Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 159
Filtrar
1.
Annu Rev Microbiol ; 76: 157-178, 2022 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-35609947

RESUMO

Fungi, including yeasts, molds, and mushrooms, proliferate on decaying matter and then adopt quiescent forms once nutrients are depleted. This review explores how fungi use sirtuin deacetylases to sense and respond appropriately to changing nutrients. Because sirtuins are NAD+-dependent deacetylases, their activity is sensitive to intracellular NAD+ availability. This allows them to transmit information about a cell's metabolic state on to the biological processes they influence. Fungal sirtuins are primarily known to deacetylate histones, repressing transcription and modulating genome stability. Their target genes include those involved in NAD+ homeostasis, metabolism, sporulation, secondary metabolite production, and virulence traits of pathogenic fungi. By targeting different genes over evolutionary time, sirtuins serve as rewiring points that allow organisms to evolve novel responses to low NAD+ stress by bringing relevant biological processes under the control of sirtuins.


Assuntos
Sirtuínas , Epigênese Genética , Fungos/genética , Fungos/metabolismo , Expressão Gênica , NAD/metabolismo , Sirtuínas/genética , Sirtuínas/metabolismo
2.
Molecules ; 29(10)2024 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-38792143

RESUMO

Strigolactones (SLs) have potential to be used in sustainable agriculture to mitigate various stresses that plants have to deal with. The natural SLs, as well as the synthetic analogs, are difficult to obtain in sufficient amounts for practical applications. At the same time, fluorescent SLs would be useful for the mechanistic understanding of their effects based on bio-imaging or spectroscopic techniques. In this study, new fluorescent SL mimics containing a substituted 1,8-naphthalimide ring system connected through an ether link to a bioactive furan-2-one moiety were prepared. The structural, spectroscopic, and biological activity of the new SL mimics on phytopathogens were investigated and compared with previously synthetized fluorescent SL mimics. The chemical group at the C-6 position of the naphthalimide ring influences the fluorescence parameters. All SL mimics showed effects similar to GR24 on phytopathogens, indicating their suitability for practical applications. The pattern of the biological activity depended on the fungal species, SL mimic and concentration, and hyphal order. This dependence is probably related to the specificity of each fungal receptor-SL mimic interaction, which will have to be analyzed in-depth. Based on the biological properties and spectroscopic particularities, one SL mimic could be a good candidate for microscopic and spectroscopic investigations.


Assuntos
Lactonas , Naftalimidas , Naftalimidas/química , Naftalimidas/síntese química , Naftalimidas/farmacologia , Lactonas/química , Lactonas/farmacologia , Lactonas/síntese química , Estrutura Molecular , Ascomicetos , Corantes Fluorescentes/química , Corantes Fluorescentes/síntese química , Rhizoctonia/efeitos dos fármacos , Compostos Heterocíclicos com 3 Anéis
3.
Fungal Genet Biol ; 168: 103823, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37453457

RESUMO

Filamentous fungi develop intricate hyphal networks that support mycelial foraging and transport of resources. These networks have been analyzed recently using graph theory, enabling the development of models that seek to predict functional traits. However, attention has focused mainly on mature colonies. Here, we report the extraction and analysis of the graph corresponding to Trichoderma atroviride mycelia only a few hours after conidia germination. To extract the graph for a given mycelium, a mosaic conformed of multiple bright-field, optical microscopy images is digitally processed using freely available software. The resulting graphs are characterized in terms of number of nodes and edges, average edge length, total mycelium length, hyphal growth unit, maximum edge length and mycelium diameter, for colonies between 8 h and 14 h after conidium germination. Our results show that the emerging hyphal network grows first by hyphal elongation and branching, and then it transitions to a stage where hyphal-hyphal interactions become significant. As a tangled hyphal network develops with decreasing hyphal mean length, the mycelium maintains long (∼2 mm) hyphae-a behavior that suggests a combination of aggregated and dispersed architectures to support foraging. Lastly, analysis of early network development in Podospora anserina reveals striking similarity with T. atroviride, suggesting common mechanisms during initial colony formation in filamentous fungi.


Assuntos
Hifas , Micélio , Fungos , Microscopia
4.
J Appl Microbiol ; 134(12)2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38049375

RESUMO

AIMS: The antifungal effect of the yeast species Kluyveromyces marxianus, Meyerozyma caribbica, and Wickerhamomyces anomalus was evaluated against two Fusarium graminearum strains (FRS 26 and FSP 27) in vitro and on corn seeds. METHODS AND RESULTS: The antifungal effect of the yeasts against F. graminearum was evaluated using scanning electron microscopy and extracellular chitinase and glucanase production to further elucidate the biocontrol mode of action. In addition, the germination percentage and vigor test were investigated after applying yeast on corn seeds. All the yeast strains inhibited fungal growth in vitro (57.4%-100.0%) and on corn seeds (18.9%-87.2%). In co-culture with antagonistic yeasts, F. graminearum showed collapsed hyphae and turgidity loss, which could be related to the ability of yeasts to produce chitinases and glucanases. The three yeasts did not affect the seed corn germination, and W. anomalus and M. caribbica increased corn seed growth parameters (germination percentage, shoot and root length, and shoot dry weight). CONCLUSION: Meyerozyma caribbica and W. anomalus showed satisfactory F. graminearum growth inhibition rates and did not affect seed growth parameters. Further studies are required to evaluate the application of these yeasts to the crop in the field.


Assuntos
Antifúngicos , Fusarium , Antifúngicos/farmacologia , Zea mays , Leveduras , Doenças das Plantas/prevenção & controle , Doenças das Plantas/microbiologia
5.
Mycorrhiza ; 33(4): 229-240, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37436449

RESUMO

Orchids depend on mycorrhizal fungi to germinate from seed. While multiple orchid mycorrhizal (OrM) taxa are often found associated with adult orchids, the relative contribution of particular OrM taxa to germination and early orchid development is poorly understood. We isolated 28 OrM fungi associated with the Mediterranean orchid Anacamptis papilionacea and tested the efficiency of five isolates on germination and early development, four belonging to the Tulasnella calospora species complex and one belonging to Ceratobasidium. Co-cultures of varying two-way and three-way combinations of OrM isolates were used in vitro to compare the simultaneous effect on seed germination rate with monocultures. We then tested whether, when given initial priority over other fungi, particular OrM taxa were more effective during the early stages of development. Seedlings germinated with different isolates were transferred to a growth chamber, and either the same or different isolate was added 45 days later. After 3 months, the number of roots, length of the longest root, and tuber area were measured. All OrM fungi resulted in seed germination; however, lower germination rates were associated with the Ceratobasidium isolate compared to the tulasnelloid isolates. There was significant decreased germination in co-culture experiments when the Ceratobasidium isolate was added. Despite being associated with reduced germination rates, the addition of the Ceratobasidium isolate to the seedlings germinated with tulasnelloid strains resulted in significant increased tuber size. Although A. papilionacea associates with many OrM taxa, these results show that OrM fungi may play different roles during orchid germination and early development. Even when given initial priority, other fungi may colonize developing orchids and interact to influence early orchid development.


Assuntos
Micorrizas , Orchidaceae , Simbiose , Orchidaceae/microbiologia , Germinação , Plântula
6.
Plant Dis ; 107(5): 1329-1342, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36222728

RESUMO

Anthracnose of olive fruit caused by Colletotrichum acutatum was a severe epidemic disease in Pakistan that occurred in September 2020. The estimated disease incident was recorded as 59%. Anthracnose causes a significant reduction in yield and quality traits. Anthracnose has been found in several orchards. Agricultural practices, environmental factors, and disease aggressiveness vary between orchards. Therefore, we looked at spore size, cultural traits, morphological variation, growth pattern, and pathogenicity of different strains of C. acutatum from various orchards. Molecular and phylogenetic analysis confirmed the isolated strains as C. acutatum. In all, 15 C. acutatum isolates from olive orchards were tested for susceptibility to four commercial fungicides (P < 0.001). The examined isolates' in vitro fungicide sensitivity varied with fungicide concentration. The concentration at which conidial germination was hindered by 50% compared with the control values was observed for difenoconazole, tebuconazole, carbendazim, and cyprodinil, ranging from 0.12 to 2.69 g ml-1. Based on the findings of the fungal growth inhibition studies, carbendazim has been found to be the only fungicide that effectively reduces (P < 0.001) anthracnose caused by C. acutatum strains. Additionally, results revealed that preharvest site treatments of different fungicides greatly decreased anthracnose infections on olive fruit (70 to 90%), and postharvest site applications significantly reduced disease prevalence and severity (75 to 95%). The fungicide carbendazim significantly decreased pre- and postharvest anthracnose infection on olive cultivars. This study suggests that the latter compound might be used to control olive anthracnose in Pakistan while lowering environmental impact and fungicide resistance.


Assuntos
Fungicidas Industriais , Olea , Fungicidas Industriais/farmacologia , Olea/microbiologia , Filogenia , Paquistão , Doenças das Plantas/prevenção & controle , Doenças das Plantas/microbiologia
7.
Int J Mol Sci ; 25(1)2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-38203369

RESUMO

Colletotrichum spp. are ascomycete fungi and cause anthracnose disease in numerous crops of economic significance. The genomes of these fungi are distributed among ten core chromosomes and two to three minichromosomes. While the core chromosomes regulate fungal growth, development and virulence, the extent to which the minichromosomes are involved in these processes is still uncertain. Here, we discuss the minichromosomes of three hemibiotrophic Colletotrichum pathogens, i.e., C. graminicola, C. higginsianum and C. lentis. These minichromosomes are typically less than one megabase in length, characterized by containing higher repetitive DNA elements, lower GC content, higher frequency of repeat-induced point mutations (RIPMs) and sparse gene distribution. Molecular genetics and functional analyses have revealed that these pathogens harbor one conditionally dispensable minichromosome, which is dispensable for fungal growth and development but indispensable for fungal virulence on hosts. They appear to be strain-specific innovations and are highly compartmentalized into AT-rich and GC-rich blocks, resulting from RIPMs, which may help protect the conditionally dispensable minichromosomes from erosion of already scarce genes, thereby helping the Colletotrichum pathogens maintain adaptability on hosts. Overall, understanding the mechanisms underlying the conditional dispensability of these minichromosomes could lead to new strategies for controlling anthracnose disease in crops.


Assuntos
Colletotrichum , Colletotrichum/genética , Virulência/genética , Produtos Agrícolas , Mutação Puntual , Incerteza
8.
J Environ Manage ; 343: 118141, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37245305

RESUMO

A simple scalable method has been developed to obtain protein hydrolysate from fleshing waste generated during leather processing. UV-Vis, FTIR and Solid State C13 NMR analyses identified that prepared protein hydrolysate is basically collagen hydrolysate. DLS and MALDI-TOF-MS spectra indicated that the prepared protein hydrolysate is mostly comprised of di- and tri-peptides and less poly-dispersed than the standard commercial product. A combination of 0.3% Yeast extract, 1% Protein Hydrolysate (PHz) and 2% Glucose is found to be the most efficient nutrient composition for the fermentative growth of three well-known chitosan producing zygomycetes group of fungi. Mucor sp. showed highest yield of biomass (2.74 g/L) as well as chitosan (335 mg/L). Biomass and chitosan yield for Rhizopus oryzae were found 1.53 g/L; 239 mg/L. Same for Absidia coerulea were 2.05 g/L and 212 mg/L, respectively. This work shows promising prospect of utilization of fleshing waste of leather processing for the low-cost production of industrially important biopolymer chitosan.


Assuntos
Quitosana , Quitosana/química , Quitosana/metabolismo , Hidrolisados de Proteína/metabolismo , Polímeros/metabolismo , Fungos/metabolismo , Fermentação
9.
J Prosthodont ; 32(4): 292-297, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35637596

RESUMO

PURPOSE: Knowledge about quantifying the number as well as the retention and adhesion of Candida albicans blastoconidia to silicone denture liners is limited. Thus, the aim of this in vitro study was to explore the adherence of C. albicans to the surface of five long-term silicone-based soft denture lining materials, using artificial saliva. MATERIALS AND METHODS: A total of 50 specimens (10 × 10 × 3 mm) of five long-term resilient liners (Molloplast-B; GC Reline Soft; Elite Soft Relining; Tokuyama Sofreliner S; Ufigel SC), bonded to a computer-aided design and computer-aided manufacturing denture base, were prepared. The specimens were inoculated and incubated in artificial saliva for 1 and 24 hours with a standardized (2.8 × 106 cfu/ml) C. albicans suspension. At the end of the incubation period, the specimens were stained with acridine orange and observed using fluorescence microscopy. RESULTS: After 1 hour and in 24 hours, Molloplast B demonstrated significantly earlier adherence of C. albicans cells compared to the other chairside materials (p < 0.001 and p < 0.001, respectively), where the mean number of cells also increased in the frontal parts. Regarding the rate of C. albicans proliferation from 1 to 24 hours within the materials, there was an increase in all materials (Molloplast B: p < 0.001; GC Reline Soft: p = 0.220; Elite Soft Relining: p = 0.032; Tokuyama Sofreliner S: p = 0.001; Ufigel Sc: p = 0.001). The Ufigel Sc showed a significant 2.5-fold increase at 24 hours. CONCLUSIONS: Long-term silicone denture liners accumulate a significant amount of C. albicans blastoconidia and their coverage by them increases progressively over time.


Assuntos
Candida albicans , Reembasadores de Dentadura , Bases de Dentadura , Saliva Artificial , Propriedades de Superfície , Teste de Materiais , Elastômeros de Silicone , Desenho Assistido por Computador
10.
Proc Natl Acad Sci U S A ; 116(27): 13543-13552, 2019 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-31213536

RESUMO

Filamentous fungi that colonize microenvironments, such as animal or plant tissue or soil, must find optimal paths through their habitat, but the biological basis for negotiating growth in constrained environments is unknown. We used time-lapse live-cell imaging of Neurospora crassa in microfluidic environments to show how constraining geometries determine the intracellular processes responsible for fungal growth. We found that, if a hypha made contact with obstacles at acute angles, the Spitzenkörper (an assembly of vesicles) moved from the center of the apical dome closer to the obstacle, thus functioning as an internal gyroscope, which preserved the information regarding the initial growth direction. Additionally, the off-axis trajectory of the Spitzenkörper was tracked by microtubules exhibiting "cutting corner" patterns. By contrast, if a hypha made contact with an obstacle at near-orthogonal incidence, the directional memory was lost, due to the temporary collapse of the Spitzenkörper-microtubule system, followed by the formation of two "daughter" hyphae growing in opposite directions along the contour of the obstacle. Finally, a hypha passing a lateral opening in constraining channels continued to grow unperturbed, but a daughter hypha gradually branched into the opening and formed its own Spitzenkörper-microtubule system. These observations suggest that the Spitzenkörper-microtubule system is responsible for efficient space partitioning in microenvironments, but, in its absence during constraint-induced apical splitting and lateral branching, the directional memory is lost, and growth is driven solely by the isotropic turgor pressure. These results further our understanding of fungal growth in microenvironments relevant to environmental, industrial, and medical applications.


Assuntos
Hifas/crescimento & desenvolvimento , Neurospora crassa/crescimento & desenvolvimento , Meio Ambiente , Hifas/fisiologia , Microtúbulos/fisiologia , Neurospora crassa/fisiologia , Imagem Óptica , Imagem com Lapso de Tempo
11.
Int J Mol Sci ; 23(24)2022 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-36555197

RESUMO

Volatile organic compounds (VOCs) are secondary metabolites of varied chemical nature that are emitted by living beings and participate in their interactions. In addition, some VOCs called bioactive VOCs cause changes in the metabolism of other living species that share the same environment. In recent years, knowledge on VOCs emitted by Aspergillus flavus, the main species producing aflatoxin B1 (AFB1), a highly harmful mycotoxin, has increased. This review presents an overview of all VOCs identified as a result of A. flavus toxigenic (AFB1-producing) and non-toxigenic (non AFB1-producing) strains growth on different substrates, and the factors influencing their emissions. We also included all bioactive VOCs, mixes of VOCs or volatolomes of microbial species that impact A. flavus growth and/or related AFB1 production. The modes of action of VOCs impacting the fungus development are presented. Finally, the potential applications of VOCs as biocontrol agents in the context of mycotoxin control are discussed.


Assuntos
Aspergillus flavus , Compostos Orgânicos Voláteis , Aspergillus flavus/metabolismo , Aflatoxina B1 , Compostos Orgânicos Voláteis/farmacologia , Compostos Orgânicos Voláteis/metabolismo
12.
J Sci Food Agric ; 102(9): 3673-3682, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34890123

RESUMO

BACKGROUND: Milled rice are prone to be contaminated with spoilage or toxigenic fungi during storage, which may pose a real threat to human health. Most traditional methods require long periods of time for enumeration and quantification. However, headspace-gas chromatography-ion mobility spectrometry (HS-GC-IMS) technology could characterize the complex volatile organic compounds (VOCs) released from samples in a non-destructive and environmentally friendly manner. Thus, this study described an innovative HS-GC-IMS strategy for analyzing VOC profiles to detect fungal contamination in milled rice. RESULTS: A total of 24 typical target compounds were identified. Analysis of variance-partial least squares regression (APLSR) showed significant correlations between the target compounds and colony counts of fungi. While the changes of selected volatile components (acetic acid, 3-hydroxy-2-butanone and oct-en-3-ol) in fungi-inoculated rice had sufficiently high positive correlations with the colony counts, the logistic model could effectively be used to monitor the growth of individual fungus (R2  = 0.902-0.980). PLSR could effectively be used to predict fungal colony counts in rice samples (R2  = 0.831-0.953), and the different fungi-inoculated rice samples at 24 h could be successfully distinguished by support vector machine (SVM) (94.6%). The ability of HS-GC-IMS to monitor fungal infection would help to prevent contaminated rice grains from entering the food chain. CONCLUSIONS: This result indicated that HS-GC-IMS three-dimensional fingerprints may be appropriate for the early detection of fungal infection in rice grains. © 2021 Society of Chemical Industry.


Assuntos
Oryza , Compostos Orgânicos Voláteis , Cromatografia Gasosa-Espectrometria de Massas/métodos , Humanos , Espectrometria de Mobilidade Iônica/métodos , Análise dos Mínimos Quadrados , Oryza/microbiologia , Compostos Orgânicos Voláteis/química
13.
Appl Microbiol Biotechnol ; 105(19): 7353-7365, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34515845

RESUMO

The telomerase reverse transcriptase (TERT) is the core catalytic subunit of telomerase. Its canonical function is synthesizing telomeric repeats to maintain telomere length and chromosomal stability. Accumulating evidence suggests that TERT has other important fundamental functions in addition to its catalytic telomere repeat synthesis activity. However, the non-canonical roles of TERT independent of its enzymatic activity are not clear in filamentous fungi. In the present study, we characterized the GlTert gene in Ganoderma lucidum. The non-canonical roles of GlTert were explored using GlTert-silenced strains (Terti8 and Terti25) obtained by RNA interference. Silencing GlTert delayed the fungal growth, decreased the length between hyphal branches, and induced fungal resistance to oxidative stress in G. ludicum. Further examination revealed that the intracellular ROS (reactive oxygen species) levels were increased while the enzyme activities of the antioxidant systems (superoxide dismutase, catalase, glutathione peroxidase, and ascorbate peroxidase) were decreased in GlTert-silenced strains. In addition, silencing GlTert decreased the ganoderic acid (GA) biosynthesis of G. lucidum. Taken together, our results indicate that GlTert plays a fundamental function on fungal growth, oxidative stress, and GA biosynthesis in G. lucidum, providing new insights for the canonical functions of TERT in filamentous fungi. KEY POINTS: • GlTert affected fungal growth and hyphal branching of G. lucidum. • Silencing GlTert increased the intracellular ROS levels of G. lucidum. • GlTert regulated GA biosynthesis of G. lucidum.


Assuntos
Reishi , Telomerase , Estresse Oxidativo , Telomerase/genética , Triterpenos
14.
Prep Biochem Biotechnol ; 51(8): 769-779, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33347339

RESUMO

Two strains of A. flavus one toxigenic (CECT 2687) and the other non-toxigenic (NRRL 6541) were studied for their genomic potential, growth capacity, and the production of enzymes on simple sugars, polysaccharides, and complex substrates under solid-state fermentation (SSF). According to the genome analysis, this fungus has many genes to degrade different types of polysaccharides and therefore it would be able to grow on different substrates. Both strains grow in all the carbon sources, but visibly CECT2687 grows slower than NRRL6541. However, we propose the growth index (GI) to establish a dry weight-diameter relationship as a more reliable measure that truly shows the growth preferences of the fungus. Considering this, the NRRL6541 shows less growth in 11 of the 16 evaluated carbon sources than CECT2687. Complex substrates were the best carbon source for the growth of both strains. Corncob (CC) induced the production of xylanases, pectinases, and almost all the accessory enzymes evaluated (except for α-xylosidase) this could make it an agricultural waste of interest to produce hemicellulolytic enzymes. Both strains produce a great variety of xylanases and pectinases (pathogenicity factors) making A. flavus a good potential candidate for the degradation of polysaccharides with a high content of xylan and pectin.


Assuntos
Aspergillus flavus , Endo-1,4-beta-Xilanases/biossíntese , Proteínas Fúngicas/biossíntese , Pectinas/metabolismo , Poligalacturonase/biossíntese , Xilanos/metabolismo , Aspergillus flavus/enzimologia , Aspergillus flavus/crescimento & desenvolvimento , Carbono/metabolismo , Especificidade da Espécie
15.
Curr Genet ; 66(3): 507-515, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31696258

RESUMO

Fusarium pseudograminearum is an important pathogen of Fusarium crown rot and Fusarium head blight, which is able to infect wheat and barley worldwide, causing great economic losses. Transcription factors (TFs) of the basic leucine zipper (bZIP) protein family control important processes in all eukaryotes. In this study, we identified a gene, designated FpAda1, encoding a bZIP TF in F. pseudograminearum. The homolog of FpAda1 is also known to affect hyphal growth in Neurospora crassa. Deletion of FpAda1 in F. pseudograminearum resulted in defects in hyphal growth, mycelial branching and conidia formation. Pathogenicity assays showed that virulence of the Δfpada1 mutant was dramatically decreased on wheat coleoptiles and barley leaves. However, wheat coleoptile inoculation assay showed that Δfpada1 could penetrate and proliferate in wheat cells. Moreover, the FpAda1 was required for abnormal nuclear morphology in conidia and transcription of FpCdc2 and FpCdc42. Taken together, these results indicate that FpAda1 is an important transcription factor involved in growth and development in F. pseudograminearum.


Assuntos
Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Proteínas Fúngicas/metabolismo , Fusarium/crescimento & desenvolvimento , Hordeum/microbiologia , Doenças das Plantas/microbiologia , Esporos Fúngicos/crescimento & desenvolvimento , Triticum/microbiologia , Fatores de Transcrição de Zíper de Leucina Básica/genética , Proteínas Fúngicas/genética , Fusarium/genética , Fusarium/patogenicidade , Folhas de Planta/microbiologia , Esporos Fúngicos/genética
16.
Arch Biochem Biophys ; 694: 108603, 2020 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-32986977

RESUMO

The alternative oxidase (AOX) catalyzes the transfer of electrons from ubiquinol to oxygen without the translocation of protons across the inner mitochondrial membrane. This enzyme has been proposed to participate in the regulation of cell growth, sporulation, yeast-mycelium transition, resistance to reactive oxygen species, infection, and production of secondary metabolites. Two approaches have been used to evaluate AOX function: incubation of cells for long periods of time with AOX inhibitors or deletion of AOX gene. However, AOX inhibitors might have different targets. To test non-specific effects of n-octyl gallate (nOg) and salicylhydroxamic acid (SHAM) on fungal physiology we measured the growth and respiratory capacity of two fungal strains lacking (Ustilago maydis-Δaox and Saccharomyces cerevisiae) and three species containing the AOX gene (U. maydis WT, Debaryomyces hansenii, and Aspergillus nidulans). For U. maydis, a strong inhibition of growth and respiratory capacity by SHAM was observed, regardless of the presence of AOX. Similarly, A. nidulans mycelial growth was inhibited by low concentrations of nOg independently of AOX expression. In contrast, these inhibitors had no effect or had a minor effect on S. cerevisiae and D. hansenii growth. These results show that nOg and SHAM have AOX independent effects which vary in different microorganisms, indicating that studies based on long-term incubation of cells with these inhibitors should be considered as inconclusive.


Assuntos
Inibidores Enzimáticos/farmacologia , Proteínas Fúngicas/antagonistas & inibidores , Fungos/efeitos dos fármacos , Ácido Gálico/análogos & derivados , Oxirredutases/antagonistas & inibidores , Salicilamidas/farmacologia , Processos de Crescimento Celular/efeitos dos fármacos , Fungos/crescimento & desenvolvimento , Fungos/metabolismo , Ácido Gálico/farmacologia , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Proteínas Mitocondriais/antagonistas & inibidores , Oxigênio/metabolismo
17.
Drug Dev Res ; 81(6): 736-744, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32383780

RESUMO

Potent inhibitors of an essential microbial enzyme have been shown to be effective growth inhibitors of Candida albicans, a pathogenic fungus. C. albicans is the main cause of oropharyngeal candidiasis, and also causes invasive fungal infections, including systemic sepsis, leading to serious complications in immunocompromised patients. As the rates of drug-resistant fungal infections continue to rise novel antifungal treatments are desperately needed. The enzyme aspartate semialdehyde dehydrogenase (ASADH) is critical for the functioning of the aspartate biosynthetic pathway in microbes and plants. Because the aspartate pathway is absent in humans, ASADH has the potential to be a promising new target for antifungal research. Deleting the asd gene encoding for ASADH significantly decreases the survival of C. albicans, establishing this enzyme as essential for this organism. Previously developed ASADH inhibitors were tested against several strains of C. albicans to measure their possible therapeutic impact. The more potent inhibitors show a good correlation between enzyme inhibitor potency and fungal growth inhibition. Growth curves generated by incubating different C. albicans strains with varying enzyme inhibitor levels show significant slowing of fungal growth by these inhibitors against each of these strains, similar to the effect observed with a clinical antifungal drug. The most effective inhibitors also demonstrated relatively low cytotoxicity against a human epithelial cell line. Taken together, these results establish that the ASADH enzyme is a promising new target for further development as a novel antifungal treatment against C. albicans and related fungal species.


Assuntos
Antifúngicos/farmacologia , Aspartato-Semialdeído Desidrogenase/antagonistas & inibidores , Benzoquinonas/farmacologia , Candida albicans/efeitos dos fármacos , Naftoquinonas/farmacologia , Aspartato-Semialdeído Desidrogenase/genética , Candida albicans/genética , Candida albicans/crescimento & desenvolvimento , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Deleção de Genes , Humanos , Mucosa Bucal/citologia
18.
Curr Genet ; 65(1): 153-166, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29947970

RESUMO

The zinc finger transcription factor Crz1 is an important downstream regulator of calcium-dependent signal transduction pathways in many organisms. The function of Crz1 in the wheat-head blight pathogen Fusarium graminearum remains unclear. In this study, we identified and functionally characterised FgCrz1A, a potential ortholog of yeast Crz1. The deletion mutant ΔFgCrz1A exhibited slower hyphal growth on basic medium, and conidia formation and sexual reproduction were completely blocked. ΔFgCrz1A also displayed increased sensitivity to metal cations Ca2+, Mg2+, Mn2+ and Li+, but decreased sensitivity to Zn2+. Unexpectedly, the deletion mutant was more resistant to osmotic stress and cell wall-damaging agents than the wild-type fungus. Pathogenicity assays showed that virulence of the mutant was dramatically decreased on flowering wheat heads and corn silks, consistent with the observed reduction in deoxynivalenol production. Moreover, GFP-fused FgCrz1A was mainly localised in the nucleus, and was required for transcriptional induction of abaA and wetA that are involved in conidiogenesis, as well as genes of the MAT locus during sexual reproduction, and TRI genes responsible for deoxynivalenol biosynthesis. Taken together, the results indicate that FgCrz1A plays critical roles not only in regulating fungal development, secondary metabolism and virulence in F. graminearum, but also in multiple stress responses.


Assuntos
Proteínas Fúngicas/genética , Fusarium/genética , Regulação Fúngica da Expressão Gênica , Fatores de Transcrição/genética , Tricotecenos/biossíntese , Adaptação Fisiológica/genética , Sequência de Aminoácidos , Proteínas Fúngicas/metabolismo , Fusarium/metabolismo , Fusarium/patogenicidade , Genes Essenciais/genética , Hifas/genética , Hifas/crescimento & desenvolvimento , Hifas/metabolismo , Mutação , Pressão Osmótica , Reprodução Assexuada/genética , Homologia de Sequência de Aminoácidos , Esporos Fúngicos/genética , Esporos Fúngicos/crescimento & desenvolvimento , Esporos Fúngicos/metabolismo , Fatores de Transcrição/metabolismo , Triticum/microbiologia , Virulência/genética
19.
Appl Microbiol Biotechnol ; 103(14): 5607-5616, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31104098

RESUMO

The potential antifungal activity of the marine alkaloid 2,2-bis(6-bromo-3-indolyl)ethylamine (URB 1204) was firstly assessed by minimum inhibitory concentration (MIC) and minimum fungicidal concentration (MFC) against different fungi. Then, URB 1204 was applied to a building material experimentally contaminated with selected fungi, in single and mixed species, for determining its potential application in preventing fungal growth. In addition, the over-time protection efficacy of URB 1204 was verified, subjecting the treated building surfaces to natural fungal contamination for 6 weeks. URB 1204 showed different antifungal activity, with the lowest MIC value (16 µg/mL) observed against Aspergillus flavus IDRA01, Cladosporium cladosporioides ATCC 16022 and Mucor circinelloides EHS03, and the highest MIC (128 µg/mL) against the dermatophytes strains. The growth Alternaria alternata BC01, Penicillium citrinum LS1, and C. cladosporioides ATCC 16022 on building material treated with URB 1204 water solution (64 µg/mL) was remarkably reduced with an effect time-dependent and related to the examined fungi. In terms of over-time efficacy, the samples treated with URB 1204 showed a delay of fungal growth comparable with that of a commercial antifungal product. These findings evidenced not only the ability of 2,2-bis(6-bromo-3-indolyl)ethylamine to limit the growth of different fungal species on building material but also to provide long-term protection against mold growth and proliferation, opening new perspectives for URB 1204 as preventive agent.


Assuntos
Alcaloides/farmacologia , Materiais de Construção/microbiologia , Etilaminas/farmacologia , Fungos/efeitos dos fármacos , Fungicidas Industriais/farmacologia , Indóis/farmacologia , Aspergillus flavus/efeitos dos fármacos , Aspergillus flavus/crescimento & desenvolvimento , Fungos/crescimento & desenvolvimento , Testes de Sensibilidade Microbiana , Penicillium/efeitos dos fármacos , Penicillium/crescimento & desenvolvimento
20.
Artigo em Inglês | MEDLINE | ID: mdl-29229641

RESUMO

Recent estimates suggest that more than 3 million people have chronic or invasive fungal infections, causing more than 600,000 deaths every year. Aspergillus fumigatus causes invasive pulmonary aspergillosis (IPA) in patients with compromised immune systems and is a primary contributor to increases in human fungal infections. Thus, the development of new clinical modalities as stand-alone or adjunctive therapy for improving IPA patient outcomes is critically needed. Here we tested the in vitro and in vivo impacts of hyperbaric oxygen (HBO) (100% oxygen, >1 atmosphere absolute [ATA]) on A. fumigatus proliferation and murine IPA outcomes. Our findings indicate that HBO reduces established fungal biofilm proliferation in vitro by over 50%. The effect of HBO under the treatment conditions was transient and fungistatic, with A. fumigatus metabolic activity rebounding within 6 h of HBO treatment being removed. In vivo, daily HBO provides a dose-dependent but modest improvement in murine IPA disease outcomes as measured by survival analysis. Intriguingly, no synergy was observed between subtherapeutic voriconazole or amphotericin B and HBO in vitro or in vivo with daily HBO dosing, though the loss of fungal superoxide dismutase genes enhanced HBO antifungal activity. Further studies are needed to optimize the HBO treatment regimen and better understand the effects of HBO on both the host and the pathogen during a pulmonary invasive fungal infection.


Assuntos
Antifúngicos/farmacologia , Aspergillus fumigatus/patogenicidade , Oxigenoterapia Hiperbárica/métodos , Animais , Antifúngicos/uso terapêutico , Aspergilose/tratamento farmacológico , Aspergilose/microbiologia , Aspergillus fumigatus/efeitos dos fármacos , Biofilmes/efeitos dos fármacos , Modelos Animais de Doenças , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa