Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 598
Filtrar
1.
Anal Bioanal Chem ; 416(16): 3821-3833, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38777876

RESUMO

The use of a new nanomaterial in the feed chain requires a risk assessment that involves in vitro gastrointestinal digestions to predict its degradation and oral exposure to nanoparticles. In this study, a nanosilver-based material was incorporated into pig and chicken feed as a growth-promoting additive and subjected to the corresponding in vitro gastrointestinal digestions. An inductively coupled plasma mass spectroscopy (ICP-MS) analytical platform was used to obtain information about the silver released in the different digestion phases. It included conventional ICP-MS for total silver determination, but also single particle ICP-MS and coupling to hydrodynamic chromatography for detection of dissolved and particulate silver. The bioaccessible fraction in the intestinal phase accounted for 8-13% of the total silver, mainly in the form of dissolved Ag(I) species, with less than 0.1% as silver-containing particles. Despite the additive behaving differently in pig and chicken digestions, the feed matrix played a relevant role in the fate of the silver.


Assuntos
Digestão , Trato Gastrointestinal , Nanopartículas Metálicas , Suínos , Galinhas , Ração Animal , Prata/química , Nanopartículas Metálicas/química , Trato Gastrointestinal/metabolismo , Espectrometria de Massas , Caulim/química
2.
J Appl Microbiol ; 135(1)2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38148140

RESUMO

AIMS: We aimed to analyze the behavior of cellular glutathione of Streptococcus thermophilus strain YIT 2001 (ST-1) in the gastrointestinal environment to understand how orally administered glutathione in ST-1 cells is delivered stably to the intestine in a reactive form, which is essential for its systemic bioavailability against lipid peroxidation. METHODS AND RESULTS: Intracellular glutathione was labeled with L-cysteine-containing stable isotopes. ST-1 cells from fresh culture or lyophilized powder were treated with simulated gastric and intestinal juices for 60 min each. The release of intracellular glutathione in digestive juices was quantified via LC-MS/MS. Most of the cellular glutathione was retained in the gastric environment and released in response to exposure to the gastrointestinal environment. During digestion, the membrane permeability of propidium iodide increased significantly, especially when cells were exposed to cholate, without change in the cell wall state. CONCLUSIONS: ST-1 cells act as vehicles to protect intracellular reactive components, such as glutathione, from digestive stress, and release them in the upper intestine owing to the disruption of membrane integrity induced by bile acid.


Assuntos
Streptococcus thermophilus , Compostos de Sulfidrila , Cromatografia Líquida , Espectrometria de Massas em Tandem , Intestinos , Glutationa/farmacologia
3.
Part Fibre Toxicol ; 21(1): 4, 2024 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-38311718

RESUMO

BACKGROUND: Micro- and nanoplastics (MNPs) represent one of the most widespread environmental pollutants of the twenty-first century to which all humans are orally exposed. Upon ingestion, MNPs pass harsh biochemical conditions within the gastrointestinal tract, causing a unique protein corona on the MNP surface. Little is known about the digestion-associated protein corona and its impact on the cellular uptake of MNPs. Here, we systematically studied the influence of gastrointestinal digestion on the cellular uptake of neutral and charged polystyrene MNPs using THP-1-derived macrophages. RESULTS: The protein corona composition was quantified using LC‒MS-MS-based proteomics, and the cellular uptake of MNPs was determined using flow cytometry and confocal microscopy. Gastrointestinal digestion resulted in a distinct protein corona on MNPs that was retained in serum-containing cell culture medium. Digestion increased the uptake of uncharged MNPs below 500 nm by 4.0-6.1-fold but did not affect the uptake of larger sized or charged MNPs. Forty proteins showed a good correlation between protein abundance and MNP uptake, including coagulation factors, apolipoproteins and vitronectin. CONCLUSION: This study provides quantitative data on the presence of gastrointestinal proteins on MNPs and relates this to cellular uptake, underpinning the need to include the protein corona in hazard assessment of MNPs.


Assuntos
Microplásticos , Coroa de Proteína , Humanos , Microplásticos/toxicidade , Coroa de Proteína/química , Coroa de Proteína/metabolismo , Poliestirenos/toxicidade , Plásticos , Digestão
4.
Mar Drugs ; 22(7)2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-39057417

RESUMO

To improve probiotics' survivability during gastrointestinal digestion and heat treatment, Lactobacillus plantarum was microencapsulated by spray-drying using Laminaria japonica polysaccharide/sodium caseinate/gelatin (LJP/SC/GE) composites. Thermogravimetry and differential scanning calorimetry results revealed that the denaturation of LJP/SC/GE microcapsules requires higher thermal energy than that of SC/GE microcapsules, and the addition of LJP may improve thermal stability. Zeta potential measurements indicated that, at low pH of the gastric fluid, the negatively charged LJP attracted the positively charged SC/GE, helping to maintain an intact microstructure without disintegration. The encapsulation efficiency of L. plantarum-loaded LJP/SC/GE microcapsules reached about 93.4%, and the survival rate was 46.9% in simulated gastric fluid (SGF) for 2 h and 96.0% in simulated intestinal fluid (SIF) for 2 h. In vitro release experiments showed that the LJP/SC/GE microcapsules could protect the viability of L. plantarum in SGF and release probiotics slowly in SIF. The cell survival of LJP/SC/GE microcapsules was significantly improved during the heat treatment compared to SC/GE microcapsules and free cells. LJP/SC/GE microcapsules can increase the survival of L. plantarum by maintaining the lactate dehydrogenase and Na+-K+-ATPase activity. Overall, this study demonstrates the great potential of LJP/SC/GE microcapsules to protect and deliver probiotics in food and pharmaceutical systems.


Assuntos
Cápsulas , Temperatura Alta , Lactobacillus plantarum , Laminaria , Polissacarídeos , Laminaria/química , Polissacarídeos/farmacologia , Polissacarídeos/química , Probióticos/farmacologia , Probióticos/administração & dosagem , Digestão/efeitos dos fármacos , Trato Gastrointestinal/efeitos dos fármacos , Trato Gastrointestinal/microbiologia , Concentração de Íons de Hidrogênio , Gelatina/química , Gelatina/farmacologia , Viabilidade Microbiana/efeitos dos fármacos , Algas Comestíveis
5.
J Dairy Sci ; 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38825138

RESUMO

Products of lipolysis released during digestion positively affect the metabolism of newborns. In contrast to the 3-layer biological membranes covering human milk (HM) fat, the lipid droplets in infant milk formula (IMF) are covered by a single membrane composed of casein and whey proteins. To reduce the differences in lipid structure between IMF and HM, studies have used milk fat globule membrane (MFGM) components such as milk polar lipids (MPL) to prepare emulsions mimicking HM fat globules However, few studies have elucidated the effect of membrane proteins (MP) on lipid digestion in infants. In this study, 3 kinds of emulsions were prepared: One with MPL as the interfaced of lipid droplets (RE-1), one with membrane protein concentrate (MPC) (RE-2) as the interface of lipid droplets, and one with both MPL and MPC (1:2) as the co-interface of lipid droplets (RE-3). The interfacial coverage of the emulsions was confirmed by measuring the contents of MPL and MPC at the lipid droplet interface, and by confocal laser scanning microscopy analyzed. By controlling the homogenization intensity, the specific surface area of lipid droplets was controlled at the same level among the 3 emulsions. The stability constants of the emulsions varied, and RE-1 was the most stable. During simulated in vitro infant gastrointestinal digestion, the amount of free fatty acids (FFA) released from the lipid droplets was significantly higher from those with MPC at the interface (RE-2, RE-3) than from that with MPL at the interface (RE-1). The amount of FFA released at the end of intestinal digestion of RE-1, RE-2, and RE-3 was 255.00 ± 3.54 µmol,328.75 ± 5.30 µmol, 298.50 ± 9.19 µmol, respectively. Compared with the lipid droplets in RE-2, those with MPL at the interface (RE-1, RE-3) released more unsaturated fatty acids (USFAs) during digestion. The emulsifying activity index was highest in RE-3 (MPL and MPC co-interface). The presence of MPL at the emulsion interface increased the release of USFAs, while the presence of MPC increased the release of FFA. These results show that both MPL and MP are indispensable in the construction of MFGM. Understanding their effects on digestion can provide new strategies for the development of infant foods.

6.
Ecotoxicol Environ Saf ; 279: 116458, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38759536

RESUMO

Heavy metals interact with each other in a coexisting manner to produce complex combined toxicity to organisms. At present, the toxic effects of chronic co-exposure to heavy metals hexavalent chromium [Cr(VI)] and divalent nickel [Ni(II)] on organisms are seldom studied and the related mechanisms are poorly understood. In this study, we explored the mechanism of the colon injury in mice caused by chronic exposure to Cr or/and Ni. The results showed that, compared with the control group, Cr or/and Ni chronic exposure affected the body weight of mice, and led to infiltration of inflammatory cells in the colon, decreased the number of goblet cells, fusion of intracellular mucus particles and damaged cell structure of intestinal epithelial. In the Cr or/and Ni exposure group, the activity of nitric oxide synthase (iNOS) increased, the expression levels of MUC2 were significantly down-regulated, and those of ZO-1 and Occludin were significantly up-regulated. Interestingly, factorial analysis revealed an interaction between Cr and Ni, which was manifested as antagonistic effects on iNOS activity, ZO-1 and MUC2 mRNA expression levels. Transcriptome sequencing further revealed that the expression of genes-related to inflammation, intestinal mucus and tight junctions changed obviously. Moreover, the relative contents of Cr(VI) and Ni(II) in the Cr, Ni and Cr+Ni groups all changed with in-vitro gastrointestinal (IVG)digestion, especially in the Cr+Ni group. Our results indicated that the chronic exposure to Cr or/and Ni can lead to damage to the mice colon, and the relative content changes of Cr(VI) and Ni(II) might be the main reason for the antagonistic effect of Cr+Ni exposure on the colon damage.


Assuntos
Cromo , Colo , Mucina-2 , Níquel , Animais , Cromo/toxicidade , Níquel/toxicidade , Camundongos , Colo/efeitos dos fármacos , Colo/patologia , Mucina-2/genética , Mucina-2/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Óxido Nítrico Sintase Tipo II/genética , Perfilação da Expressão Gênica , Masculino , Digestão/efeitos dos fármacos , Proteína da Zônula de Oclusão-1/metabolismo , Proteína da Zônula de Oclusão-1/genética , Transcriptoma/efeitos dos fármacos , Ocludina/metabolismo , Ocludina/genética , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia
7.
J Microencapsul ; 41(5): 360-374, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38804967

RESUMO

Aim: To prepare sweet tea extract microcapsules (STEMs) via a spray-drying by applying different wall material formulations with maltodextrin (MD), inulin (IN), and gum arabic (GA). Methods: The microcapsules were characterised by yield, encapsulation efficiency (EE), particle size, sensory evaluation, morphology, attenuated total reflectance-Fourier transform infra-red spectroscopy and in vitro digestion studies. Results: The encapsulation improved the physicochemical properties and bioactivity stability of sweet tea extract (STE). MD5IN5 had the highest yield (56.33 ± 0.06% w/w) and the best EE (e.g. 88.84 ± 0.36% w/w of total flavonoids). MD9GA1 obtained the smallest particle size (642.13 ± 4.12 nm). MD9GA1 exhibited the highest retention of bioactive components, inhibition of α-glucosidase (96.85 ± 0.55%), α-amylase (57.58 ± 0.99%), angiotensin-converting enzyme (56.88 ± 2.20%), and the best antioxidant activity during in vitro gastrointestinal digestion. Conclusion: The encapsulation of STE can be an appropriate way for the valorisation of STE with improved properties.


Assuntos
Antioxidantes , Cápsulas , Goma Arábica , Inulina , Extratos Vegetais , Polissacarídeos , Chá , Polissacarídeos/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Inulina/química , Chá/química , Goma Arábica/química , Antioxidantes/química , Antioxidantes/farmacologia , Inibidores de Glicosídeo Hidrolases/farmacologia , Inibidores de Glicosídeo Hidrolases/química , Inibidores de Glicosídeo Hidrolases/administração & dosagem , alfa-Amilases/química , Inibidores da Enzima Conversora de Angiotensina/química , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Inibidores da Enzima Conversora de Angiotensina/administração & dosagem , Tamanho da Partícula , Humanos , alfa-Glucosidases/química
8.
Int J Food Sci Nutr ; 75(2): 134-147, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38185901

RESUMO

Food-derived oligopeptides (FOPs) exhibit various bioactivities. However, little was known about their sequence changes in the gastrointestinal tract and the effect of changes on bioactivities. FOPs' sequence features, changes and effects on bioactivities have been summarised. The sequence length of FOPs decreases with increased exposure of hydrophobic and basic amino acids at the terminal during simulated gastrointestinal digestion. A decrease in bioactivities after simulated intestinal absorption has correlated with a decrease of Leu, Ile, Arg, Tyr, Gln and Pro. The sequence of FOPs that pass readily through the intestinal epithelium corresponds to transport modes, and FOPs whose sequences remain unchanged after transport are the most bioactive. These include mainly dipeptides to tetrapeptides, consisting of numerous hydrophobic and basic amino acids, found mostly at the end of the peptide chain, especially at the C-terminal. This review aims to provide a foundation for applications of FOPs in nutritional supplements and functional foods.


Assuntos
Oligopeptídeos , Peptídeos , Sequência de Aminoácidos , Oligopeptídeos/metabolismo , Aminoácidos Básicos , Digestão
9.
Int J Mol Sci ; 25(10)2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38791442

RESUMO

Acorn flour is a rich source of nutrients and is beneficial to human health due to, among other things, its low glycemic index and polyphenol content. In order to obtain more accurate data on the levels and activities of the substances tested after ingestion and digestion, it may be beneficial to use a simulated in vitro digestion method. Therefore, the objective of the present study was to elucidate the content of polyphenols, individual phenolic acids, flavonoids and antiradical properties of acorn flour and pasta enriched with acorn flour before and after simulated in vitro gastrointestinal digestion. The results indicate that the total polyphenol content (TPC), flavonoid content and radical scavenging activity exhibited an increasing trend following the initial digestion stage and a decreasing trend following the second stage. Nevertheless, the levels of phenolic acids demonstrated an increase in both digestion phases. The digestion processes of polyphenols in acorn flour differ significantly from those in pasta. In the case of pasta, total polyphenols, phenolic acids and flavonoids, as well as free radical scavenging properties, demonstrated a decreasing trend following each digestion stage.


Assuntos
Antioxidantes , Digestão , Flavonoides , Farinha , Polifenóis , Polifenóis/química , Polifenóis/metabolismo , Polifenóis/análise , Farinha/análise , Antioxidantes/farmacologia , Antioxidantes/química , Flavonoides/metabolismo , Flavonoides/análise , Humanos , Hidroxibenzoatos/metabolismo
10.
Molecules ; 29(7)2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38611803

RESUMO

Alcohol dehydrogenase (ADH) plays a pivotal role in constraining alcohol metabolism. Assessing the ADH-activating activity in vitro can provide insight into the capacity to accelerate ethanol metabolism in vivo. In this study, ADH-activating peptides were prepared from corn protein meal (CGM) using enzymatic hydrolysis, and these peptides were subsequently identified following simulated gastrointestinal digestion and their absorption through the Caco-2 cell monolayer membrane. The current investigation revealed that corn protein hydrolysate hydrolyzed using alcalase exhibited the highest ADH activation capability, maintaining an ADH activation rate of 52.93 ± 2.07% following simulated gastrointestinal digestion in vitro. After absorption through the Caco-2 cell monolayer membrane, ADH-activating peptides were identified. Among them, SSNCQPF, TGCPVLQ, and QPQQPW were validated to possess strong ADH activation activity, with EC50 values of 1.35 ± 0.22 mM, 2.26 ± 0.16 mM, and 2.73 ± 0.13 mM, respectively. Molecular Docking revealed that the activation of ADH occurred via the formation of a stable complex between the peptide and the active center of ADH by hydrogen bonds and hydrophobic interactions. The results of this study also suggest that corn protein hydrolysate could be a novel functional dietary element that helps protects the liver from damage caused by alcohol and aids in alcohol metabolism.


Assuntos
Álcool Desidrogenase , Zea mays , Humanos , Células CACO-2 , Simulação de Acoplamento Molecular , Hidrolisados de Proteína , Peptídeos/farmacologia
11.
J Sci Food Agric ; 104(5): 2971-2979, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38041655

RESUMO

BACKGROUND: Products fermented with lactic acid bacteria based on whole grain flours of red or white sorghum (Sorghum bicolor (L.) Moench) added with malted sorghum flour, or with skim milk (SM) were developed. Composition, protein amino acid profile, total acidity, pH, prebiotic potential, and bio-functional properties after simulation of gastrointestinal digestion were evaluated. RESULTS: In all cases, a pH of 4.5 was obtained in approximately 4.5 h. The products added with SM presented higher acidity. Products made only with sorghum presented higher total dietary fiber, but lower protein content than products with added SM, the last ones having higher lysine content. All products exhibited prebiotic potential, white sorghum being a better ingredient to promote the growth of probiotic bacteria. The addition of malted sorghum or SM significantly increased the bio-functional properties of the products: the sorghum fermented products added with SM presented the highest antioxidant (ABTS•+ inhibition, 4.7 ± 0.2 mM Trolox), antihypertensive (Angiotensin converting enzyme-I inhibition, 57.3 ± 0.5%) and antidiabetogenic (dipeptidyl-peptidase IV inhibition, 31.3 ± 2.1%) activities, while the products added with malted sorghum presented the highest antioxidant (reducing power, 1.6 ± 0.1 mg ascorbic acid equivalent/mL) and antidiabetogenic (α-amylase inhibition, 38.1 ± 0.9%) activities. CONCLUSION: The fermented whole grain sorghum-based products could be commercially exploited by the food industry to expand the offer of the three high-growth markets: gluten-free products, plant-based products (products without SM), and functional foods. © 2023 Society of Chemical Industry.


Assuntos
Lactobacillales , Sorghum , Lactobacillales/metabolismo , Sorghum/química , Grãos Integrais , Antioxidantes/metabolismo , Grão Comestível/metabolismo
12.
J Sci Food Agric ; 104(10): 5712-5723, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38375784

RESUMO

BACKGROUND: Fallen young rambutan fruit is an underrated agricultural waste which may contain several bioactive compounds. In this study, fallen young rambutan fruit was assessed regarding its phenolic contents and antioxidant activities. In order to expand its utilization, rambutan extract-loaded hydrogel beads were developed by a basic spherification technique using sodium alginate. The effect of ratios of polymer and extract and different calcium sources were evaluated. The recovery of bioactive compounds from the hydrogel beads was determined using in vitro gastrointestinal digestion models. RESULTS: Use of 50% (v/v) ethanol yielded rambutan extract with good chemical properties. The production of hydrogel beads using a ratio of 1:3 with calcium lactate provided the highest production yield of 122.94%. The hydrogel beads developed using the ratio of 1:3 with a combination of calcium lactate and calcium chloride showed high recovery of phenolic compounds and antioxidant activity after simulated intestinal digestion, which were greater compared to unencapsulated extract. CONCLUSION: The findings demonstrate that the ratio of wall material to rambutan extract and the calcium source influence the physical properties, chemical properties and in vitro gastrointestinal digestion stability of alginate beads. The obtained hydrogel beads may have potential for application in the food or pharmaceutical industries. © 2024 Society of Chemical Industry.


Assuntos
Alginatos , Digestão , Frutas , Trato Gastrointestinal , Extratos Vegetais , Alginatos/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Trato Gastrointestinal/metabolismo , Humanos , Frutas/química , Antioxidantes/química , Antioxidantes/farmacologia , Fenóis/química , Modelos Biológicos
13.
J Sci Food Agric ; 104(7): 4331-4341, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38299439

RESUMO

BACKGROUND: Human milk fat analog emulsion (HMFAE) is an emulsion that mimics the composition and structure of human milk (HM) fat globules. The application of HMFAE in infant formula requires a series of milk powder processing steps, such as pasteurization and spray drying. However, the effect of milk powder processing on fat digestion of HMFAE is still unclear. In this study, the influence of pasteurization and spray drying on the lipolysis behavior of HMFAE was studied and compared with HM using a simulated infant in vitro digestion model. RESULTS: Pasteurization and spray drying increased the flocculation and aggregation of lipid droplets in HMFAE during digestion. Spray drying destroyed the lipid droplet structure of HMFAE, and partial milk fat globule membrane-covered lipid droplets turned into protein-covered lipid droplets, which aggravated lipid-protein aggregation during gastric digestion and hindered fat digestion in the small intestine. The final lipolysis degree was in the order HM (64.55%) > HMFAE (63.41%) > pasteurized HMFAE (61.75%) > spray-dried HMFAE (60.57%). After complete gastrointestinal digestion, there were no significant differences in free fatty acid and sn-2 monoacylglycerol profile among the HMFAE, pasteurized HMFAE, and spray-dried HMFAE. CONCLUSION: Milk powder processing can reduce lipolysis by altering the lipid droplet structure of HMFAE and the degree of lipid droplet aggregation during digestion. © 2024 Society of Chemical Industry.


Assuntos
Leite Humano , Pasteurização , Lactente , Humanos , Leite Humano/química , Emulsões/análise , Secagem por Atomização , Pós/análise , Digestão
14.
Compr Rev Food Sci Food Saf ; 23(1): e13287, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38284583

RESUMO

Functional food products containing viable probiotics have become increasingly popular and demand for probiotic ingredients that maintain viability and stability during processing, storage, and gastrointestinal digestions. This has resulted in heightened research and development of powdered probiotic ingredients. The aim of this review is to overview the development of dried probiotics from upstream identification to downstream applications in food. Free probiotic bacteria are susceptible to various environmental stresses during food processing, storage, and after ingestion, necessitating additional materials and processes to preserve their activity for delivery to the colon. Various classic and emerging thermal and nonthermal drying technologies are discussed for their efficiency in preparing dehydrated probiotics, and strategies for enhancing probiotic survival after dehydration are highlighted. Both the formulation and drying technology can influence the microbiological and physical properties of powdered probiotics that are to be characterized comprehensively with various techniques. Furthermore, quality control during probiotic manufacturing and strategies of incorporating powdered probiotics into liquid and solid food products are discussed. As emerging technologies, structure-design principles to encapsulate probiotics in engineered structures and protective materials with improved survivability are highlighted. Overall, this review provides insights into formulations and drying technologies required to supplement viable and stable probiotics into functional foods, ensuring the retention of their health benefits upon consumption.


Assuntos
Armazenamento de Alimentos , Probióticos , Manipulação de Alimentos , Bactérias , Digestão
15.
Plant Foods Hum Nutr ; 79(2): 432-439, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38504008

RESUMO

Grapes present recognized beneficial effects on human health due to their polyphenolic composition. The grape overproduction together with the wine sales down and the world socioeconomic situation makes the wine grape valorization a promising strategy to give an added-value to this natural product. The objective of the present work was to study the influence of in vitro gastrointestinal digestion on antioxidant capacity and polyphenolic profile of skin and seed extracts of different grape varieties (Tempranillo, Graciano, Maturana tinta and Hondarrabi zuri). After in vitro gastrointestinal digestion, total phenolic content (TPC) of seed polyphenolic extracts decreased significantly for all the varieties. The highest decrease was for Tempranillo going from 108 ± 9 to 50 ± 3 mg / g dry matter (dm). This variety also showed the highest decrease of 90% in antioxidant capacity. However, for all the skin polyphenolic extracts there was an increase in TPC. The highest variation was also for Tempranillo. It varied from 10.1 ± 0.8 to 55.1 ± 0.9 mg / g dm. Among red varieties Tempranillo skin polyphenolic extract showed the lowest undigested anthocyanin content but the highest bioaccessibility index (BI) of 77%. For flavanols, flavonols and procyanidins the seed polyphenolic extracts showed a BI at the intestinal phase between 11% for (+)-epicatechin gallate to 130% procyanidin A2. The results of this study suggest that grape skin extracts and grape seed extracts are a reliable source of bioaccessible antioxidant polyphenols, to be used for the development of antioxidant supplements with specific functionalities depending on the grape variety.


Assuntos
Antioxidantes , Digestão , Fenóis , Extratos Vegetais , Polifenóis , Sementes , Vitis , Vitis/química , Antioxidantes/análise , Antioxidantes/farmacologia , Sementes/química , Polifenóis/análise , Fenóis/análise , Extratos Vegetais/farmacologia , Humanos , Frutas/química , Antocianinas/análise , Disponibilidade Biológica , Trato Gastrointestinal/metabolismo , Extrato de Sementes de Uva , Proantocianidinas/análise
16.
Plant Foods Hum Nutr ; 79(2): 401-409, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38602652

RESUMO

This study focused on studying the bioaccesible phenolic compounds (PCs) from yellow pea flour (F) and protein isolate (I). Total phenolic contents (TPC), PCs composition and antioxidant activities were analysed in ethanol 60% extracts obtained by applying ultrasound assisted extraction (UAE, 15 min/40% amplitude). The preparation of I under alkaline conditions and the elimination of some soluble components at lower pH produced a change of PCs profile and antioxidant activity. After simulated gastrointestinal digestion (SGID) of both ingredients to obtain the digests FD and ID, notable changes in the PCs concentration and profiles could be demonstrated. FD presented a higher ORAC activity than ID (IC50 = 0.022 and 0.039 mg GAE/g dm, respectively), but lower ABTS•+ activity (IC50 = 0.8 and 0.3 mg GAE/g dm, respectively). After treatment with cholestyramine of extracts from FD and ID in order to eliminate bile salts and obtain the bioaccesible fractions FDb and IDb, ROS scavenging in H2O2-induced Caco2-TC7 cells was evaluated, registering a greater activity for ID respect to FD (IC50 = 0.042 and 0.017 mg GAE/mL, respectively). These activities could be attributed to the major bioaccesible PCs: OH-tyrosol, polydatin, trans-resveratrol, rutin, (-)-epicatechin and (-)-gallocatechin gallate for FD; syringic (the most concentrated) and ellagic acids, trans-resveratrol, and (-)-gallocatechin gallate for ID, but probably other compounds such as peptides or amino acids can also contribute.


Assuntos
Antioxidantes , Farinha , Fenóis , Pisum sativum , Antioxidantes/farmacologia , Antioxidantes/análise , Pisum sativum/química , Fenóis/análise , Fenóis/farmacologia , Farinha/análise , Humanos , Células CACO-2 , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Proteínas de Plantas/isolamento & purificação , Proteínas de Plantas/farmacologia , Proteínas de Plantas/análise , Proteínas de Ervilha/química , Digestão
17.
Crit Rev Food Sci Nutr ; : 1-23, 2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37811646

RESUMO

Excessive lipid intake is linked to an elevated risk of health problems. However, reducing lipid contents may influence food structure and flavor. Some alternatives are needed to control the lipid absorption. Emulsions are common carriers for lipids, which can control the hydrolysis and absorption of lipids. Chitin (Ch) and chitosan (CS) are natural polysaccharides with good biodegradability, biocompatibility, and unique cationic properties. They have been reported to be able to delay lipolysis, which can be regarded as one of the most promising agents that regulates lipid digestion (LiD). The application of Ch/CS and their derivatives in emulsions are summarized in this review with a focus on their performances and mechanisms for LiD regulation, aiming to provide theoretical guidance for the development of novel Ch/CS emulsions, and the regulation of LiD. A reasonable design of emulsion interface can provide its resistance to the external environment and then control LiD. The properties of emulsion interface are the key factors affecting LiD. Therefore, systematic study on the relationship between Ch/CS-based emulsion structure and LiD can not only instruct the reasonable design of emulsion interface to accurately regulate LiD, but also provide scientific guidelines for applying Ch/CS in functional food, medicine and other fields.


Application of chitin/chitosan and their derivatives in emulsionsStrategies to improve emulsifying properties of chitin/chitosanDigestion behaviors of chitin/chitosan emulsions during gastrointestinal digestionRational design and potential mechanism of chitin/chitosan to regulate lipolysis.

18.
Crit Rev Food Sci Nutr ; 63(7): 975-992, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-34346822

RESUMO

The last decades have witnessed a surge of interest in the fate of dietary proteins during gastrointestinal (GI) digestion. Although several in vitro digestion models are available as alternatives to clinical experiments, most of them focus on the digestive conditions of healthy young adults. This study investigates the static/dynamic models used to simulate digestion in infants and the elderly and considers the related in vivo conditions. The in vitro digestive protocols targeting these two groups are summarized, and the challenges associated with the further development of in vitro digestion models are discussed. Static models rely on several factors (e.g., enzyme concentration, pH, reaction time, and rotation speed) to differentiate digestive conditions depending on age. Dynamic models can more accurately simulate the complex digestion process and allow the inclusion of further parameters (sequential secretion of digestive fluids, gradual changes in pH, peristaltic mixing, GI emptying, and the inoculation of luminal microbiota). In the case of infants, age or growth stage clarification and the differentiation of digestive protocols between full-term and preterm infants are required, whereas protocols dealing with various health statuses are required in the case of the elderly, as this group is prone to oral cavity and GI function deterioration.


Assuntos
Recém-Nascido Prematuro , Modelos Biológicos , Recém-Nascido , Lactente , Humanos , Idoso , Proteólise , Digestão , Proteínas Alimentares/metabolismo
19.
Crit Rev Food Sci Nutr ; 63(29): 10197-10216, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35588258

RESUMO

Iron deficiency is a global nutritional problem, and adding iron salts directly to food will have certain side effects on the human body. Therefore, there is growing interest in food-grade iron delivery systems. This review provides an overview of iron delivery systems, with emphasis on the controlled release of iron during gastrointestinal digestion, as well as the enhancement of iron absorption and bioavailability. Iron-bearing proteins are easily degraded by digestive enzymes and absorbed through receptor-mediated endocytosis. Instead, protein aggregates are slowly degraded in the stomach, which delays iron release and serves as a potential iron supplement. Amino acids, peptides and polysaccharides can bind iron through iron binding sites, but the formed compounds are prone to dissociation in the stomach. Moreover, peptides and polysaccharides can deliver iron by mediating the formation of ferric oxyhydroxide which is absorbed through endocytosis or bivalent transporter 1. In addition, liposomes are unstable during gastric digestion and iron is released in large quantities. Complexes formed by polysaccharides and proteins, and microcapsules formed by polysaccharides can delay the release of iron in the gastric environment and prolong iron release in the intestinal environment. This review is conducive to the development of iron functional ingredients and dietary supplements.


Assuntos
Suplementos Nutricionais , Ferro , Humanos , Disponibilidade Biológica , Preparações de Ação Retardada , Proteínas , Peptídeos , Polissacarídeos
20.
Crit Rev Food Sci Nutr ; : 1-23, 2023 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-37021463

RESUMO

Food nanoemulsions are known as very effective and excellent carriers for both lipophilic and hydrophilic bioactive compounds (BCs) and have been successfully used for controlled delivery and protection of BCs during gastrointestinal digestion (GID). However, due to sensitive and fragile morphology, BCs-loaded nanoemulsions have different digestion pathways depending on their properties, food matrix properties, and applied models for testing their digestibility and BCs bioaccessibility. Thus, this review gives a critical review of the behavior of encapsulated BCs into food nanoemulsions during each phase of GID in different static and dynamic in vitro digestion models, as well as of the influence of nanoemulsion and food matrix properties on BCs bioaccessibility. In the last section, the toxicity and safety of BCs-loaded nanoemulsions evaluated on in vitro and in vivo GID models have also been discussed. Better knowledge of food nanoemulsions' behavior in different models of simulated GI conditions and within different nanoemulsion and food matrix types can help to standardize the protocol for their testing aiming for researchers to compare results and design BCs-loaded nanoemulsions with better performance and higher targeted BCs bioaccessibility.


Food nanoemulsions are effective and excellent carriers for bioactive compounds (BCs).Nanoemulsions are often subject to morphological and structural changes during digestion.BC-s loaded nanoemulsions have different digestion pathways in different digestion models.BC-s have different bioaccessibility in different nanoemulsion models.Food matrix can affect the bioaccessibility of BCs entrapped in nanoemulsions.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa