Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Chemistry ; 29(51): e202300167, 2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37358027

RESUMO

We report a joint experimental and theoretical study on the stability and reactivity of Bin + (n=5-33) clusters. The alternating odd-even effect on the reaction rates of Bin + clusters with NO is observed, and Bi7 + finds the most inertness. First-principles calculation results reveal that the lowest energy structures of Bi6-9 + exhibit quasi-spherical geometry pertaining to the jellium shell model; however, the Bin + (n≥10) clusters adopt assembly structures. The prominent stability of Bi7 + is associated with its highly symmetric structure and superatomic states with a magic number of 34e closed shell. For the first time, we demonstrate that the unique s-p nonhybrid feature in bismuth rationalizes the stability of Bi6-9 + clusters within the jellium model, by filling the 6s electrons into the superatomic orbitals (forming "s-band"). Interestingly, the stability of 18e "s-band" coincides with the compact structure for Bin + at n≤9 but assembly structures for n≥10, showing an accommodation of the s electrons to the geometric structure. The atomic p-orbitals also allow to form superatomic orbitals at higher energy levels, contributing to the preferable structures of tridentate binding units. We illustrate the s-p nonhybrid nature accommodates the structure and superatomic states of bismuth clusters.

2.
Chemphyschem ; 24(10): e202200530, 2023 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-36807961

RESUMO

The conversion of ethane into value-added chemicals under ambient conditions has attracted much attention but the mechanisms remain not fully understood. Here we report a study on the reaction of ethane with thermalized Nbn + clusters based on a multiple-ion laminar flow tube reactor combined with a triple quadrupole mass spectrometer (MIFT-TQMS). It is found that ethane reacts with Nbn + clusters to form both products of dehydrogenation and methane-removal (odd-carbon products). Combined with density functional theory (DFT) calculations, we studied the reaction mechanisms of the C-C bond activation and C-H bond cleavage on the Nbn + clusters. It is unveiled that hydrogen atom transfer (HAT) initiates the reaction process, giving rise to the formation of Nb-C bonds and an elongated C-C distance in the HNbn + CH2 CH3 motif. Subsequent reactions allow for C-C bond activation and a competitive HAT process which is associated with CH4 removal or H2 release, resulting in the production of the observed carbides.

3.
Chemphyschem ; 24(11): e202200949, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-36815463

RESUMO

The performance of heteronuclear clusters [AlXO3 ]+ (X=Al, AlO4 , AlMg2 O2 , AlZnO, AlAu2 , Mg, Y, VO, NbO, TaO) in activating methane has been explored by a combination of high-level quantum calculations with reported and supplementary gas-phase experiments. With different dopants in [AlXO3 ]+ , the mechanism, reactivity and selectivity towards methane activation varies accordingly. The classic HAT competes with PCET, depending on the composition of intramolecular interactions. Although the existence of terminal oxygen radical is beneficial for classic HAT, the Alt -C interaction in the [AlXO3 ]+ clusters as enhanced by the strongly electronegative doping groups (X=Al, AlZnO, Mg, Zn, VO, NbO, TaO) favors the PCET process, facilitating C-H bond breaking. In addition, with different dopants, the destiny of the split methyl group varies accordingly. While strong interaction between Alt and CH3 results in the formation of the Alt -C bond, dopants with variable valance may promote the formation of deep-oxidation products like formaldehyde. It has been discussed in detail how to regulate the activity and selectivity of the active center of the catalyst via rational doping.

4.
Int J Mol Sci ; 24(4)2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36834768

RESUMO

Criegee intermediates (CIs) are important zwitterionic oxidants in the atmosphere, which affect the budget of OH radicals, amines, alcohols, organic/inorganic acids, etc. In this study, quantum chemical calculation and Born-Oppenheimer molecular dynamic (BOMD) simulation were performed to show the reaction mechanisms of C2 CIs with glycolic acid sulfate (GAS) at the gas-phase and gas-liquid interface, respectively. The results indicate that CIs can react with COOH and OSO3H groups of GAS and generate hydroperoxide products. Intramolecular proton transfer reactions occurred in the simulations. Moreover, GAS acts as a proton donor and participates in the hydration of CIs, during which the intramolecular proton transfer also occurs. As GAS widely exists in atmospheric particulate matter, the reaction with GAS is one of the sink pathways of CIs in areas polluted by particulate matter.


Assuntos
Prótons , Sulfatos , Material Particulado , Simulação de Dinâmica Molecular , Aminas
5.
Int J Mol Sci ; 24(6)2023 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-36982477

RESUMO

Criegee intermediates (CIs) are important in the sink of many atmospheric substances, including alcohols, organic acids, amines, etc. In this work, the density functional theory (DFT) method was used to calculate the energy barriers for the reactions of CH3CHOO with 2-methyl glyceric acid (MGA) and to evaluate the interaction of the three functional groups of MGA. The results show that the reactions involving the COOH group of MGA are negligibly affected, and that hydrogen bonding can affect the reactions involving α-OH and ß-OH groups. The water molecule has a negative effect on the reactions of the COOH group. It decreases the energy barriers of reactions involving the α-OH and ß-OH groups as a catalyst. The Born-Oppenheimer molecular dynamic (BOMD) was applied to simulate the reactions of CH3CHOO with MGA at the gas-liquid interface. Water molecule plays the role of proton transfer in the reaction. Gas-phase calculations and gas-liquid interface simulations demonstrate that the reaction of CH3CHOO with the COOH group is the main pathway in the atmosphere. The molecular dynamic (MD) simulations suggest that the reaction products can form clusters in the atmosphere to participate in the formation of particles.


Assuntos
Simulação de Dinâmica Molecular , Água , Aminas , Atmosfera , Prótons
6.
Int J Mol Sci ; 22(18)2021 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-34575951

RESUMO

Bent metallocene dichlorides (Cp2MCl2, M = Ti, Mo, Nb, …) have found interest as anti-cancer drugs in order to overcome the drawbacks associated with platinum-based therapeutics. However, they suffer from poor hydrolytic stability at physiological pH. A promising approach to improve their hydrolytic stability is the formation of host-guest complexes with macrocyclic structures, such as cyclodextrins. In this work, we utilized nanoelectrospray ionization tandem mass spectrometry to probe the interaction of titanocene dichloride with ß-cyclodextrin. Unlike the non-covalent binding of phenylalanine and oxaliplatin to ß-cyclodextrin, the mixture of titanocene and ß-cyclodextrin led to signals assigned as [ßCD + Cp2Ti-H]+, indicating a covalent character of the interaction. This finding is supported by titanated cyclodextrin fragment ions occurring from collisional activation. Employing di- and trimethylated ß-cyclodextrins as hosts enabled the elucidation of the influence of the cyclodextrin hydroxy groups on the interaction with guest structures. Masking of the hydroxy groups was found to impair the covalent interaction and enabling the encapsulation of the guest structure within the hydrophobic cavity of the cyclodextrin. Findings are further supported by breakdown curves obtained by gas-phase dissociation of the various complexes.


Assuntos
Neoplasias/tratamento farmacológico , Compostos Organometálicos/química , beta-Ciclodextrinas/isolamento & purificação , Humanos , Espectrometria de Massas , Estrutura Molecular , Neoplasias/patologia , Compostos Organometálicos/uso terapêutico , beta-Ciclodextrinas/química
7.
Molecules ; 26(12)2021 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-34208314

RESUMO

Mono- and bimetallic Ni-, Ru- and Pt-modified hierarchical ZSM-5 materials were prepared by impregnation technique and characterized by X-ray diffraction (XRD), N2 physisorption, temperature-programmed reduction (TPR-TGA), ATR-FTIR and solid state NMR spectroscopy. Formation of finely dispersed nickel, ruthenium and platinum species was observed on the bimetallic catalysts. It was found that the peculiarity of the used zeolite structure and the modification procedure determine the type of formed metal oxides and their dispersion and reducibility. The samples' acidity was studied via FTIR spectroscopy of adsorbed pyridine. The changes in the zeolite structure were studied via solid-state NMR spectroscopy. The catalysts were investigated in a gas-phase hydrodeoxygenation, transalkylation and dealkylation reaction of model lignin derivative molecules for phenol production.

8.
Chemistry ; 25(12): 2967-2971, 2019 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-30659675

RESUMO

The thermal gas-phase reactions of [Al2 VO5 ]+ and [AlV2 O6 ]+ with methane have been explored by using Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry complemented by high-level quantum chemical calculations. Both cluster ions chemisorbed methane as the major reaction channels at room temperature. [Al2 VO5 ]+ could break only one C-H bond to liberate CH3 , whereas [AlV2 O6 ]+ exhibited higher oxidizing ability such that it brings about the selective generation of formaldehyde. Mechanistic aspects are revealed and the crucial roles of the metal centers are discussed.

9.
Chemistry ; 25(56): 12940-12945, 2019 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-31268193

RESUMO

The reactivity of the cationic metal-carbon cluster FeC4 + towards methane has been studied experimentally using Fourier-transform ion cyclotron resonance mass spectrometry and computationally by high-level quantum chemical calculations. At room temperature, FeC4 H+ is formed as the main ionic product, and the experimental findings are substantiated by labeling experiments. According to extensive quantum chemical calculations, the C-H bond activation step proceeds through a radical-based hydrogen-atom transfer (HAT) mechanism. This finding is quite unexpected because the initial spin density at the terminal carbon atom of FeC4 + , which serves as the hydrogen acceptor site, is low. However, in the course of forming an encounter complex, an electron from the doubly occupied sp-orbital of the terminal carbon atom of FeC4 + migrates to the singly occupied π*-orbital; the latter is delocalized over the entire carbon chain. Thus, a highly localized spin density is generated in situ at the terminal carbon atom. Consequently, homolytic C-H bond activation occurs without the obligation to pay a considerable energy penalty that is usually required for HAT involving closed-shell acceptor sites. The mechanistic insights provided by this combined experimental/computational study extend the understanding of methane activation by transition-metal carbides and add a new facet to the dizzying mechanistic landscape of hydrogen-atom transfer.

10.
Angew Chem Int Ed Engl ; 56(34): 10219-10223, 2017 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-28544127

RESUMO

An unexpected mechanistic switch as well as a change of the product distribution in the thermal gas-phase activation of methane have been identified when diatomic [ZnO].+ is ligated with acetonitrile. Theoretical studies suggest that a strong metal-carbon attraction in the pristine [ZnO].+ species plays an important role in the rebound of the incipient CH3. radical to the metal center, thus permitting the competitive generation of CH3. , OH. , and CH3 OH. This interaction is drastically weakened by a single CH3 CN ligand. As a result, upon ligation the proton-coupled single electron transfer that prevails for [ZnO].+ /CH4 switches to the classical hydrogen-atom-transfer process, thus giving rise to the exclusive expulsion of CH3. . This ligand effect can be modeled quite well by an oriented external electric field of a negative point charge.

11.
Angew Chem Int Ed Engl ; 55(47): 14867-14871, 2016 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-27775207

RESUMO

The thermal gas-phase reactions of the closed-shell metal-oxide cluster [Al2 TaO5 ]+ with methane have been explored by using FT-ICR mass spectrometry complemented by high-level quantum chemical calculations. Mechanistic aspects have been addressed to reveal the origins of the efficient addition process which results in activating the C-H bond of methane. The [Al2 TaO5 ]+ /CH4 couple has been compared with several other systems reported previously, and the electronic origins of their rather distinct performances are discussed.

12.
Sensors (Basel) ; 15(7): 17558-71, 2015 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-26205270

RESUMO

Here we report on a new architecture for potentiometric NO2 sensors that features thin 8YSZ electrolytes sandwiched between two porous (La0.8Sr0.2)0.95MnO3 (LSM95) layers-one thick and the other thin-fabricated by the tape casting and co-firing techniques. Measurements of their sensing characteristics show that reducing the porosity of the supporting LSM95 reference electrodes can increase the response voltages. In the meanwhile, thin LSM95 layers perform better than Pt as the sensing electrode since the former can provide higher response voltages and better linear relationship between the sensitivities and the NO2 concentrations over 40-1000 ppm. The best linear coefficient can be as high as 0.99 with a sensitivity value of 52 mV/decade as obtained at 500 °C. Analysis of the sensing mechanism suggests that the gas phase reactions within the porous LSM95 layers are critically important in determining the response voltages.

13.
ACS Appl Mater Interfaces ; 15(2): 3633-3643, 2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36598181

RESUMO

In this study, a tungstated zirconia (WOx/ZrO2) catalyst was developed for the continuous synthesis of adiponitrile (ADN) by gas-phase nitrilation of dimethyl adipate (DMA) with NH3. The highest TOFADN could be reached on WOx/ZrO2 bearing ∼1D WOx species (highly dispersed and discontinuous status) at the surface, which, however, delivered the poorest selectivity toward nitrilation (SADN+MCP). In comparison, both efficient and selective transformation of DMA to ADN was achieved by fabricating WOx/ZrO2 with continuously distributed oligomeric WOx species (∼2D) at the surface, either by varying the dosage of the W-reagent in the preparation of WOx(m)/ZrO2 or by doping a proper amount of the Mn element into WOx(5.0)/ZrO2, bearing WO3 NPs. Furthermore, the in situ diffuse reflectance infrared Fourier transform spectroscopy investigations of both independent and competitive adsorptions of ester functionality and NH3 over W-O-Zr, W-O-W, and Zr-O-Zr boundaries at the surface clarified the synergistic effect of these species in the activation of DMA/NH3 and thereby nitrilation.

14.
Nanomaterials (Basel) ; 13(5)2023 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-36903814

RESUMO

Because of the growing demand for high-quality fuels, the light cycle oil fraction improvement including cetane number improvement is important. The main way to reach this improvement is the ring opening of cyclic hydrocarbons, and a highly effective catalyst should be found. Cyclohexane ring openings are a possible option to investigate the catalyst activity. In this work, we investigated rhodium-loaded catalysts prepared using the commercially available industrial supports: single-component ones, SiO2 and Al2O3; and mixed oxides CaO + MgO + Al2O3 and Na2O + SiO2 + Al2O3. The catalysts were prepared by incipient wetness impregnation and investigated by N2 low-temperature adsorption-desorption, XRD, XPS, DRS UV-Vis and DRIFT spectroscopy, SEM, and TEM with EDX. The catalytic tests were performed in cyclohexane ring opening in the range of 275-325 °C. The best result was demonstrated by the sample 1Rh/CaMgAlO: the selectivity to n-hexane was about 75% while the cyclohexane conversion was about 25% at 275 °C. The space-time yield was up to 12 mmoln-hexane gcat-1h-1.

15.
Front Chem ; 10: 1094329, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36700082

RESUMO

Collisional activation of protonated phenylalanine derivatives deamination products leads to hydroxyl skeletal rearrangement versus cyclization reaction, and to form hydroxylbenzyl cation via elimination of CH2CO. To better clarify this unusual fragmentation reaction, accurate mass measurements experiments, native isotope experiments, multiple-stage mass spectrometry experiments, different substituents experiments, and density functional theory (DFT) calculations were carried out to investigate the dissociation mechanistic pathways of protonated phenylalanine derivatives deamination products. In route 1, a three-membered ring-opening reaction and a 1,3-hydroxyl transfer (from the carbonyl carbon atom to the interposition carbon atom of carbonyl) occurs to form 3-hydroxy-1-oxo-3-phenylpropan-1-ylium, followed by dissociation to lose CH2CO to give hydroxy (phenyl)methylium. In route 2, a successive cyclization rearrangement reaction and proton transfer occur to form a 2-hydroxylphenylpropionyl cation or protonated 2-hydroxy-4H-benzopyran, followed by dissociation to lose CH2CO or CH≡COH to give 2-hydroxylbenzyl cation. In route 3, a successive hydroxyl transfer (from the carbonyl carbon atom to the ortho carbon atom on benzene) and two stepwise proton transfer (1,2-proton transfer to the ipso-carbon atom of the phenyl ring followed by 1,3-proton transfer to the ortho carbon atom of carbonyl) occurs to form a 2-hydroxylphenylpropionyl cation, which subsequently dissociates to form 2-hydroxylbenzyl cation by elimination of CH2CO. DFT calculations suggested that route 1 was more favorable than route 2 and route 3 from a thermodynamic point of view.

16.
Biosens Bioelectron ; 216: 114615, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-35973275

RESUMO

Pulsed laser irradiation can cause the fragmentation of nanoparticles, which generates cluster ions. This allows nanoparticles to be adopted as mass tag/signal amplifiers in laser desorption/ionization mass spectrometry (LDI-MS) bioassays. Herein, we demonstrate the potential of using the signal from alloy cluster ions in bioassays through a fibrin clot model to determine the activity of thrombin. A mixed solution of silver and gold nanoparticles functionalized with fibrinogen (Fg‒Ag NPs/Fg‒Au NPs) treated with thrombin can form clots composed of aggregated fibrin-Au NPs/Ag NPs. These clots analyzed with LDI-MS are noted to form intense Ag-Au alloy cluster ions, especially [Ag2Au]+, which were used to detect thrombin concentration with a dynamic range of 2.5-50 pM in human plasma. This sensing platform was further employed for the screening of direct thrombin inhibitors. This work developed a novel bioassay utilizing metallic gas-phase reactions generated from pulsed laser irradiation of aggregated nanoparticles to monitor enzymatic activity and to screen inhibitors. We believe that LDS-MS can serve as a new platform for gas-phase reaction-based bioassays.


Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , Ligas , Antitrombinas , Fibrina , Fibrinogênio , Ouro/química , Humanos , Íons , Lasers , Nanopartículas Metálicas/química , Prata , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Trombina
17.
Bioresour Technol ; 330: 125002, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33770731

RESUMO

This study demonstrates the metabolic alteration of Methylococcus capsulatus (Bath), a representative bacterium among methanotrophs, in microbial gas-phase reactions. For comparative metabolome analysis, a bioreactor was designed to be capable of supplying gaseous substrates and liquid nutrients continuously. Methane degradation by M. capsulatus (Bath) was more efficient in a gas-phase reaction operated in the bioreactor than in an aqueous phase reaction operated in a batch reactor. Metabolome analysis revealed remarkable alterations in the metabolism of cells in the gas-phase reaction; in particular, pyruvate, 2-ketoglutarate, some amino acids, xanthine, and hypoxanthine were accumulated, whereas 2,6-diaminopimelate was decreased. Based on the results of metabolome analysis, cells in the gas-phase reaction seemed to alter their metabolism to reduce the excess ATP and NADH generated upon increased availability of methane and oxygen. Our findings will facilitate the development of efficient processes for methane-based bioproduction with low energy consumption.


Assuntos
Fenômenos Bioquímicos , Methylococcus capsulatus , Reatores Biológicos , Metano , Methylococcus capsulatus/metabolismo , Oxigênio , Oxigenases/metabolismo
18.
Chemosphere ; 280: 130709, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34162082

RESUMO

Criegee intermediates (CIs) are short-lived carbonyl oxides, which can affect the budget of OH radicals, ozone, ammonia, organic/inorganic acids in the troposphere. This study investigated the reaction of CIs with serine (Ser) in the gas phase by using density functional theory (DFT) calculations and at the gas-liquid interface by using Born-Oppenheimer molecular dynamics (BOMD). The results reveal that the reactivity of the three functional groups of Ser can be ordered as follows: COOH > NH2 > OH. Water-mediated reactions of CIs with NH2 and OH groups of Ser on the droplet follow the proton exchange mechanism. The products, sulfuric acids, ammonia, and water molecules form stable clusters within 20 ns. This study shows that hydroperoxide products can contribute to new particle formation (NPF). The result deepens the understanding of the reaction of CIs with multifunctional pollutants and atmospheric behavior of CIs in polluted areas.


Assuntos
Ozônio , Serina , Óxidos , Ácidos Sulfúricos , Água
19.
J Mass Spectrom ; 56(4): e4691, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33295108

RESUMO

In this study, the gas-phase fragmentations of protonated benzyl phenyl sulfones were investigated by electrospray ionization tandem mass spectrometry (ESI-MSn ). Upon collisional activation, several characteristic fragment ions were observed, and the similar results occurred with different substituted benzyl phenyl sulfones. A mechanism involving an intramolecular benzyl cation transfer and the formation of intermediate ion was proposed and further identified by density functional theory (DFT) calculations. In addition, a reference compound, benzenesulfinic acid benzyl ester, has been synthesized, and its protonated ion has the same gas-phase behavior as compared to the protonated benzyl phenyl sulfone. This work provides access to some insight into the intramolecular benzyl-transfer reactions of benzyl phenyl sulfones in the gas phase and orients the characteristic peaks in collision-induced dissociation spectrometry (CID-MS).

20.
Materials (Basel) ; 14(24)2021 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-34947132

RESUMO

Methyltrichlorosilane (CH3SiCl3, MTS) has good performance in stoichiometric silicon carbide (SiC) deposition and can be facilitated at relatively lower temperature. Simulations of the chemical vapor deposition in the two-dimensional horizontal hot-wall reactor for epitaxial processes of SiC, which were prepared from MTS-H2 gaseous system, were performed in this work by using the finite element method. The chemistry kinetic model of gas-phase reactions employed in this work was proposed by other researchers. The total gas flow rate, temperature, and ratio of MTS/H2 were the main process parameters in this work, and their effects on consumption rate of MTS, molar fraction of intermediate species and C/Si ratio inside the hot reaction chamber were analyzed in detail. The phenomena of our simulations are interesting. Both low total gas flow rate and high substrate temperature have obvious effectiveness on increasing the consumption rate of MTS. For all cases, the highest three C contained intermediates are CH4, C2H4 and C2H2, respectively, while the highest three Si/Cl contained intermediates are SiCl2, SiCl4 and HCl, respectively. Furthermore, low total gas flow results in a uniform C/Si ratio at different temperatures, and reducing the ratio of MTS/H2 is an interesting way to raise the C/Si ratio in the reactor.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa