Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 419
Filtrar
1.
BMC Biol ; 22(1): 204, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39256758

RESUMO

BACKGROUND: Fusarium head blight (FHB) significantly impacts wheat yield and quality. Understanding the intricate interaction mechanisms between Fusarium graminearum (the main pathogen of FHB) and wheat is crucial for developing effective strategies to manage and this disease. Our previous studies had shown that the absence of the cell wall mannoprotein FgCWM1, located at the outermost layer of the cell wall, led to a decrease in the pathogenicity of F. graminearum and induced the accumulation of salicylic acid (SA) in wheat. Hence, we propose that FgCWM1 may play a role in interacting between F. graminearum and wheat, as its physical location facilitates interaction effects. RESULTS: In this study, we have identified that the C-terminal region of NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 9 (NDUFA9) could interact with FgCWM1 through the yeast two-hybrid assay. The interaction was further confirmed through the combination of Co-IP and BiFC analyses. Consistently, the results of subcellular localization indicated that TaNDUFA9 was localized in the cytoplasm adjacent to the cell membrane and chloroplasts. The protein was also detected to be associated with mitochondria and positively regulated complex I activity. The loss-of-function mutant of TaNDUFA9 exhibited a delay in flowering, decreased seed setting rate, and reduced pollen fertility. However, it exhibited elevated levels of SA and increased resistance to FHB caused by F. graminearum infection. Meanwhile, inoculation with the FgCWM1 deletion mutant strain led to increased synthesis of SA in wheat. CONCLUSIONS: These findings suggest that TaNDUFA9 inhibits SA synthesis and FHB resistance in wheat. FgCWM1 enhances this inhibition by interacting with the C-terminal region of TaNDUFA9, ultimately facilitating F. graminearum infection in wheat. This study provides new insights into the interaction mechanism between F. graminearum and wheat. TaNDUFA9 could serve as a target gene for enhancing wheat resistance to FHB.


Assuntos
Resistência à Doença , Fusarium , Doenças das Plantas , Proteínas de Plantas , Ácido Salicílico , Triticum , Triticum/microbiologia , Triticum/genética , Triticum/metabolismo , Doenças das Plantas/microbiologia , Fusarium/fisiologia , Resistência à Doença/genética , Ácido Salicílico/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
2.
Plant J ; 114(6): 1475-1489, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36919201

RESUMO

Fusarium head blight (FHB), mainly caused by Fusarium graminearum, is one of the most destructive diseases of wheat (Triticum aestivum) around the world. FHB causes significant yield losses and reduces grain quality. The lack of resistance resources is a major bottleneck for wheat FHB resistance breeding. As a wheat relative, Thinopyrum elongatum contains many genes that can be used for wheat improvement. Although the novel gene Fhb-7EL was mapped on chromosome 7EL of Th. elongatum, successful transfer of the FHB resistance gene into commercial wheat varieties has not been reported. In this study, we developed 836 wheat-Th. elongatum translocation lines of various types by irradiating the pollen of the wheat-Th. elongatum addition line CS-7EL at the flowering stage, among which 81 were identified as resistant to FHB. By backcrossing the FHB-resistant lines with the main cultivar Jimai 22, three wheat-Th. elongatum translocation lines, Zhongke 1878, Zhongke 166, and Zhongke 545, were successfully applied in wheat breeding without yield penalty. Combining karyotype and phenotype analyses, we mapped the Fhb-7EL gene to the distal end of chromosome 7EL. Five molecular markers linked with the FHB resistance interval were developed, which facilitates molecular marker-assisted breeding. Altogether, we successfully applied alien chromatin with FHB resistance from Th. elongatum in wheat breeding without yield penalty. These newly developed FHB-resistant wheat-Th. elongatum translocation lines, Zhongke 1878, Zhongke 166, and Zhongke 545, can be used as novel resistance resources for wheat breeding.


Assuntos
Fusarium , Triticum , Triticum/genética , Melhoramento Vegetal , Marcadores Genéticos , Poaceae/genética , Doenças das Plantas/genética , Resistência à Doença/genética
3.
Plant Mol Biol ; 114(3): 62, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38771394

RESUMO

Fusarium head blight (FHB) stands out as one of the most devastating wheat diseases and leads to significantly grain yield losses and quality reductions in epidemic years. Exploring quantitative trait loci (QTL) for FHB resistance is a critical step for developing new FHB-resistant varieties. We previously constructed a genetic map of unigenes (UG-Map) according to the physical positions using a set of recombinant-inbred lines (RILs) derived from the cross of 'TN18 × LM6' (TL-RILs). Here, the number of diseased spikelets (NDS) and relative disease index (RDI) for FHB resistance were investigated under four environments using TL-RILs, which were distributed across 13 chromosomes. A number of 36 candidate genes for NDS and RDI from of 19 stable QTLs were identified. The average number of candidate genes per QTL was 1.89, with 14 (73.7%), two (10.5%), and three (15.8%) QTLs including one, two, and 3-10 candidate genes, respectively. Among the 24 candidate genes annotated in the reference genome RefSeq v1.1, the homologous genes of seven candidate genes, including TraesCS4B02G227300 for QNds/Rdi-4BL-4553, TraesCS5B02G303200, TraesCS5B02G303300, TraesCS5B02G303700, TraesCS5B02G303800 and TraesCS5B02G304000 for QNds/Rdi-5BL-9509, and TraesCS7A02G568400 for QNds/Rdi-7AL-14499, were previously reported to be related to FHB resistance in wheat, barely or Brachypodium distachyon. These genes should be closely associated with FHB resistance in wheat. In addition, the homologous genes of five genes, including TraesCS1A02G037600LC for QNds-1AS-2225, TraesCS1D02G017800 and TraesCS1D02G017900 for QNds-1DS-527, TraesCS1D02G018000 for QRdi-1DS-575, and TraesCS4B02G227400 for QNds/Rdi-4BL-4553, were involved in plant defense responses against pathogens. These genes should be likely associated with FHB resistance in wheat.


Assuntos
Mapeamento Cromossômico , Resistência à Doença , Fusarium , Doenças das Plantas , Locos de Características Quantitativas , Triticum , Triticum/genética , Triticum/microbiologia , Locos de Características Quantitativas/genética , Fusarium/fisiologia , Fusarium/patogenicidade , Doenças das Plantas/microbiologia , Doenças das Plantas/genética , Resistência à Doença/genética , Genes de Plantas , Cromossomos de Plantas/genética
4.
BMC Plant Biol ; 24(1): 463, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38802782

RESUMO

BACKGROUND: Fusarium graminearum and Fusarium avenaceum are two of the most important causal agents of Fusarium head blight (FHB) of wheat. They can produce mycotoxins that accumulate in infected wheat heads, including deoxynivalenol (DON) and enniatins (ENNs), produced by F. graminearum and F. avenaceum, respectively. While the role of DON as a virulence factor in F. graminearum toward wheat is well known, ENNs in F. avenaceum has been poorly explored. Results obtained to-date indicate that ENNs may confer an advantage to F. avenaceum only on particular hosts. RESULTS: In this study, with the use of ENN-producing and ENN non-producing F. avenaceum strains, the role of ENNs on F. avenaceum virulence was investigated on the root, stem base and head of common wheat, and compared with the role of DON, using DON-producing and DON non-producing F. graminearum strains. The DON-producing F. graminearum strain showed a significantly higher ability to cause symptoms and colonise each of the tested tissues than the non-producing strain. On the other hand, the ability to produce ENNs increased initial symptoms of the disease and fungal biomass accumulation, measured by qPCR, only in wheat heads, and not in roots or stem bases. LC-MS/MS analysis was used to confirm the presence of ENNs and DON in the different strains, and results, both in vitro and in wheat heads, were consistent with the genetics of each strain. CONCLUSION: While the key role of DON on F. graminearum virulence towards three different wheat tissues was noticeable, ENNs seemed to have a role only in influencing F. avenaceum virulence on common wheat heads probably due to an initial delay in the appearance of symptoms.


Assuntos
Fusarium , Doenças das Plantas , Tricotecenos , Triticum , Triticum/microbiologia , Triticum/metabolismo , Fusarium/patogenicidade , Fusarium/genética , Fusarium/metabolismo , Tricotecenos/metabolismo , Virulência , Doenças das Plantas/microbiologia , Micotoxinas/metabolismo , Depsipeptídeos
5.
BMC Plant Biol ; 24(1): 852, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39256692

RESUMO

BACKGROUND: Fusarium head blight (FHB), caused by Fusarium graminearum, is a major disease of wheat in North America. FHB infection causes fusarium damaged kernels (FDKs), accumulation of deoxynivalenol (DON) in the grain, and a reduction in quality and grain yield. Inheritance of FHB resistance is complex and involves multiple genes. The objective of this research was to identify QTL associated with native FHB and DON resistance in a 'D8006W'/'Superior', soft white winter wheat population. RESULTS: Phenotyping was conducted in replicated FHB field disease nurseries across multiple environments and included assessments of morphological and FHB related traits. Parental lines had moderate FHB resistance, however, the population showed transgressive segregation. A 1913.2 cM linkage map for the population was developed with SNP markers from the wheat 90 K Infinium iSelect SNP array. QTL analysis detected major FHB resistance QTL on chromosomes 2D, 4B, 5A, and 7A across multiple environments, with resistance from both parents. Trait specific unique QTL were detected on chromosomes 1A (visual traits), 5D (FDK), 6B (FDK and DON), and 7D (DON). The plant height and days to anthesis QTL on chromosome 2D coincided with Ppd-D1 and were linked with FHB traits. The plant height QTL on chromosome 4B was also linked with FHB traits; however, the Rht-B1 locus did not segregate in the population. CONCLUSIONS: This study identified several QTL, including on chromosome 2D linked with Ppd-D1, for FHB resistance in a native winter wheat germplasm.


Assuntos
Resistência à Doença , Fusarium , Doenças das Plantas , Tricotecenos , Triticum , Mapeamento Cromossômico , Cromossomos de Plantas/genética , Resistência à Doença/genética , Fusarium/fisiologia , Ligação Genética , Fenótipo , Doenças das Plantas/microbiologia , Doenças das Plantas/genética , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Triticum/genética , Triticum/microbiologia
6.
BMC Plant Biol ; 24(1): 183, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38475749

RESUMO

BACKGROUND: Fusarium head blight (FHB) infection results in Fusarium damaged kernels (FDK) and deoxynivalenol (DON) contamination that are downgrading factors at the Canadian elevators. Durum wheat (Triticum turgidum L. var. durum Desf.) is particularly susceptible to FHB and most of the adapted Canadian durum wheat cultivars are susceptible to moderately susceptible to this disease. However, the durum line DT696 is less susceptible to FHB than commercially grown cultivars. Little is known about genetic variation for durum wheat ability to resist FDK infection and DON accumulation. This study was undertaken to map genetic loci conferring resistance to DON and FDK resistance using a SNP high-density genetic map of a DT707/DT696 DH population and to identify SNP markers useful in marker-assisted breeding. One hundred twenty lines were grown in corn spawn inoculated nurseries near Morden, MB in 2015, 2016 and 2017 and the harvested seeds were evaluated for DON. The genetic map of the population was used in quantitative trait locus analysis performed with MapQTL.6® software. RESULTS: Four DON accumulation resistance QTL detected in two of the three years were identified on chromosomes 1 A, 5 A (2 loci) and 7 A and two FDK resistance QTL were identified on chromosomes 5 and 7 A in single environments. Although not declared significant due to marginal LOD values, the QTL for FDK on the 5 and 7 A were showing in other years suggesting their effects were real. DT696 contributed the favourable alleles for low DON and FDK on all the chromosomes. Although no resistance loci contributed by DT707, transgressive segregant lines were identified resulting in greater resistance than DT696. Breeder-friendly KASP markers were developed for two of the DON and FDK QTL detected on chromosomes 5 and 7 A. Markers flanking each QTL were physically mapped against the durum wheat reference sequence and candidate genes which might be involved in FDK and DON resistance were identified within the QTL intervals. CONCLUSIONS: The DH lines harboring the desired resistance QTL will serve as useful resources in breeding for FDK and DON resistance in durum wheat. Furthermore, breeder-friendly KASP markers developed during this study will be useful for the selection of durum wheat varieties with low FDK and DON levels in durum wheat breeding programs.


Assuntos
Fusarium , Tricotecenos , Triticum , Triticum/genética , Melhoramento Vegetal , Canadá , Doenças das Plantas/genética , Resistência à Doença/genética
7.
Plant Biotechnol J ; 22(9): 2395-2409, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38593377

RESUMO

Fusarium head blight (FHB) and the presence of mycotoxin deoxynivalenol (DON) pose serious threats to wheat production and food safety worldwide. DON, as a virulence factor, is crucial for the spread of FHB pathogens on plants. However, germplasm resources that are naturally resistant to DON and DON-producing FHB pathogens are inadequate in plants. Here, detoxifying bacteria genes responsible for DON epimerization were used to enhance the resistance of wheat to mycotoxin DON and FHB pathogens. We characterized the complete pathway and molecular basis leading to the thorough detoxification of DON via epimerization through two sequential reactions in the detoxifying bacterium Devosia sp. D6-9. Epimerization efficiently eliminates the phytotoxicity of DON and neutralizes the effects of DON as a virulence factor. Notably, co-expressing of the genes encoding quinoprotein dehydrogenase (QDDH) for DON oxidation in the first reaction step, and aldo-keto reductase AKR13B2 for 3-keto-DON reduction in the second reaction step significantly reduced the accumulation of DON as virulence factor in wheat after the infection of pathogenic Fusarium, and accordingly conferred increased disease resistance to FHB by restricting the spread of pathogenic Fusarium in the transgenic plants. Stable and improved resistance was observed in greenhouse and field conditions over multiple generations. This successful approach presents a promising avenue for enhancing FHB resistance in crops and reducing mycotoxin contents in grains through detoxification of the virulence factor DON by exogenous resistance genes from microbes.


Assuntos
Resistência à Doença , Fusarium , Doenças das Plantas , Tricotecenos , Triticum , Triticum/microbiologia , Triticum/genética , Triticum/metabolismo , Fusarium/patogenicidade , Tricotecenos/metabolismo , Doenças das Plantas/microbiologia , Doenças das Plantas/genética , Doenças das Plantas/imunologia , Resistência à Doença/genética , Genes Bacterianos/genética
8.
Plant Dis ; 108(3): 558-562, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37743590

RESUMO

The species composition of the genus Fusarium associated with Fusarium head blight (FHB) in wheat fields of Hungary in the year 2019 was assessed. Symptomatic wheat heads were collected at 20 geographical locations representing different ecosystems. A total of 256 Fusarium strains were isolated and identified by partial sequences of the translation elongation factor 1-alpha gene and, where required, the second-largest subunit of the DNA-directed RNA polymerase gene. Overall, Fusarium graminearum (58.2%) proved to be the dominant species, followed by F. annulatum (formerly F. proliferatum) (17.2%) and F. verticillioides (7.4%). The presence of all other species, including F. culmorum, in the population was less than 5%. F. graminearum was identified as the main species associated with FHB at 14 sampling sites. Fumonisin-producing F. annulatum, primarily known as the pathogen of maize in Hungary, was detected nearly as frequently as F. graminearum at three locations and dominated at two other sites. F. poae was not found during the survey. F. vorosii, a species that is believed to be of Asian origin and was already found in Hungary in 2002, was identified at two locations.


Assuntos
Fusarium , Triticum , Hungria , Ecossistema , Doenças das Plantas
9.
Plant Dis ; 2024 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-39342961

RESUMO

Fusarium head blight causes significant yield losses in wheat and other cereals and contaminates grain products with trichothecene mycotoxins. F. graminearum isolates are classified into different chemotypes depending on the type of mycotoxin produced, including the type B trichothecenes 3-acetyl deoxynivalenol (3-ADON), 15-acetyl deoxynivalenol (15-ADON), nivalenol (NIV), and the recently identified type A trichothecene NX-2. Molecular tools to differentiate NX-2 producers from other chemotypes have remained relatively laborious and time consuming. In this study, we developed and validated a high-resolution melting (HRM) assay that can identify NX-2 producers quickly and cost-effectively. By analyzing TRI1 coding sequences from 183 geographically diverse isolates representing all four F. graminearum chemotypes, we selected a 75-base pair region containing four non-synonymous single nucleotide polymorphisms (SNPs) that are specific to the NX-2 genotypes. The amplicon generated two HRM profiles, one of which was specific for only NX-2. We confirmed that the assay is robust across qPCR platforms and unambiguously differentiates NX-2 from other chemotypes using a panel of 72 diverse isolates previously collected from North America. The HRM assay was also successful in identifying NX-2 producers directly from DNA extracted from infected wheat spikes with varying levels of disease severity and fungal DNA. The assay can detect as little as 0.01 ng of fungal DNA in a background of 50 ng of plant DNA. This new diagnostic assay can be used for high-throughput molecular detection of the NX-2 chemotype of F. graminearum from infected plant samples and culture collections, thus making it a valuable tool for surveys of contemporary and historical FHB pathogen populations.

10.
Int J Mol Sci ; 25(17)2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39273397

RESUMO

Fusarium head blight (FHB), caused by the Fusarium graminearum species complex, is a destructive disease in wheat worldwide. The lack of FHB-resistant germplasm is a barrier in wheat breeding for resistance to FHB. Thinopyrum elongatum is an important relative that has been successfully used for the genetic improvement of wheat. In this study, a translocation line, YNM158, with the YM158 genetic background carrying a fragment of diploid Th. elongatum 7EL chromosome created using 60Co-γ radiation, showed high resistance to FHB under both field and greenhouse conditions. Transcriptome analysis confirmed that the horizontal transfer gene, encoding glutathione S-transferase (GST), is an important contributor to FHB resistance in the pathogen infection stage, whereas the 7EL chromosome fragment carries other genes regulated by F. graminearum during the colonization stage. Introgression of the 7EL fragment affected the expression of wheat genes that were enriched in resistance pathways, including the phosphatidylinositol signaling system, protein processing in the endoplasmic reticulum, plant-pathogen interaction, and the mitogen-activated protein kinase (MAPK) signaling pathway at different stages after F. graminearium infection. This study provides a novel germplasm for wheat resistance to FHB and new insights into the molecular mechanisms of wheat resistance to FHB.


Assuntos
Resistência à Doença , Fusarium , Doenças das Plantas , Triticum , Fusarium/patogenicidade , Triticum/microbiologia , Triticum/genética , Resistência à Doença/genética , Doenças das Plantas/microbiologia , Doenças das Plantas/genética , Transcriptoma/genética , Translocação Genética , Regulação da Expressão Gênica de Plantas , Perfilação da Expressão Gênica/métodos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Poaceae/genética , Poaceae/microbiologia , Interações Hospedeiro-Patógeno/genética
11.
Mol Plant Microbe Interact ; 36(5): 294-304, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36653184

RESUMO

Fusarium graminearum causes Fusarium head blight (FHB) on wheat and barley and contaminates grains with various mycotoxins that are toxic to humans and animals. Deoxynivalenol (DON), a type B trichothecene, is an essential virulence factor that is required for F. graminearum to spread within a wheat head. Recently, novel type A trichothecenes NX-2 and NX-3 (NX) have been found in F. graminearum. NX trichothecenes lack a keto group at the C8 position. To determine if NX trichothecenes play a role similar to that of DON during F. graminearum infection, deletion mutants of TRI5, the first gene for trichothecene biosynthesis, were generated from strains PH-1, NRRL46422, and NRRL44211 (hereafter 44211) representing the 15-acetyl-DON, 3-acetyl-DON, and NX chemotypes. No trichothecene production was detected in any of the Δtri5 mutants in cultures or inoculated wheat heads. FHB symptoms were restricted to the inoculated wheat spikelets when point-inoculated with the Δtri5 mutants, confirming the necessity of NX and DON for FHB spread. Furthermore, whole-head dip inoculations revealed significant reductions in disease and fungal biomass in wheat heads inoculated with 44211Δtri5 compared with 44211. Introduction of the native 44211 TRI5 and a Trichoderma arundinaceum TRI5 ortholog in the 44211Δtri5 mutant complemented trichothecene production in vitro; however, introducing both TRI5 partially restored wild-type levels of NX in infected heads. Our results demonstrate that NX trichothecenes play an important role in Fusarium graminearum initial infection as well as FHB spread. Thus, TRI5 may serve as an ideal target to control plant infection, FHB spread, and mycotoxin production simultaneously. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Assuntos
Fusarium , Micotoxinas , Humanos , Triticum/microbiologia , Fusarium/genética , Doenças das Plantas/microbiologia
12.
BMC Plant Biol ; 23(1): 290, 2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37259061

RESUMO

Fusarium head blight (FHB), caused by Fusarium graminearum, is one of the most destructive wheat diseases worldwide. FHB infection can dramatically reduce grain yield and quality due to mycotoxins contamination. Wheat resistance to FHB is quantitatively inherited and many low-effect quantitative trait loci (QTL) have been mapped in the wheat genome. Synthetic hexaploid wheat (SHW) represents a novel source of FHB resistance derived from Aegilops tauschii and Triticum turgidum that can be transferred into common wheat (T. aestivum). In this study, a panel of 194 spring Synthetic Hexaploid Derived Wheat (SHDW) lines from the International Maize and Wheat Improvement Center (CIMMYT) was evaluated for FHB response under field conditions over three years (2017-2019). A significant phenotypic variation was found for disease incidence, severity, index, number of Fusarium Damaged Kernels (FDKs), and deoxynivalenol (DON) content. Further, 11 accessions displayed < 10 ppm DON in 2017 and 2019. Genotyping of the SHDW panel using a 90 K Single Nucleotide Polymorphism (SNP) chip array revealed 31 K polymorphic SNPs with a minor allele frequency (MAF) > 5%, which were used for a Genome-Wide Association Study (GWAS) of FHB resistance. A total of 52 significant marker-trait associations for FHB resistance were identified. These included 5 for DON content, 13 for the percentage of FDKs, 11 for the FHB index, 3 for disease incidence, and 20 for disease severity. A survey of genes associated with the markers identified 395 candidate genes that may be involved in FHB resistance. Collectively, our results strongly support the view that utilization of synthetic hexaploid wheat in wheat breeding would enhance diversity and introduce new sources of resistance against FHB into the common wheat gene pool. Further, validated SNP markers associated with FHB resistance may facilitate the screening of wheat populations for FHB resistance.


Assuntos
Fusarium , Estudo de Associação Genômica Ampla , Mapeamento Cromossômico , Triticum/genética , Fusarium/fisiologia , Melhoramento Vegetal , Resistência à Doença/genética , Doenças das Plantas/genética
13.
Plant Biotechnol J ; 21(1): 109-121, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36121345

RESUMO

Aegilops tauschii is the diploid progenitor of the wheat D subgenome and a valuable resource for wheat breeding, yet, genetic analysis of resistance against Fusarium head blight (FHB) and the major Fusarium mycotoxin deoxynivalenol (DON) is lacking. We treated a panel of 147 Ae. tauschii accessions with either Fusarium graminearum spores or DON solution and recorded the associated disease spread or toxin-induced bleaching. A k-mer-based association mapping pipeline dissected the genetic basis of resistance and identified candidate genes. After DON infiltration nine accessions revealed severe bleaching symptoms concomitant with lower conversion rates of DON into the non-toxic DON-3-O-glucoside. We identified the gene AET5Gv20385300 on chromosome 5D encoding a uridine diphosphate (UDP)-glucosyltransferase (UGT) as the causal variant and the mutant allele resulting in a truncated protein was only found in the nine susceptible accessions. This UGT is also polymorphic in hexaploid wheat and when expressed in Saccharomyces cerevisiae only the full-length gene conferred resistance against DON. Analysing the D subgenome helped to elucidate the genetic control of FHB resistance and identified a UGT involved in DON detoxification in Ae. tauschii and hexaploid wheat. This resistance mechanism is highly conserved since the UGT is orthologous to the barley UGT HvUGT13248 indicating descent from a common ancestor of wheat and barley.


Assuntos
Aegilops , Fusarium , Triticum/genética , Triticum/metabolismo , Glucosiltransferases/genética , Difosfato de Uridina , Melhoramento Vegetal , Doenças das Plantas/genética , Resistência à Doença/genética
14.
Plant Biotechnol J ; 21(4): 769-781, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36575911

RESUMO

Fusarium head blight (FHB), caused by Fusarium graminearum, is a devastating disease in wheat (Triticum aestivum) that results in substantial yield losses and mycotoxin contamination. Reliable genetic resources for FHB resistance in wheat are lacking. In this study, we characterized glycoside hydrolase 12 (GH12) family proteins secreted by F. graminearum. We established that two GH12 proteins, Fg05851 and Fg11037, have functionally redundant roles in F. graminearum colonization of wheat. Furthermore, we determined that the GH12 proteins Fg05851 and Fg11037 are recognized by the leucine-rich-repeat receptor-like protein RXEG1 in the dicot Nicotiana benthamiana. Heterologous expression of RXEG1 conferred wheat responsiveness to Fg05851 and Fg11037, enhanced wheat resistance to F. graminearum and reduced levels of the mycotoxin deoxynivalenol in wheat grains in an Fg05851/Fg11037-dependent manner. In the RXEG1 transgenic lines, genes related to pattern-triggered plant immunity, salicylic acid, jasmonic acid, and anti-oxidative homeostasis signalling pathways were upregulated during F. graminearum infection. However, the expression of these genes was not significantly changed during infection by the deletion mutant ΔFg05851/Fg11037, suggesting that the recognition of Fg05851/Fg11037 by RXEG1 triggered plant resistance against FHB. Moreover, introducing RXEG1 into three other different wheat cultivars via crossing also conferred resistance to F. graminearum. Expression of RXEG1 did not have obvious deleterious effects on plant growth and development in wheat. Our study reveals that N. benthamiana RXEG1 remains effective when transferred into wheat, a monocot, which in turn suggests that engineering wheat with interfamily plant immune receptor transgenes is a viable strategy for increasing resistance to FHB.


Assuntos
Fusarium , Micotoxinas , Glicosídeo Hidrolases/metabolismo , Triticum/metabolismo , Fusarium/fisiologia , Imunidade Vegetal , Micotoxinas/metabolismo , Doenças das Plantas/genética , Resistência à Doença/genética
15.
Mol Ecol ; 32(10): 2504-2518, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-35844052

RESUMO

Fusarium head blight (FHB) is a major disease worldwide on cultivated cereals, caused by several Fusarium species. FHB can cause not only yield reduction but also accumulation of mycotoxins in the grain contaminating the food supply. Much of the earlier research has focused on Fusarium pathogenesis, conditions required for disease development and toxin accumulation, and FHB management. However, the Fusarium community composition within the micro-habitat of a single diseased wheat head in the field has had limited investigation. Similarly, the relationship between the Fusarium community structure and mycotoxin accumulation within diseased heads remains unclear. In the present study, we investigated the Fusarium community in diseased heads sampled from different geographical sites in China. Several sites in Shandong province formed a transitional region which contained highly variable profiles of Fusarium OTUs, where a single diseased head could contain more than 10 Fusarium OTUs. Mycotoxin accumulation was independent of geographical properties, however, deoxynivalenol, 15-acetyldeoxynivalenol and zearalenone concentrations showed a significant negative correlation with Fusarium diversity on diseased heads while a significant positive correlation between nivalenol concentration and Fusarium diversity was observed. Taken together, the Fusarium OTU diversity within diseased heads in the field significantly influences mycotoxin accumulation, providing an important point to consider in FHB disease management and mycotoxin research.


Assuntos
Fusarium , Micotoxinas , Micotoxinas/análise , Fusarium/genética , Triticum , Doenças das Plantas , Grão Comestível/química
16.
J Exp Bot ; 74(21): 6820-6835, 2023 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-37668551

RESUMO

Plants often face simultaneous abiotic and biotic stress conditions; however, physiological and transcriptional responses under such combined stress conditions are still not fully understood. Spring barley (Hordeum vulgare) is susceptible to Fusarium head blight (FHB), which is strongly affected by weather conditions. We therefore studied the potential influence of drought on FHB severity and plant responses in three varieties of different susceptibility. We found strongly reduced FHB severity in susceptible varieties under drought. The number of differentially expressed genes (DEGs) and strength of transcriptomic regulation reflected the concentrations of physiological stress markers such as abscisic acid or fungal DNA contents. Infection-related gene expression was associated with susceptibility rather than resistance. Weighted gene co-expression network analysis revealed 18 modules of co-expressed genes that reflected the pathogen- or drought-response in the three varieties. A generally infection-related module contained co-expressed genes for defence, programmed cell death, and mycotoxin detoxification, indicating that the diverse genotypes used a similar defence strategy towards FHB, albeit with different degrees of success. Further, DEGs showed co-expression in drought- or genotype-associated modules that correlated with measured phytohormones or the osmolyte proline. The combination of drought stress with infection led to the highest numbers of DEGs and resulted in a modular composition of the single-stress responses rather than a specific transcriptional output.


Assuntos
Fusarium , Hordeum , Hordeum/genética , Hordeum/microbiologia , Secas , Fusarium/fisiologia , Perfilação da Expressão Gênica , Transcriptoma , Doenças das Plantas/genética , Doenças das Plantas/microbiologia
17.
Mol Breed ; 43(11): 82, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37974900

RESUMO

Spike length (SL) plays an important role in the yield improvement of wheat and is significantly associated with other traits. Here, we used a recombinant inbred line (RIL) population derived from a cross between Yangmai 12 (YM12) and Yanzhan 1 (YZ1) to construct a genetic linkage map and identify quantitative trait loci (QTL) for SL. A total of 5 QTL were identified for SL, among which QSl.yaas-3A and QSl.yaas-5B are two novel QTL for SL. The YZ1 alleles at QSl.yaas-2D and QSl.yaas-5A, and the YM12 alleles at QSl.yaas-2A, QSl.yaas-3A, and QSl.yaas-5B conferred increasing SL effects. Two major QTL QSl.yaas-5A and QSl.yaas-5B explained 9.11-15.85% and 9.01-12.85% of the phenotypic variations, respectively. Moreover, the positive alleles of QSl.yaas-5A and QSl.yaas-5B could significantly increase Fusarium head blight (FHB) resistance (soil surface inoculation and spray inoculation were used) and thousand-grain weight (TGW) in the RIL population. Kompetitive allele-specific PCR (KASP) markers for QSl.yaas-5A and QSl.yaas-5B were developed and validated in an additional panel of 180 wheat cultivars/lines. The cultivars/lines harboring both the positive alleles of QSl.yaas-5A and QSl.yaas-5B accounted for only 28.33% of the validation populations and had the longest SL, best FHB resistance (using spray inoculation), and highest TGW. A total of 358 and 200 high-confidence annotated genes in QSl.yaas-5A and QSl.yaas-5B were identified, respectively. Some of the genes in these two regions were involved in cell development, disease resistance, and so on. The results of this study will provide a basis for directional breeding of longer SL, higher TGW, and better FHB resistance varieties and a solid foundation for fine-mapping QSl.yaas-5A and QSl.yaas-5B in future. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-023-01427-8.

18.
Lett Appl Microbiol ; 76(9)2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37656884

RESUMO

Fusarium head blight (FHB) is a wheat disease caused by the plant pathogen Fusarium graminearum, which leads to crop yield losses and agricultural economic losses, as well as poses a threat to the environment and human health. Effective biocontrol of F. graminearum is urgent. An antagonistic strain HZ-5 with 59.2% antagonistic activity against F. graminearum in vitro had been isolated from sea mud of Haizhou Bay using a dual-culture assay, which was highly homologous with Bacillus halosaccharovorans according to the 16S rRNA sequence. The antagonistic activity of HZ-5 had been further studied. HZ-5 had a broad range of antagonistic activity against another six plant pathogenic fungi and was effective in controlling FHB of wheat in pot experiment. The substances with antagonistic activity were temperature insensitive, and had been purified by HPLC (High Performance Liquid Chromatography) to prove to be secreted lipopeptides. The antagonistic substances induced the biosynthesis of chitin and glycerol, while ergosterol , cholesterol, and phosphatidylcholine reduced their inhibitory effects on F. graminearum. These data would be helpful to provide a better biocontrol strain against FHB, and to provide important basis to elucidate the antagonistic mechanism of biocontrol.


Assuntos
Bacillus , Fusarium , Humanos , RNA Ribossômico 16S/genética , Glicerol
19.
Plant Dis ; 2023 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-37486272

RESUMO

Wheat is one of major cereal crops with paramount importance that is cultivated across the globe. Fusarium head blight (FHB) is a catastrophic disease of wheat which has recently risen to prominence due to its direct impact on the quality and quantity of wheat on a global scale. During a field survey conducted in Rabi 2021-22, wheat spikes showing characteristic symptoms of head blight were observed in northern parts of the Karnataka, India, in the districts Bagalkote, Belagavi and Dharwad. The infected spikelets from the heads with symptoms of infection were washed well in distilled water and surface sterilized using 1% sodium hypochlorite solution. They were further washed using sterilized distilled water to remove the traces of sodium hypochlorite. These spikelets were then transferred to sterile potato dextrose agar (PDA) plates under aseptic conditions. The plates were incubated at a temperature of 27±1°C for ten days to obtain good fungal growth. The fungus produced white to orangish pink, dense mycelia and hyaline septate hyphae. Macroconidia were sickle-shaped measuring 35.7 to 52.6 x 3.2 to 5.1 µm, dorsoventrally curved with an elongated basal cell ending in a prominent long foot; the apical cell was also elongated, tapered, slightly curved. Spores had 3 to 4 cells and formed on monophialide. Microconidia and chlamydospores were present only in a few isolates. Fungal genomic DNA was extracted from all the established isolates using CTAB (Cetyl-trimethyl ammonium bromide) method (Murray and Thompson, 1980). The ITS region of r-DNA and translation elongation factor-1 alpha (TEF-1α) genes of the ten isolates were amplified using ITS1/ITS4 primer pair (White et al. 1990) and the species-specific EF1F/EF1R primer pair (O'Donnell et al., 1998) respectively, to detect and distinguish within Fusarium species. The results exhibited 95% similarity with Fusarium poae with GenBank Accession No. XMO44849482.1. which was previously reported as a causal agent of Fusarium head blight of wheat in Georgia, USA. The TEF1-α sequences were deposited in the GenBank and the accession numbers from OP716756 to OP716765 were obtained. For the pathogenicity test, spore suspension containing a load of 108 conidia ml-1 was prepared from ten days old Fusarium poae culture and sprayed on the healthy wheat heads of the susceptible variety UAS-304 during anthesis stage by using hand atomizer. Control plants were sprayed in a similar manner with sterile distilled water. In order to enhance disease development and increase the accuracy of the evaluation, humidity was maintained for 72 hours post-inoculation period by covering each spike with a plastic bag and misting at least once daily. The characteristic head blight symptoms were observed in the inoculated wheat spikes. No symptoms were noticed in the water-treated control. The plants initially showed bleaching in single spikelet after seven days of inoculation, which eventually spread to the entire spike. After fourteen days of inoculation, the spikes showed blighted appearance with pinkish or orangish mass of mycelia grown on the affected region. The pathogen was further reisolated from the infected plants and examined under the microscope. The similar morphological features as that of the originally inoculated pathogen was observed, hence fulfilling Koch's postulates. To our knowledge, this is the first report of Fusarium poae causing head blight of wheat in India. Keeping the current climate change scenario in view, the plausibility of this pathogen causing a major havoc in the near future must not be ignored, considering the fact that it has a wide host range and highly evolving nature. The ubiquity of the Fusarium head blight recently in northern parts of Karnataka urges the need to conduct further studies on the variability, distribution and management of the pathogen.

20.
Plant Dis ; 2023 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-36607328

RESUMO

Fusarium graminearum and F. asiaticum have been found as a major cause of Fusarium head blight (FHB) of wheat (Triticum aestivum L.), especially in Henan Province of China (Zhang et al. 2014; Xu et al. 2021). In May 2021, a survey to determine the composition of Fusarium species infecting wheat heads was conducted in commercial fields in Henan. A total of 395 diseased spikes with premature whitening symptom were collected from 31 commercial fields in Henan. Symptomatic spikelets were excised, surface-sterilized for 10 s in 70% ethanol followed by 1 min in 3% sodium hypochlorite, rinsed three times with autoclaved distilled water, and then plated onto potato dextrose agar (PDA) medium. Isolated colonies that resembled Fusarium species were transferred to fresh PDA plates and purified using a single spore method. Species were identified based on sequence analysis of the translation elongation factor-1α (TEF) and trichothecene 3-Oacetyltransferase (Tri 101) gene (Proctor et al. 2009). The results indicated that F. graminearum (43.3%), F. asiaticum (47.8%), F. pseudograminearum (6.6%) were the main causal agents of FHB in Henan. However, nine isolates (2.3%) were found to be identical to F. meridionale by sequence comparison in GenBank, and eight isolates of which came from three fields with 1% to 2% diseased spikes near Reservoir Luhun (34.1255° N, 112.1111° E, altitude: 388 m above sea level), Songxian County of Henan. The isolates of F. meridionale were transferred onto carnation leaf agar (CLA) and incubated at 20℃ under black light blue illumination. Macroconidia were abundant, relatively slender, curved to almost straight, commonly six- to seven-septate, and 27.0 to 61.0 (average 44.0) µm × 3.2 to 6.8 (average 5.3) µm. Microconidia were not observed. The TEF sequences (Accession nos. OM460748 to OM460756) and the Tri 101 sequences (OM460759 to OM460767) of the nine isolates showed 99 to 100% similarity with the TEF and Tri 101 sequences of F. meridionale NRRL 28436 and NRRL 28723 (AF212435 and AF212436 (TEF); AF212582 and AF212683 (Tri 101)). To complete Koch's postulates, the pathogenicity of the fungus was tested by using the single floret inoculation method by injecting 20-µl conidial suspension (5 × 105 conidia per milliliter) into healthy inflorescences of wheat cultivar Bainong 207 at anthesis in the field. Another 30 healthy inflorescences were injected with sterile distilled water. The heads were covered with polyethylene bags that were removed after 2 days. Twenty days after inoculation, while control inflorescences were asymptomatic, the F. meridionale-inoculated inflorescences showed 12% bleached spikelets per spike. By using the methodology described above, the fungus was re-isolated from infected spikelets of inoculated wheat heads but not from the controls. Although F. meridionale has frequently been reported in association with Fusarium ear rot (FER) of maize in Chongqing City and Gansu Province (Zhang et al. 2014; Zhou et al. 2018), and rice FER in Sichuan Province (Dong et al. 2020), to our knowledge, this is the first report of F. meridionale from diseased wheat heads in Henan, China. Further investigation is needed to gain a better understanding of this species by collecting isolates from different cropping system in Henan, which maize-wheat and rice-wheat rotation fields have coexisted in the region.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa