Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 831
Filtrar
1.
Small ; : e2402583, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38804883

RESUMO

The introduction of axial-coordinated heteroatoms in Fe─N─C single-atom catalysts enables the significant enhancement of their oxygen reduction reaction (ORR) performance. However, the interaction relationship between the axial-coordinated heteroatoms and their carbon supports is still unclear. In this work, a gas phase surface treatment method is proposed to prepare a series of X─Fe─N─C (X = O, P, and S) single-atom catalysts with axial X-coordination on graphitic-N-rich carbon supports. Synchrotron-based X-ray absorption near-edge structure spectra and X-ray photoelectron spectroscopy indicate the formation of an axial charge transfer channel between the graphitic-N-rich carbon supports and single-atom Fe sites by axial O atoms in O─Fe─N─C. As a result, the O─Fe─N─C exhibits excellent ORR performance with a half-wave potential of 0.905 V versus RHE and a high specific capacity of 884 mAh g-1 for zinc-air battery, which is superior to other X─Fe─N─C catalysts without axial charge transfer and the commercial Pt/C catalyst. This work not only demonstrates a general synthesis strategy for the preparation of single-atom catalysts with axial-coordinated heteroatoms, but also presents insights into the interaction between single-atom active sites and doped carbon supports.

2.
J Synchrotron Radiat ; 31(Pt 5): 1257-1263, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39042580

RESUMO

The differentially pumped rare-gas filter at the end of the VUV beamline of the Swiss Light Source has been adapted to house a windowless absorption cell for gases. Absorption spectra can be recorded from 7 eV to up to 21 eV photon energies routinely, as shown by a new water and nitrous oxide absorption spectrum. By and large, the spectra agree with previously published ones both in terms of resonance energies and absorption cross sections, but that of N2O exhibits a small shift in the {\tilde{\bf D}} band and tentative fine structures that have not yet been fully described. This setup will facilitate the measurement of absorption spectra in the VUV above the absorption edge of LiF and MgF2 windows. It will also allow us to carry out condensed-phase measurements on thin liquid sheets and solid films. Further development options are discussed, including the recording of temperature-dependent absorption spectra, a stationary gas cell for calibration measurements, and the improvement of the photon energy resolution.

3.
J Synchrotron Radiat ; 31(Pt 2): 303-311, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38385277

RESUMO

X-ray and electron scattering from free gas-phase molecules is examined using the independent atom model (IAM) and ab initio electronic structure calculations. The IAM describes the effect of the molecular geometry on the scattering, but does not account for the redistribution of valence electrons due to, for instance, chemical bonding. By examining the total, i.e. energy-integrated, scattering from three molecules, fluoroform (CHF3), 1,3-cyclohexadiene (C6H8) and naphthalene (C10H8), the effect of electron redistribution is found to predominantly reside at small-to-medium values of the momentum transfer (q ≤ 8 Å-1) in the scattering signal, with a maximum percent difference contribution at 2 ≤ q ≤ 3 Å-1. A procedure to determine the molecular geometry from the large-q scattering is demonstrated, making it possible to more clearly identify the deviation of the scattering from the IAM approximation at small and intermediate q and to provide a measure of the effect of valence electronic structure on the scattering signal.

4.
Mass Spectrom Rev ; : e21835, 2023 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-36776107

RESUMO

Selected ion flow tube mass spectrometry (SIFT-MS) is now recognized as the most versatile analytical technique for the identification and quantification of trace gases down to the parts-per-trillion by volume, pptv, range. This statement is supported by the wide reach of its applications, from real-time analysis, obviating sample collection of very humid exhaled breath, to its adoption in industrial scenarios for air quality monitoring. This review touches on the recent extensions to the underpinning ion chemistry kinetics library and the alternative challenge of using nitrogen carrier gas instead of helium. The addition of reagent anions in the Voice200 series of SIFT-MS instruments has enhanced the analytical capability, thus allowing analyses of volatile trace compounds in humid air that cannot be analyzed using reagent cations alone, as clarified by outlining the anion chemistry involved. Case studies are reviewed of breath analysis and bacterial culture volatile organic compound (VOC), emissions, environmental applications such as air, water, and soil analysis, workplace safety such as transport container fumigants, airborne contamination in semiconductor fabrication, food flavor and spoilage, drugs contamination and VOC emissions from packaging to demonstrate the stated qualities and uniqueness of the new generation SIFT-MS instrumentation. Finally, some advancements that can be made to improve the analytical capability and reach of SIFT-MS are mentioned.

5.
Chemistry ; 30(27): e202303653, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38427965

RESUMO

In contrast to its behavior in solution, the adduct [(LiBr)(tBu)(Ph)Bpin]- (pin=pinacol) transfers its phenyl anion from boron to lithium upon fragmentation in the gas phase. Quantum chemical calculations predict this exceptional transmetalation to be exothermic relative to the separated reactants, [(tBu)(Ph)Bpin]- and LiBr, which we attribute to the high phenyl-anion affinity of the coordinatively unsaturated LiBr unit. The addition of a single molecule of tetrahydrofuran drastically reduces the phenyl-anion affinity of LiBr and thereby renders the transmetalation from boron to lithium endothermic. Thus, the probed system highlights the importance of solvation and ligation effects in transmetalations. For correctly predicting the direction, in which these reactions proceed, it is not sufficient to consider the electronegativities or partial charges of the involved metals or metalloids. Instead, the individual coordination states and their changes over the course of the reaction must be taken into account.

6.
Chemistry ; 30(46): e202401575, 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-38856096

RESUMO

The geometric and electronic structure of [Hg(o-C6F4)]3 (1) in the gas phase, i. e. free of intermolecular interactions, was determined by a synchronous gas-phase electron diffraction/mass spectrometry experiment (GED/MS), complemented by quantum chemical calculations. 1 is stable up to 498 K and the gas phase contains a single molecular form: the trimer [Hg(o-C6F4)]3. It has a planar structure of D3h symmetry with a Hg-C distance of 2.075(5) Šand a Hg-Hg distance of 3.614(7) Š(both rh1). Structural differences between the crystalline and gaseous state have been analyzed. Different DFT functional-basis combinations were tested, demonstrating the importance to consider the relativistic effects of the mercury atoms. The combination PBE0/MWB(Hg),cc-pVTZ(C,F) turned out to be the most appropriate for the geometry optimization of such organomercurials. The electronic structure of 1, the nature of the chemical bonding in C-Hg-C fragments and the nature of the Hg⋅⋅⋅Hg interactions have been analyzed in terms of the Natural Bond Orbital (NBO) and Quantum Theory of Atoms in Molecules (QTAIM) approaches. The influence of the nature of halogen substitution on the structure of the molecules in the series [Hg(o-C6H4)]3, [Hg(o-C6F4)]3, [Hg(o-C6Cl4)]3, [Hg(o-C6Br4)]3 was also analyzed.

7.
Chemistry ; 30(30): e202400205, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38526989

RESUMO

The novel photoswitchable ligand 3,3'-Azobenz(metPA)2 (1) is used to prepare a [Cu2(1)2](BF4)2 metallocycle (2), whose photoisomerization was characterized using static and time-resolved spectroscopic methods. Optical studies demonstrate the highly quantitative and reproducible photoinduced cyclic E/Z switching without decay of the complex. Accordingly and best to our knowledge, [Cu2(1)2](BF4)2 constitutes the first reversibly photoswitchable (3d)-metallocycle based on azobenzene. The photoinduced multiexponential dynamics in the sub-picosecond to few picosecond time domain of 1 and 2 have been assessed. These ultrafast dynamics as well as the yield of the respective photostationary state (PSSZ = 65 %) resemble the behavior of archetypical azobenzene. Also, the innovative pump-probe laser technique of gas phase transient photodissociation (τ-PD) in a mass spectrometric ion trap was used to determine the intrinsic relaxation dynamics for the isolated complex. These results are consistent with the results from femtosecond UV/Vis transient absorption (fs-TA) in solution, emphasizing the azobenzene-like dynamics of 2. This unique combination of fs-TA and τ-PD enables valuable insights into the prevailing interplay of dynamics and solvation. Both analyses (in solution and gas phase) and quantum chemical calculations reveal a negligible effect of the metal coordination on the switching mechanism and electronic pathway, which suggests a non-cooperative isomerization process.

8.
Chemistry ; 30(38): e202400633, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38888393

RESUMO

Studying the direct effects of DNA irradiation is essential for understanding the impact of radiation on biological systems. Gas-phase interactions are especially well suited to uncover the molecular mechanisms underlying these direct effects. Only relatively recently, isolated DNA oligonucleotides were irradiated by ionizing particles such as VUV or X-ray photons or ion beams, and ionic products were analyzed by mass spectrometry. This article provides a comprehensive review of primarily experimental investigations in this field over the past decade, emphasizing the description of processes such as ionization, fragmentation, charge and hydrogen transfer triggered by photoabsorption or ion collision, and the recent progress made thanks to specific atomic photoabsorption. Then, we outline ongoing experimental developments notably involving ion-mobility spectrometry, crossed beams or time-resolved measurements. The discussion extends to potential research directions for the future.


Assuntos
DNA , Gases , DNA/química , DNA/efeitos da radiação , Gases/química , Espectrometria de Massas , Radiação Ionizante , Espectrometria de Mobilidade Iônica/métodos , Hidrogênio/química
9.
Chemphyschem ; 25(16): e202300915, 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-38758018

RESUMO

Infrared (IR) emission bands by interstellar polycyclic aromatic hydrocarbons (PAHs) and polycyclic aromatic nitrogen heterocycles (PANHs) are observed towards a large variety of interstellar objects and offer detailed insights into the chemistry and physics of the interstellar medium. The analysis of the emission bands, and thus the interpretation of the molecular characteristics of the carriers, heavily relies on the use of density functional theory (DFT) calculated IR spectra. However, there are significant challenges in accurately predicting the experimental IR band positions, particularly for PANH emission vibrational modes around 6 µm. In this work, we present gas-phase mid-infrared (mid-IR) spectra of cationic 3-azafluoranthene (3AF⋅+) and protonated 3-azafluoranthene (3AFH+) to investigate their experimental IR band positions in relation to DFT calculated bands. The experimental spectra are compared to DFT simulated spectra, where different approaches were followed to correct for anharmonicities. The best agreement is achieved by scaling frequencies of modes with large nitrogen displacements with a different factor. Even though our findings might be limited to a small number of PANH structures, they indicate, that nitrogen atom incorporation needs to be accounted for by carefully adjusting the corresponding scaling factors while computing IR spectra of PANHs on DFT level.

10.
Nanotechnology ; 35(22)2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38373356

RESUMO

In sodium-ion batteries (SIBs), TiO2or sodium titanates are discussed as cost-effective anode material. The use of ultrafine TiO2particles overcomes the effect of intrinsically low electronic and ionic conductivity that otherwise limits the electrochemical performance and thus its Na-ion storage capacity. Especially, TiO2nanoparticles integrated in a highly conductive, large surface-area, and stable graphene matrix can achieve an exceptional electrochemical rate performance, durability, and increase in capacity. We report the direct and scalable gas-phase synthesis of TiO2and graphene and their subsequent self-assembly to produce TiO2/graphene nanocomposites (TiO2/Gr). Transmission electron microscopy shows that the TiO2nanoparticles are uniformly distributed on the surface of the graphene nanosheets. TiO2/Gr nanocomposites with graphene loadings of 20 and 30 wt% were tested as anode in SIBs. With the outstanding electronic conductivity enhancement and a synergistic Na-ion storage effect at the interface of TiO2nanoparticles and graphene, nanocomposites with 30 wt% graphene exhibited particularly good electrochemical performance with a reversible capacity of 281 mAh g-1at 0.1 C, compared to pristine TiO2nanoparticles (155 mAh g-1). Moreover, the composite showed excellent high-rate performance of 158 mAh g-1at 20 C and a reversible capacity of 154 mAh g-1after 500 cycles at 10 C. Cyclic voltammetry showed that the Na-ion storage is dominated by surface and TiO2/Gr interface processes rather than slow, diffusion-controlled intercalation, explaining its outstanding rate performance. The synthesis route of these high-performing nanocomposites provides a highly promising strategy for the scalable production of advanced nanomaterials for SIBs.

11.
Environ Sci Technol ; 58(3): 1601-1614, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38185880

RESUMO

Highly oxygenated organic molecules (HOMs) are a major source of new particles that affect the Earth's climate. HOM production from the oxidation of volatile organic compounds (VOCs) occurs during both the day and night and can lead to new particle formation (NPF). However, NPF involving organic vapors has been reported much more often during the daytime than during nighttime. Here, we show that the nitrate radicals (NO3), which arise predominantly at night, inhibit NPF during the oxidation of monoterpenes based on three lines of observational evidence: NPF experiments in the CLOUD (Cosmics Leaving OUtdoor Droplets) chamber at CERN (European Organization for Nuclear Research), radical chemistry experiments using an oxidation flow reactor, and field observations in a wetland that occasionally exhibits nocturnal NPF. Nitrooxy-peroxy radicals formed from NO3 chemistry suppress the production of ultralow-volatility organic compounds (ULVOCs) responsible for biogenic NPF, which are covalently bound peroxy radical (RO2) dimer association products. The ULVOC yield of α-pinene in the presence of NO3 is one-fifth of that resulting from ozone chemistry alone. Even trace amounts of NO3 radicals, at sub-parts per trillion level, suppress the NPF rate by a factor of 4. Ambient observations further confirm that when NO3 chemistry is involved, monoterpene NPF is completely turned off. Our results explain the frequent absence of nocturnal biogenic NPF in monoterpene (α-pinene)-rich environments.


Assuntos
Poluentes Atmosféricos , Monoterpenos Bicíclicos , Ozônio , Compostos Orgânicos Voláteis , Monoterpenos/química , Nitratos/química , Aerossóis/análise , Compostos Orgânicos Voláteis/química
12.
Anal Bioanal Chem ; 416(22): 4961-4971, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39110175

RESUMO

In atmospheric pressure chemical ionization mass spectrometry (APCI-MS), [M-3H+H2O]+ ions can deliver analyte-specific signals that enable direct analysis of volatile n-alkane mixtures. The underlying ionization mechanisms have been the subject of open debate, and in particular the role of water is insufficiently clarified to allow for reliable process analytics when the humidity level changes over time. This can be a problem, particularly in online monitoring, where analyte accumulation in the ion source can also occur. Here, we investigated the role of water during APCI-MS of volatile n-alkanes by changing the carrier gas for sample injection from a dry to a wetted state as well as by using 18O-labeled water. This allowed for a distinction between gaseous and surface-adsorbed water molecules. While adsorbed water seems to be responsible for the desired [M-3H+H2O]+ signals through surface reactions with the analyte molecules, gaseous water was found to promote the formation of CnH2n+1O+ of different (and analyte-independent) hydrocarbons, revealing a reaction with hydrocarbon species which accumulated in the ion source during continuous operation. At the same time, gaseous water competed with analyte molecules for ionization and thus suppressed the formation of alkyl (CnH2n+1+) and alkenyl (CnH2n-1+) ions. The results reveal a memory effect due to hydrocarbon adsorption, which may cause severe interpretation difficulties when the ionization chamber undergoes sudden humidity changes. The use of [M-3H+H2O]+ for n-alkane analysis in alkane/water mixtures can be facilitated by constantly maintaining high humidity and hence stabilizing the ionization conditions.

13.
Anal Bioanal Chem ; 2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39172237

RESUMO

Manganese ion homeostasis is vital for bacteria and is achieved via manganese-dependent transcription factors. Manganese mediation of transcription factor attachment to the corresponding oligonucleotide sequences can be investigated, e.g. via electrophoretic mobility shift assays (EMSA). Formation of specific biocomplexes leads to differences in the migration pattern upon gel electrophoresis. Focusing on electrophoresis in the gas-phase, applying a nano electrospray gas-phase electrophoretic mobility molecular analyzer (nES GEMMA) also known as nES differential mobility analyzer (nES DMA), and on transcription factors (MntR proteins) from Bacillus subtilis and Mycobacterium tuberculosis, we took interest in the gas-phase electrophoresis of the corresponding biospecific complexes. We compared nES GEMMA, separating analytes in the nanometer regime (a few to several hundred nm in diameter) in the gas-phase in their native state according to particle size, to EMSA data. Indeed we were able to demonstrate manganese-mediated attachment of MntR to target genomic sequences with both analytical techniques. Despite some inherent pitfalls of the nES GEMMA method like analyte/instrument surface interactions, we were able to detect the target complexes. Moreover, we were able to calculate the molecular weight (MW) of the obtained species by application of a correlation function based on nES GEMMA obtained data. As gas-phase electrophoresis also offers the possibility of offline hyphenation to orthogonal analysis techniques, we are confident that nES GEMMA measurements are not just complementary to EMSA, but will offer the possibility of further in-depth characterization of biocomplexes in the future.

14.
Anal Bioanal Chem ; 416(8): 1843-1855, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38355845

RESUMO

Online monitoring of dynamic chemical processes involving a wide volatility range of hydrocarbon species is challenging due to long chromatographic measurement times. Mass spectrometry (MS) overcomes chromatographic delays. However, the analysis of n-alkane mixtures by MS is difficult because many fragment ions are formed, which leads to overlapping signals of the homologous series. Atmospheric pressure chemical ionization (APCI) is suitable for the analysis of saturated hydrocarbons and is the subject of current research. Still, although APCI is a "soft ionization" technique, fragmentation is typically inevitable. Moreover, it is usually applied for liquid samples, while an application for online gas-phase monitoring is widely unexplored. Here, we present an automated APCI-MS method for an online gas-phase analysis of volatile and semi-volatile n-alkanes. Mass spectra for n-heptane and n-decane reveal [M-H]+, [M-3H]+ and [M-3H+H2O]+ as abundant ions. While [M-H]+ and [M-3H]+ show an excessive fragmentation pattern to smaller CnH2n+1+ and CnH2n-1+ cations, [M-3H+H2O]+ is the only relevant signal within the CnH2n+1O+ ion group, i.e., no chain cleavage is observed. This makes [M-3H+H2O]+ an analyte-specific ion that is suitable for the quantification of n-alkane mixtures. A calibration confirms the linearity of C7 and C10 signals up to concentrations of ~1000-1500 ppm. Moreover, validated concentration profiles are measured for a binary C7/C10 mixture and a five-alkane C7/C10/C12/C14/C20 mixture. Compared to the 40-min sampling interval of the reference gas chromatograph, MS sampling is performed within 5 min and allows dynamic changes to be monitored.

15.
J Chem Ecol ; 50(3-4): 129-142, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38195852

RESUMO

Biogenic volatile organic compounds (bVOCs), synthesised by plants, are important mediators of ecological interactions that can also undergo a series of reactions in the atmosphere. Ground-level ozone is a secondary pollutant generated through sunlight-driven reactions between nitrogen oxides (NOx) and VOCs. Its levels have increased since the industrial revolution and reactions involving ozone drive many chemical processes in the troposphere. While ozone precursors often originate in urban areas, winds may carry these hundreds of kilometres, causing ozone formation to also occur in less populated rural regions. Under elevated ozone conditions, ozonolysis of bVOCs can result in quantitative and qualitative changes in the gas phase, reducing the concentrations of certain bVOCs and resulting in the formation of other compounds. Such changes can result in disruption of bVOC-mediated behavioural or ecological interactions. Through a series of gas-phase experiments using Gas Chromatography Mass Spectrometry (GC-MS) and Proton Transfer Reaction Mass Spectrometry (PTR-MS), we investigated the products and their yields from the ozonolysis of a range of ubiquitous bVOCs, which were selected because of their importance in mediating ecological interactions such as pollinator and natural enemy attraction and plant-to-plant communication, namely: (E)-ß-ocimene, isomers of α and ß-farnesene, α-terpinene and 6-methyl-5-hepten-2-one. New products from the ozonolysis of these compounds were identified, and the formation of these compounds is consistent with terpene-ozone oxidation mechanisms. We present the degradation mechanism of our model bVOCs and identify their reaction products. We discuss the potential ecological implications of the degradation of each bVOC and of the formation of reaction products.


Assuntos
Monoterpenos Acíclicos , Alcenos , Cetonas , Ozônio , Sesquiterpenos , Compostos Orgânicos Voláteis , Ozônio/química , Compostos Orgânicos Voláteis/química , Compostos Orgânicos Voláteis/metabolismo , Alcenos/química , Sesquiterpenos/química , Sesquiterpenos/metabolismo , Atmosfera/química , Monoterpenos/química , Monoterpenos/metabolismo , Monoterpenos Cicloexânicos/química , Cromatografia Gasosa-Espectrometria de Massas , Isomerismo , Poluentes Atmosféricos/química , Poluentes Atmosféricos/análise
16.
Mikrochim Acta ; 191(4): 208, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38499898

RESUMO

The identification and correction of negative factors, such as 4-ethylphenol and ethanethiol, is important to comply with food safety regulations and avoid economic losses to wineries. A simple amperometric measurement procedure that facilitates the simultaneous quantification of both compounds in the gas phase has been developed using fullerene and cobalt (II) phthalocyanine-modified dual screen-printed electrodes coated with a room temperature ionic liquid-based gel polymer electrolyte. The replacement of the typical aqueous supporting electrolyte by low-volatility ones improves both operational and storage lifetime. Under the optimum conditions of the experimental variables, Britton Robinson buffer pH 5 and applied potentials of + 0.86 V and + 0.40 V for each working electrode (vs. Ag ref. electrode), reproducibility values of 7.6% (n = 3) for 4-ethylphenol and 6.6% (n = 3) for ethanethiol were obtained, as well as capability of detection values of 23.8 µg/L and decision limits of 1.3 µg/L and 9.2 µg/L (α = ß = 0.05), respectively. These dual electrochemical devices have successfully been applied to the headspace detection of both compounds in white and red wines, showing their potential to be routinely used for rapid analysis control in wineries.

17.
Phytochem Anal ; 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38806285

RESUMO

INTRODUCTION: Fructus Gardeniae (ZZ), a traditional Chinese herb, has been used in treating patients with jaundice, inflammation, etc. When mixed with ginger juice and stir-baked, ginger juice-processed Fructus Gardeniae (JZZ) is produced, and the chemical compositions in ZZ would be changed by adding the ginger juice. OBJECTIVE: To illuminate the differential components between ZZ and JZZ. METHODS: HPLC, UHPLC-Q-TOF-MS, and Heracles NEO ultra-fast gas phase electronic nose were applied to identify the differential components between ZZ and JZZ. RESULTS: HPLC fingerprints of ZZ and JZZ were established, and 24 common peaks were found. The content determination results showed that the contents of shanzhiside, geniposidic acid, genipin-1-ß-D-gentiobioside and geniposide increased, while the contents of crocin I and crocin II decreased in JZZ. By UHPLC-Q-TOF-MS, twenty-six possible common components were inferred, among which 11 components were different. In further investigation, eight components were identified as the possible distinctive non-volatile compounds between ZZ and JZZ. By Heracles NEO ultra-fast gas phase electronic nose, four substances were inferred as the possible distinctive volatile compounds in JZZ. CONCLUSION: Shanzhiside, caffeic acid, genipin-1-ß-D-gentiobioside, geniposide, rutin, crocin I, crocin II, and 4-Sinapoyl-5-caffeoylquinic acid were identified as the possible differential non-volatile components between ZZ and JZZ. Aniline, 3-methyl-3-sulfanylbutanol-1-ol, E-3-octen-2-one, and decyl propaonate were inferred as the possible distinctive volatile compounds in JZZ. This experiment explored a simple approach with objective and stable results, which would provide new ideas for studying decoction pieces with similar morphological appearance, especially those with different odors.

18.
Sensors (Basel) ; 24(7)2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38610252

RESUMO

Multiphoton electron extraction spectroscopy (MEES) is an advanced analytical technique that has demonstrated exceptional sensitivity and specificity for detecting molecular traces on solid and liquid surfaces. Building upon the solid-state MEES foundations, this study introduces the first application of MEES in the gas phase (gas-phase MEES), specifically designed for quantitative detection of gas traces at sub-part per billion (sub-PPB) concentrations under ambient atmospheric conditions. Our experimental setup utilizes resonant multiphoton ionization processes using ns laser pulses under a high electrical field. The generated photoelectron charges are recorded as a function of the laser's wavelength. This research showcases the high sensitivity of gas-phase MEES, achieving high spectral resolution with resonant peak widths less than 0.02 nm FWHM. We present results from quantitative analysis of benzene and aniline, two industrially and environmentally significant compounds, demonstrating linear responses in the sub-PPM and sub-PPB ranges. The enhanced sensitivity and resolution of gas-phase MEES offer a powerful approach to trace gas analysis, with potential applications in environmental monitoring, industrial safety, security screening, and medical diagnostics. This study confirms the advantages of gas-phase MEES over many traditional optical spectroscopic methods and demonstrates its potential in direct gas-trace sensing in ambient atmosphere.

19.
Int J Mol Sci ; 25(13)2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-39000590

RESUMO

Protein cysteine S-glycosylation is a relatively rare and less well characterized post-translational modification (PTM). Creating reliable model proteins that carry this modification is challenging. The lack of available models or natural S-glycosylated proteins significantly hampers the development of mass-spectrometry-based (MS-based) methodologies for detecting protein cysteine S-glycosylation in real-world proteomic studies. There is also limited MS-sequencing data describing it as easier to create synthetic S-glycopeptides. Here, we present the results of an in-depth manual analysis of automatically annotated CID/HCD spectra for model S-glucopeptides. The CID spectra show a long series of y/b-fragment ions with retained S-glucosylation, regardless of the dominant m/z signals corresponding to neutral loss of 1,2-anhydroglucose from the precursor ions. In addition, the spectra show signals manifesting glucosyl transfer from the cysteine position onto lysine, arginine (Lys, Arg) side chains, and a peptide N-terminus. Other spectral evidence indicates that the N-glucosylated initial products of transfer are converted into N-fructosylated (i.e., glycated) structures due to Amadori rearrangement. We discuss the peculiar transfer of the glucose oxocarbenium ion (Glc+) to positively charged guanidinium residue (ArgH+) and propose a mechanism for the gas-phase Amadori rearrangement involving a 1,2-hydride ion shift.


Assuntos
Cisteína , Glicosilação , Cisteína/química , Cisteína/metabolismo , Processamento de Proteína Pós-Traducional , Glicopeptídeos/química , Glicopeptídeos/metabolismo , Peptídeos/química , Peptídeos/metabolismo , Gases/metabolismo , Gases/química , Glucose/metabolismo , Glucose/química , Proteômica/métodos , Espectrometria de Massas em Tandem/métodos
20.
Int J Mol Sci ; 25(7)2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38612884

RESUMO

We present a study of salicylic acid and its hydrates, with up to four water molecules, done by employing chirped-pulse Fourier transform microwave spectroscopy. We employed the spectral data set of the parent, 13C, and 2H isotopologues to determine the molecular structure and characterize the intra- and intermolecular interactions of salicylic acid and its monohydrate. Complementary theoretical calculations were done to support the analysis of the experimental results. For the monomer, we analyzed structural properties, such as the angular-group-induced bond alternation (AGIBA) effect. In the microsolvates, we analyzed their main structural features dominated by the interaction of water with the carboxylic acid group. This work contributes to seeding information on how water molecules accumulate around this group. Moreover, we discussed the role of cooperative effects further stabilizing the observed inter- and intramolecular hydrogen bond interactions.


Assuntos
Ácido Salicílico , Água , Estrutura Molecular , Análise Espectral , Espectrometria de Massas
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa