligence is moderated by the variety of regular physical activities, more reliably than by their frequency or duration. An additional moderating role of the variety of nonphysical activities emerged when controlling for head motion. A better understanding of the mechanisms that link healthy aging with lower fluid intelligence may suggest strategies for mitigating such decline.SIGNIFICANCE STATEMENT Global populations are living longer, driving urgency to understand age-related cognitive declines. Fluid intelligence is of prime importance because it reflects performance across many domains, and declines especially steeply during healthy aging. Despite consensus that fluid intelligence is associated with particular frontoparietal brain regions, little research has investigated suggestions that under-responsiveness of these regions mediates age-related decline. We replicate a recent demonstration of such mediation, showing specific association with brain regions most activated by cognitive demand, and robustness to moderate confounding by unmodeled variables. By showing that this mediation model is moderated by the variety of regular physical activities, more reliably than by their frequency or duration, we identify a potential modifiable lifestyle factor that may help promote successful aging.


Assuntos
Encéfalo , Longevidade , Masculino , Feminino , Humanos , Adulto , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Envelhecimento/fisiologia , Resolução de Problemas , Imageamento por Ressonância Magnética , Inteligência/fisiologia , Cognição/fisiologia
5.
Neuroimage ; 297: 120761, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39069226

RESUMO

Flexible cognitive functions, such as working memory (WM), usually require a balance between localized and distributed information processing. However, it is challenging to uncover how local and distributed processing specifically contributes to task-induced activity in a region. Although the recently proposed activity flow mapping approach revealed the relative contribution of distributed processing, few studies have explored the adaptive and plastic changes that underlie cognitive manipulation. In this study, we recruited 51 healthy volunteers (31 females) and investigated how the activity flow and brain activation of the frontoparietal systems was modulated by WM load and training. While the activation of both executive control network (ECN) and dorsal attention network (DAN) increased linearly with memory load at baseline, the relative contribution of distributed processing showed a linear response only in the DAN, which was prominently attributed to within-network activity flow. Importantly, adaptive training selectively induced an increase in the relative contribution of distributed processing in the ECN and also a linear response to memory load, which were predominantly due to between-network activity flow. Furthermore, we demonstrated a causal effect of activity flow prediction through training manipulation on connectivity and activity. In contrast with classic brain activation estimation, our findings suggest that the relative contribution of distributed processing revealed by activity flow prediction provides unique insights into neural processing of frontoparietal systems under the manipulation of cognitive load and training. This study offers a new methodological framework for exploring information integration versus segregation underlying cognitive processing.


Assuntos
Função Executiva , Imageamento por Ressonância Magnética , Memória de Curto Prazo , Humanos , Feminino , Masculino , Adulto Jovem , Adulto , Memória de Curto Prazo/fisiologia , Função Executiva/fisiologia , Mapeamento Encefálico , Atenção/fisiologia , Cognição/fisiologia , Encéfalo/fisiologia , Rede Nervosa/fisiologia , Rede Nervosa/diagnóstico por imagem , Lobo Parietal/fisiologia
6.
J Neurophysiol ; 131(1): 106-123, 2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-38092416

RESUMO

Primates are characterized by specializations for manual manipulation, including expansion of posterior parietal cortex (PPC) and, in Catarrhines, evolution of a dexterous hand and opposable thumb. Previous studies examined functional interactions between motor cortex and PPC in New World monkeys and galagos, by inactivating M1 and evoking movements from PPC. These studies found that portions of PPC depend on M1 to generate movements. We now add a species that more closely resembles humans in hand morphology and PPC: macaques. Inactivating portions of M1 resulted in all evoked movements being reduced (28%) or completely abolished (72%) at the PPC sites tested (in areas 5L, PF, and PFG). Anterior parietal area 2 was similarly affected (26% reduced and 74% abolished) and area 1 was the least affected (12% no effect, 54% reduced, and 34% abolished). Unlike previous studies in New World monkeys and galagos, interactions between both nonanalogous (heterotopic) and analogous (homotopic) M1 and parietal movement domains were commonly found in most areas. These experiments demonstrate that there may be two parallel networks involved in motor control: a posterior parietal network dependent on M1 and a network that includes area 1 that is relatively independent of M1. Furthermore, it appears that the relative size and number of cortical fields in parietal cortex in different species correlates with homotopic and heterotopic effect prevalence. These functional differences in macaques could contribute to more numerous and varied muscle synergies across major muscle groups, supporting the expansion of the primate manual behavioral repertoire observed in Old World monkeys.NEW & NOTEWORTHY Motor cortex and anterior and posterior parietal cortex form a sensorimotor integration network. We tested the extent to which parietal areas could initiate movements independent of M1. Our findings support the contention that, although areas 2, 5L, PF, and PFG are highly dependent on M1 to produce movement, area 1 may constitute a parallel corticospinal pathway that can function somewhat independently of M1. A similar functional architecture may underlie dexterous tool use in humans.


Assuntos
Córtex Motor , Humanos , Animais , Córtex Motor/fisiologia , Galago/fisiologia , Lobo Parietal/fisiologia , Movimento/fisiologia , Macaca , Platirrinos
7.
Eur J Neurosci ; 2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-39223860

RESUMO

Working memory (WM) involves the capacity to maintain and manipulate information over short periods. Previous research has suggested that fronto-parietal activities play a crucial role in WM. However, there remains no agreement on the effect of working memory load (WML) on neural activities and haemodynamic responses. Here, our study seeks to examine the effect of WML through simultaneous electroencephalography (EEG) and functional near-infrared spectroscopy (fNIRS). In this study, a delay change detection task was conducted on 23 healthy volunteers. The task included three levels: one item, three items and five items. The EEG and fNIRS were simultaneously recorded during the task. Neural activities and haemodynamic responses at prefrontal and parietal regions were analysed using time-frequency analysis and weighted phase-lag index (wPLI). We observed a significant enhancement in prefrontal and parietal ß suppression as WML increased. Furthermore, as WML increased, there was a notable enhancement in fronto-parietal connectivity (FPC), as evidenced by both EEG and fNIRS. Correlation analysis indicated that as WML increased, there was a potential for enhancement of neurovascular coupling (NVC) of FPC.

8.
Hum Brain Mapp ; 45(11): e26777, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39046114

RESUMO

The development and refinement of functional brain circuits crucial to human cognition is a continuous process that spans from childhood to adulthood. Research increasingly focuses on mapping these evolving configurations, with the aim to identify markers for functional impairments and atypical development. Among human cognitive systems, nonsymbolic magnitude representations serve as a foundational building block for future success in mathematical learning and achievement for individuals. Using task-based frontoparietal (FPN) and salience network (SN) features during nonsymbolic magnitude processing alongside machine learning algorithms, we developed a framework to construct brain age prediction models for participants aged 7-30. Our study revealed differential developmental profiles in the synchronization within and between FPN and SN networks. Specifically, we observed a linear increase in FPN connectivity, concomitant with a decline in SN connectivity across the age span. A nonlinear U-shaped trajectory in the connectivity between the FPN and SN was discerned, revealing reduced FPN-SN synchronization among adolescents compared to both pediatric and adult cohorts. Leveraging the Gradient Boosting machine learning algorithm and nested fivefold stratified cross-validation with independent training datasets, we demonstrated that functional connectivity measures of the FPN and SN nodes predict chronological age, with a correlation coefficient of .727 and a mean absolute error of 2.944 between actual and predicted ages. Notably, connectivity within the FPN emerged as the most contributing feature for age prediction. Critically, a more matured brain age estimate is associated with better arithmetic performance. Our findings shed light on the intricate developmental changes occurring in the neural networks supporting magnitude representations. We emphasize brain age estimation as a potent tool for understanding cognitive development and its relationship to mathematical abilities across the critical developmental period of youth. PRACTITIONER POINTS: This study investigated the prolonged changes in the brain's architecture across childhood, adolescence, and adulthood, with a focus on task-state frontoparietal and salience networks. Distinct developmental pathways were identified: frontoparietal synchronization strengthens consistently throughout development, while salience network connectivity diminishes with age. Furthermore, adolescents show a unique dip in connectivity between these networks. Leveraging advanced machine learning methods, we accurately predicted individuals' ages based on these brain circuits, with a more mature estimated brain age correlating with better math skills.


Assuntos
Lobo Frontal , Aprendizado de Máquina , Imageamento por Ressonância Magnética , Rede Nervosa , Lobo Parietal , Humanos , Adolescente , Criança , Adulto Jovem , Masculino , Feminino , Adulto , Lobo Parietal/fisiologia , Lobo Parietal/diagnóstico por imagem , Lobo Parietal/crescimento & desenvolvimento , Lobo Frontal/fisiologia , Lobo Frontal/crescimento & desenvolvimento , Lobo Frontal/diagnóstico por imagem , Rede Nervosa/diagnóstico por imagem , Rede Nervosa/fisiologia , Rede Nervosa/crescimento & desenvolvimento , Conceitos Matemáticos , Conectoma
9.
Psychol Med ; 54(3): 473-487, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38047402

RESUMO

Behavioral addiction (BA) and substance use disorder (SUD) share similarities and differences in clinical symptoms, cognitive functions, and behavioral attributes. However, little is known about whether and how functional networks in the human brain manifest commonalities and differences between BA and SUD. Voxel-wise meta-analyses of resting-state functional connectivity (rs-FC) were conducted in BA and SUD separately, followed by quantitative conjunction analyses to identify the common and distinct alterations across both the BA and SUD groups. A total of 92 datasets with 2444 addicted patients and 2712 healthy controls (HCs) were eligible for the meta-analysis. Our findings demonstrated that BA and SUD exhibited common alterations in rs-FC between frontoparietal network (FPN) and other high-level neurocognitive networks (i.e. default mode network (DMN), affective network (AN), and salience network (SN)) as well as hyperconnectivity between SN seeds and the Rolandic operculum in SSN. In addition, compared with BA, SUD exhibited several distinct within- and between-network rs-FC alterations mainly involved in the DMN and FPN. Further, altered within- and between-network rs-FC showed significant association with clinical characteristics such as the severity of addiction in BA and duration of substance usage in SUD. The common rs-FC alterations in BA and SUD exhibited the relationship with consistent aberrant behaviors in both addiction groups, such as impaired inhibition control and salience attribution. By contrast, the distinct rs-FC alterations might suggest specific substance effects on the brain neural transmitter systems in SUD.


Assuntos
Comportamento Aditivo , Transtornos Relacionados ao Uso de Substâncias , Humanos , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico , Transtornos Relacionados ao Uso de Substâncias/diagnóstico por imagem , Cognição , Comportamento Aditivo/diagnóstico por imagem , Vias Neurais/diagnóstico por imagem , Imageamento por Ressonância Magnética
10.
Cerebellum ; 23(2): 431-443, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36995498

RESUMO

Each cerebellar hemisphere projects to the contralateral cerebral hemisphere. Previous research suggests a lateralization of cognitive functions in the cerebellum that mirrors the cerebral cortex, with attention/visuospatial functions represented in the left cerebellar hemisphere, and language functions in the right cerebellar hemisphere. Although there is good evidence supporting the role of the right cerebellum with language functions, the evidence supporting the notion that attention and visuospatial functions are left lateralized is less clear. Given that spatial neglect is one of the most common disorders arising from right cortical damage, we reasoned that damage to the left cerebellum would result in increased spatial neglect-like symptoms, without necessarily leading to an official diagnosis of spatial neglect. To examine this disconnection hypothesis, we analyzed neglect screening data (line bisection, cancellation, figure copying) from 20 patients with isolated unilateral cerebellar stroke. Results indicated that left cerebellar patients (n = 9) missed significantly more targets on the left side of cancellation tasks compared to a normative sample. No significant effects were observed for right cerebellar patients (n = 11). A lesion overlap analysis indicated that Crus II (78% overlap), and lobules VII and IX (66% overlap) were the regions most commonly damaged in left cerebellar patients. Our results are consistent with the notion that the left cerebellum may be important for attention and visuospatial functions. Given the poor prognosis typically associated with neglect, we suggest that screening for neglect symptoms, and visuospatial deficits more generally, may be important for tailoring rehabilitative efforts to help maximize recovery in cerebellar patients.


Assuntos
Transtornos da Percepção , Acidente Vascular Cerebral , Humanos , Percepção Espacial , Lateralidade Funcional , Acidente Vascular Cerebral/complicações , Acidente Vascular Cerebral/diagnóstico por imagem , Transtornos da Percepção/complicações , Transtornos da Percepção/patologia , Córtex Cerebral , Testes Neuropsicológicos
11.
Artigo em Inglês | MEDLINE | ID: mdl-38976050

RESUMO

Working memory (WM) is a distributed and dynamic process, and WM deficits are recognized as one of the top-ranked endophenotype candidates for major depressive disorders (MDD). However, there is a lack of knowledge of brain temporal-spatial profile of WM deficits in MDD. We used the dynamical degree centrality (dDC) to investigate the whole-brain temporal-spatial profile in 40 MDD and 40 controls during an n-back task with 2 conditions (i.e., '0back' and '2back'). We explored the dDC temporal variability and clustered meta-stable states in 2 groups during different WM conditions. Pearson's correlation analysis was used to evaluate the relationship between the altered dynamics with clinical symptoms and WM performance. Compared with controls, under '2back vs. 0back' contrast, patients showed an elevated dDC variability in wide range of brain regions, including the middle frontal gyrus, orbital part of inferior frontal gyrus (IFGorb), hippocampus, and middle temporal gyrus. Furthermore, the increased dDC variability in the hippocampus and IFGorb correlated with worse WM performance. However, there were no significant group-related differences in the meta-stable states were observed. This study demonstrated the increased WM-related instability (i.e., the elevated dDC variability) was represented in MDD, and enhancing stability may help patients achieve better WM performance.

12.
Cereb Cortex ; 33(22): 11157-11169, 2023 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-37757479

RESUMO

Precision walking (PW) incorporates precise step adjustments into regular walking patterns to navigate challenging surroundings. However, the brain processes involved in PW control, which encompass cortical regions and interregional interactions, are not fully understood. This study aimed to investigate the changes in regional activity and effective connectivity within the frontoparietal network associated with PW. Functional near-infrared spectroscopy data were recorded from adult subjects during treadmill walking tasks, including normal walking (NOR) and PW with visual cues, wherein the intercue distance was either fixed (FIX) or randomly varied (VAR) across steps. The superior parietal lobule (SPL), dorsal premotor area (PMd), supplementary motor area (SMA), and dorsolateral prefrontal cortex (dlPFC) were specifically targeted. The results revealed higher activities in SMA and left PMd, as well as left-to-right SPL connectivity, in VAR than in FIX. Activities in SMA and right dlPFC, along with dlPFC-to-SPL connectivity, were higher in VAR than in NOR. Overall, these findings provide insights into the roles of different brain regions and connectivity patterns within the frontoparietal network in facilitating gait control during PW, providing a useful baseline for further investigations into brain networks involved in locomotion.


Assuntos
Mapeamento Encefálico , Sinais (Psicologia) , Adulto , Humanos , Caminhada , Encéfalo , Espectroscopia de Luz Próxima ao Infravermelho
13.
Cereb Cortex ; 33(5): 2048-2060, 2023 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-35609335

RESUMO

How do attentional networks influence conscious perception? To answer this question, we used magnetoencephalography in human participants and assessed the effects of spatially nonpredictive or predictive supra-threshold peripheral cues on the conscious perception of near-threshold Gabors. Three main results emerged. (i) As compared with invalid cues, both nonpredictive and predictive valid cues increased conscious detection. Yet, only predictive cues shifted the response criterion toward a more liberal decision (i.e. willingness to report the presence of a target under conditions of greater perceptual uncertainty) and affected target contrast leading to 50% detections. (ii) Conscious perception following valid predictive cues was associated to enhanced activity in frontoparietal networks. These responses were lateralized to the left hemisphere during attentional orienting and to the right hemisphere during target processing. The involvement of frontoparietal networks occurred earlier in valid than in invalid trials, a possible neural marker of the cost of re-orienting attention. (iii) When detected targets were preceded by invalid predictive cues, and thus reorienting to the target was required, neural responses occurred in left hemisphere temporo-occipital regions during attentional orienting, and in right hemisphere anterior insular and temporo-occipital regions during target processing. These results confirm and specify the role of frontoparietal networks in modulating conscious processing and detail how invalid orienting of spatial attention disrupts conscious processing.


Assuntos
Magnetoencefalografia , Orientação , Humanos , Tempo de Reação/fisiologia , Orientação/fisiologia , Atenção/fisiologia , Percepção Visual/fisiologia , Sinais (Psicologia) , Percepção Espacial/fisiologia
14.
Cereb Cortex ; 33(9): 5251-5263, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-36320154

RESUMO

The default mode network (DMN) is a workspace for convergence of internal and external information. The frontal parietal network (FPN) is indispensable to executive functioning. Yet, how they interplay to support cognitive development remains elusive. Using longitudinal developmental fMRI with an n-back paradigm, we show a heterogeneity of maturational changes in multivoxel activity and network connectivity among DMN and FPN nodes in 528 children and 103 young adults. Compared with adults, children exhibited prominent longitudinal improvement but still inferior behavioral performance, which paired with less pronounced DMN deactivation and weaker FPN activation in children, but stronger DMN coupling with FPN regions. Children's DMN reached an adult-like level earlier than FPN at both multivoxel activity pattern and intranetwork connectivity levels. Intrinsic DMN-FPN internetwork coupling in children mediated the relationship between age and working memory-related functional coupling of these networks, with posterior cingulate cortex (PCC)-dorsolateral prefrontal cortex (DLPFC) coupling emerging as most prominent pathway. Coupling of PCC-DLPFC may further work together with task-invoked activity in PCC to account for longitudinal improvement in behavioral performance in children. Our findings suggest that the DMN provides a scaffolding effect in support of an immature FPN that is critical for the development of executive functions in children.


Assuntos
Cognição , Rede de Modo Padrão , Adulto Jovem , Criança , Humanos , Função Executiva/fisiologia , Memória de Curto Prazo/fisiologia , Lobo Frontal , Imageamento por Ressonância Magnética , Mapeamento Encefálico , Encéfalo/fisiologia , Rede Nervosa/fisiologia
15.
Cereb Cortex ; 33(23): 11206-11224, 2023 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-37823346

RESUMO

Complex cognitive processes, like creative thinking, rely on interactions among multiple neurocognitive processes to generate effective and innovative behaviors on demand, for which the brain's connector hubs play a crucial role. However, the unique contribution of specific hub sets to creative thinking is unknown. Employing three functional magnetic resonance imaging datasets (total N = 1,911), we demonstrate that connector hub sets are organized in a hierarchical manner based on diversity, with "control-default hubs"-which combine regions from the frontoparietal control and default mode networks-positioned at the apex. Specifically, control-default hubs exhibit the most diverse resting-state connectivity profiles and play the most substantial role in facilitating interactions between regions with dissimilar neurocognitive functions, a phenomenon we refer to as "diverse functional interaction". Critically, we found that the involvement of control-default hubs in facilitating diverse functional interaction robustly relates to creativity, explaining both task-induced functional connectivity changes and individual creative performance. Our findings suggest that control-default hubs drive diverse functional interaction in the brain, enabling complex cognition, including creative thinking. We thus uncover a biologically plausible explanation that further elucidates the widely reported contributions of certain frontoparietal control and default mode network regions in creativity studies.


Assuntos
Encéfalo , Criatividade , Encéfalo/diagnóstico por imagem , Cognição , Mapeamento Encefálico/métodos , Imageamento por Ressonância Magnética , Rede Nervosa/diagnóstico por imagem
16.
Cereb Cortex ; 33(8): 4542-4552, 2023 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-36124666

RESUMO

Memory retrieval effects in the striatum are well documented and robust across experimental paradigms. However, the functional significance of these effects, and whether they are moderated by age, remains unclear. We used functional magnetic resonance imaging paired with an associative recognition task to examine retrieval effects in the striatum in a sample of healthy young, middle-aged, and older adults. We identified anatomically segregated patterns of enhanced striatal blood oxygen level-dependent (BOLD) activity during recollection- and familiarity-based memory judgments. Successful recollection was associated with enhanced BOLD activity in bilateral putamen and nucleus accumbens, and neither of these effects were reliably moderated by age. Familiarity effects were evident in the head of the caudate nucleus bilaterally, and these effects were attenuated in middle-aged and older adults. Using psychophysiological interaction analyses, we observed a monitoring-related increase in functional connectivity between the caudate and regions of the frontoparietal control network, and between the putamen and bilateral retrosplenial cortex and intraparietal sulcus. In all instances, monitoring-related increases in cortico-striatal connectivity were unmoderated by age. These results suggest that the striatum, and the caudate in particular, couples with the frontoparietal control network to support top-down retrieval-monitoring operations, and that the strength of these inter-regional interactions is preserved in later life.


Assuntos
Corpo Estriado , Longevidade , Corpo Estriado/fisiologia , Memória/fisiologia , Reconhecimento Psicológico/fisiologia , Núcleo Caudado/diagnóstico por imagem , Imageamento por Ressonância Magnética , Vias Neurais/fisiologia , Mapeamento Encefálico
17.
Cereb Cortex ; 33(11): 7276-7287, 2023 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-36813474

RESUMO

The frontoparietal multiple demand (MD) network has been proposed as a control network that regulates processing demands while enabling goal-directed actions. This study tested the MD network account in auditory working memory (AWM) and identified its functional role and relationship with the dual pathways model in AWM, where segregation of function was based on the sound domain. Forty-one healthy young adults performed an n-back task consisting of an orthogonal combination of the sound domain (spatial versus nonspatial) and cognitive operation (low load versus high load). Functional connectivity and correlation analyses were performed to assess the connectivity of the MD network and the dual pathways. Our results confirmed the contribution of the MD network to AWM and identified its interactions with the dual pathways in both sound domains and during high and low load levels. At high loads, the strength of connectivity with the MD network correlated with task accuracy, indicating the key role of the MD network in supporting successful performance as cognitive load increases. This study contributed to the auditory literature by showing that both the MD network and dual pathways collaborate with each other to support AWM, and neither of them alone is adequate to explain auditory cognition.


Assuntos
Lobo Frontal , Memória de Curto Prazo , Adulto Jovem , Humanos , Memória de Curto Prazo/fisiologia , Lobo Frontal/fisiologia , Cognição/fisiologia , Rede Nervosa/diagnóstico por imagem , Rede Nervosa/fisiologia , Imageamento por Ressonância Magnética , Vias Neurais/diagnóstico por imagem , Vias Neurais/fisiologia , Mapeamento Encefálico , Encéfalo/fisiologia
18.
Cereb Cortex ; 33(5): 2021-2036, 2023 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-35595542

RESUMO

Semantic cognition is a complex multifaceted brain function involving multiple processes including sensory, semantic, and domain-general cognitive systems. However, it remains unclear how these systems cooperate with each other to achieve effective semantic cognition. Here, we used independent component analysis (ICA) to investigate the functional brain networks that support semantic cognition. We used a semantic judgment task and a pattern-matching control task, each with 2 levels of difficulty, to disentangle task-specific networks from domain-general networks. ICA revealed 2 task-specific networks (the left-lateralized semantic network [SN] and a bilateral, extended semantic network [ESN]) and domain-general networks including the frontoparietal network (FPN) and default mode network (DMN). SN was coupled with the ESN and FPN but decoupled from the DMN, whereas the ESN was synchronized with the FPN alone and did not show a decoupling with the DMN. The degree of decoupling between the SN and DMN was associated with semantic task performance, with the strongest decoupling for the poorest performing participants. Our findings suggest that human higher cognition is achieved by the multiple brain networks, serving distinct and shared cognitive functions depending on task demands, and that the neural dynamics between these networks may be crucial for efficient semantic cognition.


Assuntos
Encéfalo , Semântica , Humanos , Cognição , Mapeamento Encefálico , Julgamento , Imageamento por Ressonância Magnética , Vias Neurais
19.
Proc Natl Acad Sci U S A ; 118(12)2021 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-33727420

RESUMO

Young infants learn about the world by overtly shifting their attention to perceptually salient events. In adults, attention recruits several brain regions spanning the frontal and parietal lobes. However, it is unclear whether these regions are sufficiently mature in infancy to support attention and, more generally, how infant attention is supported by the brain. We used event-related functional magnetic resonance imaging (fMRI) in 24 sessions from 20 awake behaving infants 3 mo to 12 mo old while they performed a child-friendly attentional cuing task. A target was presented to either the left or right of the infant's fixation, and offline gaze coding was used to measure the latency with which they saccaded to the target. To manipulate attention, a brief cue was presented before the target in three conditions: on the same side as the upcoming target (valid), on the other side (invalid), or on both sides (neutral). All infants were faster to look at the target on valid versus invalid trials, with valid faster than neutral and invalid slower than neutral, indicating that the cues effectively captured attention. We then compared the fMRI activity evoked by these trial types. Regions of adult attention networks activated more strongly for invalid than valid trials, particularly frontal regions. Neither behavioral nor neural effects varied by infant age within the first year, suggesting that these regions may function early in development to support the orienting of attention. Together, this furthers our mechanistic understanding of how the infant brain controls the allocation of attention.


Assuntos
Atenção , Desenvolvimento Infantil , Lobo Frontal/fisiologia , Mapeamento Encefálico , Lobo Frontal/diagnóstico por imagem , Humanos , Lactente , Recém-Nascido , Imageamento por Ressonância Magnética/métodos , Lobo Temporal/diagnóstico por imagem , Lobo Temporal/fisiologia
20.
J Integr Neurosci ; 23(1): 9, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38287846

RESUMO

OBJECTIVES: To investigate the differences in functional brain activity and connectivity between nurses working long-term shifts and fixed day shift and explore their correlations with work-related psychological conditions. METHODS: Thirty-five nurses working long-term shifts and 35 nurses working fixed day shifts were recruited. After assessing work-related psychological conditions, such as burnout and perceived stress of these two groups of nurses, amplitude of low-frequency fluctuations (ALFF) and functional connectivity (FC) analyses were performed to investigate the between-group differences in brain functional activity and connectivity. Furthermore, correlation analysis between the ALFF/FC metrics and psychological conditions was conducted. RESULTS: Compared with nurses working fixed day shifts, nurses working long-term shifts showed higher levels of burnout, perceived stress, and depression scores; lower z-transformed ALFF (zALFF) values in the right dorsolateral prefrontal cortex (dlPFC), right superior parietal lobule (SPL), and right anterior cingulate cortex (ACC); and higher zALFF values in the right middle temporal gyrus (voxel-level p < 0.001, cluster-level p < 0.05, gaussian random field (GRF) correction), as well as lower FC values in the right dlPFC-right SPL and right dlPFC-right ACC (p < 0.05, false discovery rate (FDR) corrected). Moreover, the FC values in the right dlPFC-right SPL were negatively correlated with the perceived stress score in nurses working long-term shifts (p < 0.05, FDR corrected). CONCLUSIONS: This study demonstrated that nurses working long-term shifts had lower functional activity and weaker functional connectivity in the right frontoparietal network, which mainly includes the right dlPFC and right SPL, than those working on regular day shift. The current findings provide new insights into the impacts of long-term shift work on nurses' mental health from a functional neuroimaging perspective.


Assuntos
Transtornos Mentais , Lobo Parietal , Humanos , Lobo Parietal/diagnóstico por imagem , Lobo Temporal , Giro do Cíngulo/diagnóstico por imagem , Neuroimagem Funcional , Imageamento por Ressonância Magnética/métodos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa