Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 22(3)2022 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-35161761

RESUMO

Gas sensing performance characterization systems are essential for the research and development of gas sensing materials and devices. Although existing systems are almost completely automatically operated, the accuracies of gas concentration control and of pressure control and the ability to simultaneously detect different sensor signals still require improvement. In this study, a high-precision gas sensing material characterization system is developed based on vacuum technology, with the objective of enabling the precise and simultaneous measurement of electrical responses. Because of the implementation of vacuum technology, the gas concentration control accuracy is improved more than 1600 times, whereas the pressure of the test ambient condition can be precisely adjusted between vacuum and 1.2 bar. The vacuum-assisted gas-exchanging mechanism also enables the sensor response time to be determined more accurately. The system is capable of performing sensitivity, selectivity, and stability tests and can control the ambient relative humidity in a precise manner. More importantly, the levels of performance of three different optical signal measurement set-ups were investigated and compared in terms of detection range, linearity, noise, and response time, based on which of their scopes of application were proposed. Finally, single-period and cyclical tests were performed to examine the ability of the system to detect optical and electrical responses simultaneously, both at a single wavelength and in a spectral region.

2.
Sensors (Basel) ; 20(22)2020 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-33238459

RESUMO

This paper presents an overview of semiconductor materials used in gas sensors, their technology, design, and application. Semiconductor materials include metal oxides, conducting polymers, carbon nanotubes, and 2D materials. Metal oxides are most often the first choice due to their ease of fabrication, low cost, high sensitivity, and stability. Some of their disadvantages are low selectivity and high operating temperature. Conducting polymers have the advantage of a low operating temperature and can detect many organic vapors. They are flexible but affected by humidity. Carbon nanotubes are chemically and mechanically stable and are sensitive towards NO and NH3, but need dopants or modifications to sense other gases. Graphene, transition metal chalcogenides, boron nitride, transition metal carbides/nitrides, metal organic frameworks, and metal oxide nanosheets as 2D materials represent gas-sensing materials of the future, especially in medical devices, such as breath sensing. This overview covers the most used semiconducting materials in gas sensing, their synthesis methods and morphology, especially oxide nanostructures, heterostructures, and 2D materials, as well as sensor technology and design, application in advance electronic circuits and systems, and research challenges from the perspective of emerging technologies.

3.
ACS Appl Mater Interfaces ; 15(33): 39777-39785, 2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37565809

RESUMO

We report unique conductive leaf-inspired (in particular, stomata-inspired) supramolecular gas sensors in which acetylated cyclodextrin derivatives rule the electric output. The gas sensors consist of polymers bearing acetylated cyclodextrin, adamantane, and carbon black. Host-guest complexes between acetylated cyclodextrin and adamantane corresponding to the closed stomata realize a flexible polymeric matrix. Effective recombination of the cross-links contributes to the robustness. As gas sensors, the supramolecular materials detect ammonia as well as various other gases at 1 ppm in 10 min. The free acetylated cyclodextrin corresponding to open stomata recognized the guest gases to alter the electric resistivity. Interestingly, the conductive device failed to detect ammonia gases at all without acetylated cyclodextrin. The molecular recognition was studied by molecular dynamics simulations. The gas molecules existed stably in the cavity of free acetylated cyclodextrin. These findings show the potential for developing wearable gas sensors.

4.
ACS Sens ; 7(10): 2804-2822, 2022 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-36131601

RESUMO

Printed electrical gas sensors are a low-cost, lightweight, low-power, and potentially disposable alternative to gas sensors manufactured using conventional methods such as photolithography, etching, and chemical vapor deposition. The growing interest in Internet-of-Things, smart homes, wearable devices, and point-of-need sensors has been the main driver fueling the development of new classes of printed electrical gas sensors. In this Perspective, we provide an insight into the current research related to printed electrical gas sensors including materials, methods of fabrication, and applications in monitoring food quality, air quality, diagnosis of diseases, and detection of hazardous gases. We further describe the challenges and future opportunities for this emerging technology.


Assuntos
Poluição do Ar , Dispositivos Eletrônicos Vestíveis , Gases/análise
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa