Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
EJNMMI Res ; 13(1): 59, 2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37314509

RESUMO

The development of diagnostic and therapeutic radiopharmaceuticals is an hot topic in nuclear medicine. Several radiolabeled antibodies are under development necessitating both biokinetic and dosimetry extrapolations for effective human translation. The validation of different animal-to-human dosimetry extrapolation methods still is an open issue. This study reports the mice-to-human dosimetry extrapolation of 64Cu/177Lu 1C1m-Fc anti-TEM-1 for theranostic application in soft-tissue sarcomas. We adopt four methods; direct mice-to-human extrapolation (M1); dosimetry extrapolation considering a relative mass scaling factor (M2), application of a metabolic scaling factor (M3) and combination of M2 and M3 (M4). Predicted in-human dosimetry for the [64Cu]Cu-1C1m-Fc resulted in an effective dose of 0.05 mSv/MBq. Absorbed dose (AD) extrapolation for the [177Lu]Lu-1C1m-Fc indicated that the AD of 2 Gy and 4 Gy to the red-marrow and total-body can be reached with 5-10 GBq and 25-30 GBq of therapeutic activity administration respectively depending on applied dosimetry method. Dosimetry extrapolation methods provided significantly different absorbed doses in organs. Dosimetry properties for the [64Cu]Cu-1C1m-Fc are suitable for a diagnostic in-human use. The therapeutic application of [177Lu]Lu-1C1m-Fc presents challenges and would benefit from further assessments in animals' models such as dogs before moving into the clinic.

2.
Pharmaceutics ; 13(1)2021 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-33451158

RESUMO

1C1m-Fc, an anti-tumor endothelial marker 1 (TEM-1) scFv-Fc fusion protein antibody, was previously successfully radiolabeled with 177Lu. TEM-1 specific tumor uptake was observed together with a non-saturation dependent liver uptake that could be related to the number of dodecane tetraacetic acid (DOTA) chelator per 1C1m-Fc. The objective of this study was to verify this hypothesis and to find the best DOTA per 1C1m-Fc ratio for theranostic applications. 1C1m-Fc was conjugated with six concentrations of DOTA. High-pressure liquid chromatography, mass spectrometry, immunoreactivity assessment, and biodistribution studies in mice bearing TEM-1 positive tumors were performed. A multi-compartment pharmacokinetic model was used to fit the data and a global pharmacokinetic model was developed to illustrate the effect of liver capture and immunoreactivity loss. Organ absorbed doses in mice were calculated from biodistribution results. A loss of immunoreactivity was observed with the highest DOTA per 1C1m-Fc ratio. Except for the spleen and bone, an increase of DOTA per 1C1m-Fc ratio resulted in an increase of liver uptake and absorbed dose and a decrease of uptake in tumor and other tissues. Pharmacokinetic models correlated these results. The number of DOTA per antibody played a determining role in tumor targeting. One DOTA per 1C1m-Fc gave the best pharmacokinetic behavior for a future translation of [177Lu]Lu-1C1m-Fc in patients.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa