Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 252
Filtrar
1.
Cell ; 184(22): 5622-5634.e25, 2021 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-34610277

RESUMO

Disinhibitory neurons throughout the mammalian cortex are powerful enhancers of circuit excitability and plasticity. The differential expression of neuropeptide receptors in disinhibitory, inhibitory, and excitatory neurons suggests that each circuit motif may be controlled by distinct neuropeptidergic systems. Here, we reveal that a bombesin-like neuropeptide, gastrin-releasing peptide (GRP), recruits disinhibitory cortical microcircuits through selective targeting and activation of vasoactive intestinal peptide (VIP)-expressing cells. Using a genetically encoded GRP sensor, optogenetic anterograde stimulation, and trans-synaptic tracing, we reveal that GRP regulates VIP cells most likely via extrasynaptic diffusion from several local and long-range sources. In vivo photometry and CRISPR-Cas9-mediated knockout of the GRP receptor (GRPR) in auditory cortex indicate that VIP cells are strongly recruited by novel sounds and aversive shocks, and GRP-GRPR signaling enhances auditory fear memories. Our data establish peptidergic recruitment of selective disinhibitory cortical microcircuits as a mechanism to regulate fear memories.


Assuntos
Córtex Auditivo/metabolismo , Bombesina/metabolismo , Medo/fisiologia , Memória/fisiologia , Rede Nervosa/metabolismo , Sequência de Aminoácidos , Animais , Cálcio/metabolismo , Sinalização do Cálcio , Condicionamento Clássico , Peptídeo Liberador de Gastrina/química , Peptídeo Liberador de Gastrina/metabolismo , Regulação da Expressão Gênica , Genes Precoces , Células HEK293 , Humanos , Espaço Intracelular/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Receptores da Bombesina/metabolismo , Som , Peptídeo Intestinal Vasoativo/metabolismo
2.
Eur J Nucl Med Mol Imaging ; 51(7): 2023-2035, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38376806

RESUMO

Integrin receptor αvß3 and gastrin-releasing peptide receptor (GRPR) expression of tumors could be detected using PET imaging with radiolabeled Arg-Gly-Asp (RGD) and the antagonistic bombesin analog RM26, respectively. The purpose of this study was to investigate the dual receptor-targeting property of the heterodimer RGD-RM26-03 (denoted as LNC1015), demonstrate the tumor diagnostic value of [68Ga]Ga-LNC1015 in preclinical experiments, and evaluate its preliminary clinical feasibility. METHODS: LNC1015 was designed and synthesized by linking cyclic RGD and the RM26 peptide. Preclinical pharmacokinetics were detected in a PC3 xenograft model using microPET and biodistribution studies. The clinical feasibility of [68Ga]Ga-LNC1015 PET/CT was performed in patients with breast cancer, and the results were compared with those of 18F-fluorodeoxyglucose (FDG). RESULTS: [68Ga]Ga-LNC1015 had good stability in saline for at least 2 h, and favorable binding affinity and specificity were demonstrated in vitro and in vivo. The tumor uptake and retention of [68Ga]Ga-LNC1015 during PET imaging were improved compared with its monomeric counterparts [68Ga]Ga-RGD and [68Ga]Ga-RM26 at all the time points examined. In our initial clinical studies, the tumor uptake and tumor-to-background ratio (TBR) of primary and metastatic lesions in [68Ga]Ga-LNC1015 PET/CT were significantly higher than those in [18F]FDG PET/CT, resulting in high lesion detection rate and tumor delineation. CONCLUSION: The dual targeting radiotracer [68Ga]Ga-LNC1015 showed significantly improved tumor uptake and retention, as well as lower liver uptake than [68Ga]Ga-RGD and [68Ga]Ga-RM26 monomer. The first-in-human study showed high TBRs in patients, suggesting favorable pharmacokinetics and high clinical feasibility for PET/CT imaging of cancer.


Assuntos
Radioisótopos de Gálio , Integrina alfaVbeta3 , Oligopeptídeos , Receptores da Bombesina , Receptores da Bombesina/metabolismo , Humanos , Animais , Camundongos , Feminino , Integrina alfaVbeta3/metabolismo , Oligopeptídeos/farmacocinética , Oligopeptídeos/química , Distribuição Tecidual , Masculino , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Radioquímica , Pessoa de Meia-Idade , Linhagem Celular Tumoral , Traçadores Radioativos , Compostos Radiofarmacêuticos/farmacocinética , Compostos Radiofarmacêuticos/síntese química , Compostos Radiofarmacêuticos/química , Técnicas de Química Sintética , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/metabolismo
3.
Proc Natl Acad Sci U S A ; 118(31)2021 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-34312228

RESUMO

There are sex differences in somatosensory sensitivity. Circulating estrogens appear to have a pronociceptive effect that explains why females are reported to be more sensitive to pain than males. Although itch symptoms develop during pregnancy in many women, the underlying mechanism of female-specific pruritus is unknown. Here, we demonstrate that estradiol, but not progesterone, enhances histamine-evoked scratching behavior indicative of itch in female rats. Estradiol increased the expression of the spinal itch mediator, gastrin-releasing peptide (GRP), and increased the histamine-evoked activity of itch-processing neurons that express the GRP receptor (GRPR) in the spinal dorsal horn. The enhancement of itch behavior by estradiol was suppressed by intrathecal administration of a GRPR blocker. In vivo electrophysiological analysis showed that estradiol increased the histamine-evoked firing frequency and prolonged the response of spinal GRP-sensitive neurons in female rats. On the other hand, estradiol did not affect the threshold of noxious thermal pain and decreased touch sensitivity, indicating that estradiol separately affects itch, pain, and touch modalities. Thus, estrogens selectively enhance histamine-evoked itch in females via the spinal GRP/GRPR system. This may explain why itch sensation varies with estrogen levels and provides a basis for treating itch in females by targeting GRPR.


Assuntos
Estradiol/farmacologia , Histamina/toxicidade , Progesterona/farmacologia , Prurido/induzido quimicamente , Animais , Feminino , Masculino , Ratos , Ratos Wistar , Fatores Sexuais
4.
Molecules ; 29(13)2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38999054

RESUMO

Gastrin-releasing peptide receptor (GRPR), overexpressed in many solid tumors, is a promising imaging marker and therapeutic target. Most reported GRPR-targeted radioligands contain a C-terminal amide. Based on the reported potent antagonist D-Phe-Gln-Trp-Ala-Val-Gly-His-Leu-NHOH, we synthesized C-terminal hydroxamate-derived [68Ga]Ga-LW02075 ([68Ga]Ga-DOTA-pABzA-DIG-D-Phe-Gln-Trp-Ala-Val-Gly-His-Leu-NHOH) and [68Ga]Ga-LW02050 ([68Ga]Ga-DOTA-Pip-D-Phe-Gln-Trp-Ala-Val-Gly-His-Leu-NHOH), and compared them with the closely related and clinically validated [68Ga]Ga-SB3 ([68Ga]Ga-DOTA-pABzA-DIG-D-Phe-Gln-Trp-Ala-Val-Gly-His-Leu-NHEt). Binding affinities (Ki) of Ga-SB3, Ga-LW02075, and Ga-LW02050 were 1.20 ± 0.31, 1.39 ± 0.54, and 8.53 ± 1.52 nM, respectively. Both Ga-LW02075 and Ga-LW02050 were confirmed to be GRPR antagonists by calcium release assay. Imaging studies showed that PC-3 prostate cancer tumor xenografts were clearly visualized at 1 h post injection by [68Ga]Ga-SB3 and [68Ga]Ga-LW02050 in PET images, but not by [68Ga]Ga-LW02075. Ex vivo biodistribution studies conducted at 1 h post injection showed that the tumor uptake of [68Ga]Ga-LW02050 was comparable to that of [68Ga]Ga-SB3 (5.38 ± 1.00 vs. 6.98 ± 1.36 %ID/g), followed by [68Ga]Ga-LW02075 (3.97 ± 1.71 %ID/g). [68Ga]Ga-SB3 had the highest pancreas uptake (37.3 ± 6.90 %ID/g) followed by [68Ga]Ga-LW02075 (17.8 ± 5.24 %ID/g), while the pancreas uptake of [68Ga]Ga-LW02050 was only 0.53 ± 0.11 %ID/g. Our data suggest that [68Ga]Ga-LW02050 is a promising PET tracer for detecting GRPR-expressing cancer lesions.


Assuntos
Radioisótopos de Gálio , Ácidos Hidroxâmicos , Tomografia por Emissão de Pósitrons , Compostos Radiofarmacêuticos , Receptores da Bombesina , Receptores da Bombesina/metabolismo , Receptores da Bombesina/antagonistas & inibidores , Radioisótopos de Gálio/química , Animais , Humanos , Tomografia por Emissão de Pósitrons/métodos , Camundongos , Ácidos Hidroxâmicos/química , Ácidos Hidroxâmicos/farmacocinética , Ácidos Hidroxâmicos/síntese química , Compostos Radiofarmacêuticos/química , Compostos Radiofarmacêuticos/síntese química , Compostos Radiofarmacêuticos/farmacocinética , Linhagem Celular Tumoral , Distribuição Tecidual , Masculino , Neoplasias/diagnóstico por imagem , Neoplasias/metabolismo , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/metabolismo
5.
Mol Pain ; 19: 17448069231152101, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36604775

RESUMO

Itch sensation is one of the major sensory experiences of humans and animals. Recent studies using genetic deletion techniques have proposed that gastrin-releasing peptide (GRP) is a key neurotransmitter for itch in the spinal cord. However, these studies are mainly based on behavioral responses and lack direct electrophysiological evidence that GRP indeed mediates itch information between primary afferent fibers and spinal dorsal horn neurons. In this review, we reviewed recent studies using different experimental approaches and proposed that glutamate but not GRP acts as the key neurotransmitter in the primary afferents in the transmission of itch. GRP is more likely to serve as an itch-related neuromodulator. In the cerebral cortex, we propose that the anterior cingulate cortex (ACC) plays a significant role in both itch and pain sensations. Only behavioral measurement of itch (scratching) is not sufficient for itch measurement, since scratching the itching area also produces pleasure. Integrative experimental approaches as well as better behavioral scoring models are needed to help to understand the neuronal mechanism of itch and aid future treatment for patients with pruritic diseases.


Assuntos
Ácido Glutâmico , Prurido , Animais , Humanos , Neurotransmissores , Peptídeo Liberador de Gastrina/genética , Medula Espinal , Mamíferos
6.
Allergy ; 78(6): 1570-1584, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36876522

RESUMO

BACKGROUND: Spinal astrocytes contribute to chronic itch via sensitization of itch-specific neurons expressing gastrin-releasing peptide receptor (GRPR). However, whether microglia-neuron interactions contribute to itch remains unclear. In this study, we aimed to explore how microglia interact with GRPR+ neurons and promote chronic itch. METHODS: RNA sequencing, quantitative real-time PCR, western blot, immunohistochemistry, RNAscope ISH, pharmacologic and genetic approaches were performed to examine the roles of spinal NLRP3 (The NOD-like receptor family, pyrin-containing domain 3) inflammasome activation and IL-1ß-IL1R1 signaling in chronic itch. Grpr-eGFP and Grpr KO mice were used to investigate microglia-GRPR+ neuron interactions. RESULTS: We observed NLRP3 inflammasome activation and IL-1ß production in spinal microglia under chronic itch conditions. Blockade of microglial activation and the NLRP3/caspase-1/IL-1ß axis attenuated chronic itch and neuronal activation. Type 1 IL-1 receptor (IL-1R1) was expressed in GRPR+ neurons, which are essential for the development of chronic itch. Our studies also find that IL-1ß+ microglia are localized in close proximity to GRPR+ neurons. Consistently, intrathecal injection of IL1R1 antagonist or exogenous IL-1ß indicate that the IL-1ß-IL-1R1 signaling pathway enhanced the activation of GRPR+ neurons. Furthermore, our results demonstrate that the microglial NLRP3/caspase-1/IL-1ß axis contributes to several different chronic itches triggered by small molecules and protein allergens from the environment and drugs. CONCLUSION: Our findings reveal a previously unknown mechanism in which microglia enhances the activation of GRPR+ neurons through the NLRP3/caspase-1/IL-1ß/IL1R1 axis. These results will provide new insights into the pathophysiology of pruritus and novel therapeutic strategies for patients with chronic itch.


Assuntos
Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Camundongos , Animais , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Microglia/metabolismo , Receptores da Bombesina/metabolismo , Prurido/genética , Prurido/metabolismo , Doença Crônica , Interleucina-1beta/metabolismo , Neurônios/metabolismo , Caspases , Camundongos Endogâmicos C57BL
7.
Mol Pharm ; 20(1): 267-278, 2023 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-36542354

RESUMO

Early diagnosis of radiation-induced pulmonary fibrosis (RIPF) in lung cancer patients after radiation therapy is important. A gastrin-releasing peptide receptor (GRPR) mediates the inflammation and fibrosis after irradiation in mice lungs. Previously, our group synthesized a GRPR-targeted positron emission tomography (PET) imaging probe, [64Cu]Cu-NODAGA-galacto-bombesin (BBN), an analogue peptide of GRP. In this study, we evaluated the usefulness of [64Cu]Cu-NODAGA-galacto-BBN for the early prediction of RIPF. We prepared RIPF mice and acquired PET/CT images of [18F]F-FDG and [64Cu]Cu-NODAGA-galacto-BBN at 0, 2, 5, and 11 weeks after irradiation (n = 3-10). We confirmed that [64Cu]Cu-NODAGA-galacto-BBN targets GRPR in irradiated RAW 264.7 cells. In addition, we examined whether [64Cu]Cu-NODAGA-galacto-BBN monitors the therapeutic efficacy in RIPF mice (n = 4). As a result, the lung uptake ratio (irradiated-to-normal) of [64Cu]Cu-NODAGA-galacto-BBN was the highest at 2 weeks, followed by its decrease at 5 and 11 weeks after irradiation, which matched with the expression of GRPR and was more accurately predicted than [18F]F-FDG. These uptake results were also confirmed by the cell uptake assay. Furthermore, [64Cu]Cu-NODAGA-galacto-BBN could monitor the therapeutic efficacy of pirfenidone in RIPF mice. We conclude that [64Cu]Cu-NODAGA-galacto-BBN is a novel PET imaging probe for the early prediction of RIPF-targeting GRPR expressed during the inflammatory response.


Assuntos
Fibrose Pulmonar , Receptores da Bombesina , Animais , Camundongos , Receptores da Bombesina/metabolismo , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Fibrose Pulmonar/diagnóstico por imagem , Fibrose Pulmonar/etiologia , Fluordesoxiglucose F18 , Tomografia por Emissão de Pósitrons/métodos , Bombesina/metabolismo , Pulmão/diagnóstico por imagem , Pulmão/metabolismo , Linhagem Celular Tumoral
8.
Mol Pharm ; 20(12): 6463-6473, 2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-37978936

RESUMO

The gastrin-releasing peptide receptor (GRPr) is overexpressed in various cancer types including prostate and breast carcinomas, making it an attractive target for molecular imaging and therapy. In this work, we designed a novel GRPr antagonistic probe comprising metal chelator NODIA-Me. This 1,4,7-triazacyclononane-based chelator forms positively charged metal complexes due to its neutral methylimidazole arms. Because a positive charge at the N-terminus of GRPr conjugates is responsible for high receptor affinity as exemplified by the current gold standard DOTA-RM2, we investigated if a positively charged radiometal complex can be used as a pharmacokinetic modifier to also produce high-affinity GRPr conjugates. In this respect, the bioconjugate NODIA-Me-Ahx-JMV594 was prepared by a combination of solid-phase peptide synthesis and solution-based reactions in a 94% yield. Radiolabeling provided the 68Ga-labeled conjugate in radiochemical yields of >95% and radiochemical purities of >98% with mean molar activities of Am ∼17 MBq nmol-1. The competitive GRPr affinity of the metal-free and 69/71Ga-labeled conjugate was determined to be IC50 = 0.41 ± 0.06 and 1.45 ± 0.06 nM, respectively. The metal-free GRPr antagonist DOTA-RM2 and its corresponding 69/71Ga complex had IC50 values of 1.42 ± 0.07 and 0.98 ± 0.19 nM, respectively. Small-animal PET imaging of mice bearing GRPr(+) PC-3 tumors revealed high radioactivity accumulation in the tumors and in the pancreas as an organ with high levels of GRPr expression. These findings were corroborated by the corresponding ex vivo biodistribution data, in which the tumors and the pancreas exhibited the highest radioactivity accumulation. By coinjection of an excess of NODIA-Me-Ahx-JMV594, uptake in the tumors and GRPr(+) organs was significantly reduced, confirming specific receptor-mediated uptake. The estrogen receptor-positive tumor of a female breast cancer patient was clearly visualized by PET imaging using 68Ga-labeled NODIA-Me-Ahx-JMV594. To summarize, the positive charge at the N-terminus of the conjugate induced by the Ga(NODIA-Me) complex resulted in high GRPr affinity comparable to that of the potent antagonist DOTA-RM2. The conjugate NODIA-Me-Ahx-JMV594 is a promising probe for imaging of GRPr tumors that warrants further evaluation in larger patient cohorts as well as in combination with other radiometals.


Assuntos
Neoplasias da Mama , Neoplasias da Próstata , Masculino , Humanos , Animais , Camundongos , Receptores da Bombesina/metabolismo , Radioisótopos de Gálio , Distribuição Tecidual , Linhagem Celular Tumoral , Neoplasias da Próstata/metabolismo , Quelantes/química , Tomografia por Emissão de Pósitrons/métodos , Bombesina/farmacocinética
9.
Gen Comp Endocrinol ; 339: 114289, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37094615

RESUMO

In today's society, people are subjected to many social stressors, and excessive chronic stress causes functional disruption of the neuroendocrine system and many diseases. Although the exacerbation of atopic dermatitis with symptoms of itching and erectile dysfunction is induced by chronic stress, the details of the mechanisms are unknown. Here, we examined the effects of chronic stress on itch sensation and male sexual function at the behavioral and molecular levels, focusing on two distinct gastrin-releasing peptide (GRP) systems that independently regulate itch transmission, i.e., the somatosensory GRP system, and male sexual function, i.e., the lumbosacral autonomic GRP system, in the spinal cord. In a rat model of chronic stress induced by chronic corticosterone (CORT) administration, we observed increased plasma CORT concentrations, decreased body weight, and increased anxiety-like behavior, similar to that observed in humans. Chronic CORT exposure induced hypersensitivity to itch and increased the Grp mRNA level in the spinal somatosensory system, but there was no change in pain or tactile sensitivity. Antagonists of the somatosensory GRP receptor, an itch-specific mediator, suppressed itch hypersensitivity induced by chronic CORT exposure. In contrast, chronic CORT exposure decreased male sexual behavior, ejaculated semen volume, vesicular gland weight, and plasma testosterone levels. However, there were no effects on the expression of Grp mRNA or protein in the lumbosacral autonomic GRP system, which regulates male sexual function. In summary, chronic stress model rats showed itch hypersensitivity and impaired sexual function in males, and the involvement of the spinal GRP systems was apparent in itch hypersensitivity.


Assuntos
Corticosterona , Prurido , Humanos , Ratos , Masculino , Animais , Peptídeo Liberador de Gastrina/genética , Peptídeo Liberador de Gastrina/metabolismo , Corticosterona/metabolismo , Prurido/metabolismo , Medula Espinal , RNA Mensageiro/metabolismo
10.
Int J Mol Sci ; 24(4)2023 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-36834867

RESUMO

Advances in nanomedicine bring the attention of researchers to the molecular targets that can play a major role in the development of novel therapeutic and diagnostic modalities for cancer management. The choice of a proper molecular target can decide the efficacy of the treatment and endorse the personalized medicine approach. Gastrin-releasing peptide receptor (GRPR) is a G-protein-coupled membrane receptor, well known to be overexpressed in numerous malignancies including pancreatic, prostate, breast, lung, colon, cervical, and gastrointestinal cancers. Therefore, many research groups express a deep interest in targeting GRPR with their nanoformulations. A broad spectrum of the GRPR ligands has been described in the literature, which allows tuning of the properties of the final formulation, particularly in the field of the ligand affinity to the receptor and internalization possibilities. Hereby, the recent advances in the field of applications of various nanoplatforms that are able to reach the GRPR-expressing cells are reviewed.


Assuntos
Neoplasias , Receptores da Bombesina , Humanos , Bombesina , Nanomedicina , Neoplasias/tratamento farmacológico , Nanomedicina Teranóstica
11.
Int J Mol Sci ; 24(4)2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36834815

RESUMO

Targeted tumour therapy has proved to be an efficient alternative to overcome the limitations of conventional chemotherapy. Among several receptors upregulated in cancer cells, the gastrin-releasing peptide receptor (GRP-R) has recently emerged as a promising target for cancer imaging, diagnosing and treatment due to its overexpression on cancerous tissues such as breast, prostate, pancreatic and small-cell lung cancer. Herein, we report on the in vitro and in vivo selective delivery of the cytotoxic drug daunorubicin to prostate and breast cancer, by targeting GRP-R. Exploiting many bombesin analogues as homing peptides, including a newly developed peptide, we produced eleven daunorubicin-containing peptide-drug conjugates (PDCs), acting as drug delivery systems to safely reach the tumour environment. Two of our bioconjugates revealed remarkable anti-proliferative activity, an efficient uptake by all three tested human breast and prostate cancer cell lines, high stability in plasma and a prompt release of the drug-containing metabolite by lysosomal enzymes. Moreover, they revealed a safe profile and a consistent reduction of the tumour volume in vivo. In conclusion, we highlight the importance of GRP-R binding PDCs in targeted cancer therapy, with the possibility of further tailoring and optimisation.


Assuntos
Bombesina , Neoplasias da Próstata , Masculino , Humanos , Receptores da Bombesina/metabolismo , Preparações Farmacêuticas , Peptídeos , Neoplasias da Próstata/metabolismo , Daunorrubicina
12.
Int J Mol Sci ; 24(8)2023 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-37108559

RESUMO

Angiogenesis-related cell-surface molecules, including integrins, aminopeptidase N, vascular endothelial growth factor, and gastrin-releasing peptide receptor (GRPR), play a crucial role in tumour formation. Radiolabelled imaging probes targeting angiogenic biomarkers serve as valuable vectors in tumour identification. Nowadays, there is a growing interest in novel radionuclides other than gallium-68 (68Ga) or copper-64 (64Cu) to establish selective radiotracers for the imaging of tumour-associated neo-angiogenesis. Given its ideal decay characteristics (Eß+average: 632 KeV) and a half-life (T1/2 = 3.97 h) that is well matched to the pharmacokinetic profile of small molecules targeting angiogenesis, scandium-44 (44Sc) has gained meaningful attention as a promising radiometal for positron emission tomography (PET) imaging. More recently, intensive research has been centered around the investigation of 44Sc-labelled angiogenesis-directed radiopharmaceuticals. Previous studies dealt with the evaluation of 44Sc-appended avb3 integrin-affine Arg-Gly-Asp (RGD) tripeptides, GRPR-selective aminobenzoyl-bombesin analogue (AMBA), and hypoxia-associated nitroimidazole derivatives in the identification of various cancers using experimental tumour models. Given the tumour-related hypoxia- and angiogenesis-targeting capability of these PET probes, 44Sc seems to be a strong competitor of the currently used positron emitters in radiotracer development. In this review, we summarize the preliminary preclinical achievements with 44Sc-labelled angiogenesis-specific molecular probes.


Assuntos
Radioisótopos , Fator A de Crescimento do Endotélio Vascular , Humanos , Estudos de Viabilidade , Bombesina , Receptores da Bombesina/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Radioisótopos de Gálio , Neovascularização Patológica/diagnóstico por imagem
13.
Molecules ; 28(4)2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36838968

RESUMO

With overexpression in various cancers, the gastrin-releasing peptide receptor (GRPR) is a promising target for cancer imaging and therapy. However, the high pancreas uptake of reported GRPR-targeting radioligands limits their clinical application. Our goal was to develop 68Ga-labeled agonist tracers for detecting GRPR-expressing tumors with positron emission tomography (PET), and compare them with the clinically validated agonist PET tracer, [68Ga]Ga-AMBA. Ga-TacBOMB2, TacBOMB3, and TacBOMB4, derived from [Thz14]Bombesin(7-14), were confirmed to be GRPR agonists by a calcium mobilization study, and their binding affinities (Ki(GRPR)) were determined to be 7.62 ± 0.19, 6.02 ± 0.59, and 590 ± 36.5 nM, respectively, via in vitro competition binding assays. [68Ga]Ga-TacBOMB2, [68Ga]Ga-TacBOMB3, and [68Ga]Ga-AMBA clearly visualized PC-3 tumor xenografts in a PET imaging study. [68Ga]Ga-TacBOMB2 showed comparable tumor uptake but superior tumor-to-background contrast ratios when compared to [68Ga]Ga-AMBA. Moreover, [68Ga]Ga-TacBOMB2 and [68Ga]Ga-TacBOMB3 showed a much lower rate of uptake in the pancreas (1.30 ± 0.14 and 2.41 ± 0.72%ID/g, respectively) than [68Ga]Ga-AMBA (62.4 ± 4.26%ID/g). In conclusion, replacing Met14 in the GRPR-targeting sequence with Thz14 retains high GRPR-binding affinity and agonist properties. With good tumor uptake and tumor-to-background uptake ratios, [68Ga]Ga-TacBOMB2 is promising for detecting GRPR-expressing tumors. The much lower pancreas uptake of [68Ga]Ga-TacBOMB2 and [68Ga]Ga-TacBOMB3 suggests that [Thz14]Bombesin(7-14) is a promising targeting vector for the design of GRPR-targeting radiopharmaceuticals, especially for radioligand therapy application.


Assuntos
Bombesina , Receptores da Bombesina , Humanos , Bombesina/química , Receptores da Bombesina/metabolismo , Radioisótopos de Gálio/química , Tomografia por Emissão de Pósitrons/métodos , Pâncreas/metabolismo , Linhagem Celular Tumoral
14.
Mol Pain ; 18: 17448069221108965, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35815426

RESUMO

Itch and pain are both unpleasant, but they are discrete sensations. Both of these sensations are transmitted by C-fibers and processed in laminae I-II of the dorsal horn. To examine whether pruriception modulates pain, we first confirmed the activation of cells in the itch-related circuits that were positive for gastrin-releasing peptide (GRP) and GRP receptor (GRPR) using a paw formalin injection model. This pain model with typical biphasic pain behavior increased c-Fos but did not affect the expressions of GRP and GRPR mRNAs in the dorsal horn. Using c-Fos expression as a marker for activated cells, we confirmed that formalin injection increased the number of cells double-labeled for c-Fos and GRP or GRPR in the dorsal horn. The emergence of these neurons indicates the activation of itch-related circuits by acute pain signals. The effect of an antagonist for a GRPR was examined in the paw formalin injection model. Intrathecal chronic antagonization of spinal GRPR enhanced the onset of phase II of paw formalin injection-induced pain behavior. Exogenous intrathecal GRP infusion to the paw-formalin injection model not only showed significant reduction of pain behavior but also increased c-Fos in the inhibitory neurons in the dorsal horn. The anti-nociceptive effect of spinal GRP infusion was observed in the peripheral inflammation model (complete Freund's adjuvant injection model). In this study we suggest that painful stimuli activated itch-related neuronal circuits and uncovered the spinal activation of the itch-induced analgesic effect on acute and established inflammatory pain.


Assuntos
Prurido , Receptores da Bombesina , Analgésicos/metabolismo , Analgésicos/farmacologia , Analgésicos/uso terapêutico , Formaldeído/farmacologia , Peptídeo Liberador de Gastrina/metabolismo , Humanos , Fibras Nervosas Amielínicas/metabolismo , Dor/tratamento farmacológico , Dor/metabolismo , Células do Corno Posterior/metabolismo , Prurido/tratamento farmacológico , Prurido/metabolismo , Receptores da Bombesina/metabolismo , Medula Espinal/metabolismo , Corno Dorsal da Medula Espinal/metabolismo
15.
Proc Biol Sci ; 289(1985): 20221126, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36259204

RESUMO

The neural bases of itchy eye transmission remain unclear compared with those involved in body itch. Here, we show in rodents that the gastrin-releasing peptide receptor (GRPR) of the trigeminal sensory system is involved in the transmission of itchy eyes. Interestingly, we further demonstrate a difference in scratching behaviour between the left and right hindfeet in rodents; histamine instillation into the conjunctival sac of both eyes revealed right-foot biased laterality in the scratching movements. Unilateral histamine instillation specifically induced neural activation in the ipsilateral sensory pathway, with no significant difference between the activations following left- and right-eye instillations. Thus, the behavioural laterality is presumably due to right-foot preference in rodents. Genetically modified rats with specific depletion of Grpr-expressing neurons in the trigeminal sensory nucleus caudalis of the medulla oblongata exhibited fewer and shorter histamine-induced scratching movements than controls and eliminated the footedness. These results taken together indicate that the Grpr-expressing neurons are required for the transmission of itch sensation from the eyes, but that foot preference is generated centrally. These findings could open up a new field of research on the mechanisms of the laterality in vertebrates and also offer new potential therapeutic approaches to refractory pruritic eye disorders.


Assuntos
Lateralidade Funcional , Histamina , Receptores da Bombesina , Animais , Ratos , Histamina/efeitos adversos , Prurido/induzido quimicamente , Prurido/metabolismo , Receptores da Bombesina/metabolismo , Olho
16.
Amino Acids ; 54(5): 733-747, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35279763

RESUMO

Bombesin mediates several biological activities in the gastrointestinal (GI) tract and central nervous system in mammals, including smooth muscle contraction, secretion of GI hormones and regulation of homeostatic mechanisms. Here, we report a novel bombesin-like peptide isolated from Boana raniceps. Its amino acid sequence, GGNQWAIGHFM-NH2, was identified and structurally confirmed by HPLC, MS/MS and 454-pyrosequencing; the peptide was named BR-bombesin. The effect of BR-bombesin on smooth muscle contraction was assessed in ileum and esophagus, and its anti-secretory activity was investigated in the stomach. BR-bombesin exerted significant contractile activity with a concentration-response curve similar to that of commercially available bombesin in ileum strips of Wistar rats. In esophageal strips, BR-bombesin acted as an agonist, as many other bombesin-related peptides act, although with different behavior compared to the muscarinic agonist carbachol. Moreover, BR-bombesin inhibited stomach secretion by approximately 50% compared to the untreated control group. This novel peptide has 80% and 70% similarity with the 10-residue C-terminal domain of human neuromedin B (NMB) and human gastrin releasing peptide (GRP10), respectively. Molecular docking analysis revealed that the GRP receptor had a binding energy equal to - 7.3 kcal.mol-1 and - 8.5 kcal.mol-1 when interacting with bombesin and BR-bombesin, respectively. Taken together, our data open an avenue to investigate BR-bombesin in disorders that involve gastrointestinal tract motility and acid gastric secretion.


Assuntos
Bombesina , Receptores da Bombesina , Animais , Anuros/metabolismo , Bombesina/metabolismo , Bombesina/farmacologia , Mamíferos/metabolismo , Simulação de Acoplamento Molecular , Peptídeos/farmacologia , Ratos , Ratos Wistar , Receptores da Bombesina/genética , Receptores da Bombesina/metabolismo , Estômago , Espectrometria de Massas em Tandem
17.
Int J Mol Sci ; 23(17)2022 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-36077458

RESUMO

Gastrin-releasing peptide receptors (GRPR) are overexpressed in prostate cancer (PCa). Since bombesin analogue aminobenzoic-acid (AMBA) binds to GRPR with high affinity, scandium-44 conjugated AMBA is a promising radiotracer in the PET diagnostics of GRPR positive tumors. Herein, the GRPR specificity of the newly synthetized [44Sc]Sc-NODAGA-AMBA was investigated in vitro and in vivo applying PCa PC-3 xenograft. After the in-vitro assessment of receptor binding, PC-3 tumor-bearing mice were injected with [44Sc]Sc/[68Ga]Ga-NODAGA-AMBA (in blocking studies with bombesin) and in-vivo PET examinations were performed to determine the radiotracer uptake in standardized uptake values (SUV). 44Sc/68Ga-labelled NODAGA-AMBA was produced with high molar activity (approx. 20 GBq/µmoL) and excellent radiochemical purity. The in-vitro accumulation of [44Sc]Sc-NODAGA-AMBA in PC-3 cells was approximately 25-fold higher than that of the control HaCaT cells. Relatively higher uptake was found in vitro, ex vivo, and in vivo in the same tumor with the 44Sc-labelled probe compared to [68Ga]Ga-NODAGA-AMBA. The GRPR specificity of [44Sc]Sc-NODAGA-AMBA was confirmed by significantly (p ≤ 0.01) decreased %ID and SUV values in PC-3 tumors after bombesin pretreatment. The outstanding binding properties of the novel [44Sc]Sc-NODAGA-AMBA to GRPR outlines its potential to be a valuable radiotracer in the imaging of GRPR-positive PCa.


Assuntos
Neoplasias da Próstata , Receptores da Bombesina , Acetatos , Animais , Bombesina , Linhagem Celular Tumoral , Radioisótopos de Gálio , Compostos Heterocíclicos com 1 Anel , Humanos , Masculino , Camundongos , Tomografia por Emissão de Pósitrons/métodos , Neoplasias da Próstata/metabolismo , Receptores da Bombesina/metabolismo
18.
Molecules ; 27(12)2022 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-35744904

RESUMO

The gastrin-releasing peptide receptor (GRPR) is a G-protein-coupled receptor that is overexpressed in many solid cancers and is a promising target for cancer imaging and therapy. However, high pancreas uptake is a major concern in the application of reported GRPR-targeting radiopharmaceuticals, particularly for targeted radioligand therapy. To lower pancreas uptake, we explored Ga-complexed TacsBOMB2, TacsBOMB3, TacsBOMB4, TacsBOMB5, and TacsBOMB6 derived from a potent GRPR antagonist sequence, [Leu13ψThz14]Bombesin(7-14), and compared their potential for cancer imaging with [68Ga]Ga-RM2. The Ki(GRPR) values of Ga-TacsBOMB2, Ga-TacsBOMB3, Ga-TacsBOMB4, Ga-TacsBOMB5, Ga-TacsBOMB6, and Ga-RM2 were 7.08 ± 0.65, 4.29 ± 0.46, 458 ± 38.6, 6.09 ± 0.95, 5.12 ± 0.57, and 1.51 ± 0.24 nM, respectively. [68Ga]Ga-TacsBOMB2, [68Ga]Ga-TacsBOMB3, [68Ga]Ga-TacsBOMB5, [68Ga]Ga-TacsBOMB6, and [68Ga]Ga-RM2 clearly show PC-3 tumor xenografts in positron emission tomography (PET) images, while [68Ga]Ga-TacsBOMB5 shows the highest tumor uptake (15.7 ± 2.17 %ID/g) among them. Most importantly, the pancreas uptake values of [68Ga]Ga-TacsBOMB2 (2.81 ± 0.78 %ID/g), [68Ga]Ga-TacsBOMB3 (7.26 ± 1.00 %ID/g), [68Ga]Ga-TacsBOMB5 (1.98 ± 0.10 %ID/g), and [68Ga]Ga-TacsBOMB6 (6.50 ± 0.36 %ID/g) were much lower than the value of [68Ga]Ga-RM2 (41.9 ± 10.1 %ID/g). Among the tested [Leu13ψThz14]Bombesin(7-14) derivatives, [68Ga]Ga-TacsBOMB5 has the highest tumor uptake and tumor-to-background contrast ratios, which is promising for clinical translation to detect GRPR-expressing tumors. Due to the low pancreas uptake of its derivatives, [Leu13ψThz14]Bombesin(7-14) represents a promising pharmacophore for the design of GRPR-targeting radiopharmaceuticals, especially for targeted radioligand therapy application.


Assuntos
Bombesina , Receptores da Bombesina , Animais , Linhagem Celular Tumoral , Radioisótopos de Gálio , Humanos , Pâncreas/diagnóstico por imagem , Tomografia por Emissão de Pósitrons/métodos , Compostos Radiofarmacêuticos/farmacologia
19.
Bull Exp Biol Med ; 173(2): 257-260, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35737164

RESUMO

The serum levels of pro-gastrin-releasing peptide (proGRP), neuron-specific enolase (NSE), and chromogranin A (CgA) were studied in 69 patients with small cell lung cancer and 50 apparently healthy donors. A significant increase of all studied biochemical markers was revealed in small cell lung cancer patients, while the highest diagnostic efficiency was demonstrated by proGRP compared to NSE and CgA. ProGRP is a promising biochemical marker of small cell lung cancer, especially sensitive in patients with distant metastases (in the brain, liver, and bones).


Assuntos
Neoplasias Pulmonares , Carcinoma de Pequenas Células do Pulmão , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Cromogranina A , Peptídeo Liberador de Gastrina , Humanos , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Fosfopiruvato Hidratase/sangue , Carcinoma de Pequenas Células do Pulmão/diagnóstico , Carcinoma de Pequenas Células do Pulmão/metabolismo , Carcinoma de Pequenas Células do Pulmão/patologia
20.
Bioorg Chem ; 109: 104739, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33626451

RESUMO

We report the rational design, synthesis, and in vitro preliminary evaluation of a new small library of non-peptide ligands of Gastrin Releasing Peptide Receptor (GRP-R), able to antagonize its natural ligand bombesin (BN) in the nanomolar range of concentration. GRP-R is a transmembrane G-protein coupled receptor promoting the stimulation of cancer cell proliferation. Being overexpressed on the surface of different human cancer cell lines, GRP-R is ideal for the selective delivery to tumor cells of both anticancer drug and diagnostic devices. What makes very challenging the design of non-peptide BN analogues is that the 3D structure of the GRP-R is not available, which is the case for many membrane-bound receptors. Thus, the design of GRP-R ligands has to be based on the structure of its natural ligands, BN and GRP. We recently mapped the BN binding epitope by NMR and here we exploited the same spectroscopy, combined with MD, to define BN conformation in proximity of biological membranes, where the interaction with GRP-R takes place. The gained structural information was used to identify a rigid C-galactosidic scaffold able to support pharmacophore groups mimicking the BN key residues' side chains in a suitable manner for binding to GRP-R. Our BN antagonists represent hit compounds for the rational design and synthesis of new ligands and modulators of GRP-R. The further optimization of the pharmacophore groups will allow to increase the biological activity. Due to their favorable chemical properties and stability, they could be employed for the active receptor-mediated targeting of GRP-R positive tumors.


Assuntos
Antineoplásicos/farmacologia , Bombesina/farmacologia , Desenho de Fármacos , Receptores da Bombesina/antagonistas & inibidores , Antineoplásicos/síntese química , Antineoplásicos/química , Bombesina/análogos & derivados , Bombesina/química , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Estrutura Molecular , Receptores da Bombesina/metabolismo , Relação Estrutura-Atividade , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa