Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Cell ; 81(1): 38-48.e4, 2021 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-33232657

RESUMO

Voltage-gated sodium channels initiate electrical signals and are frequently targeted by deadly gating-modifier neurotoxins, including tarantula toxins, which trap the voltage sensor in its resting state. The structural basis for tarantula-toxin action remains elusive because of the difficulty of capturing the functionally relevant form of the toxin-channel complex. Here, we engineered the model sodium channel NaVAb with voltage-shifting mutations and the toxin-binding site of human NaV1.7, an attractive pain target. This mutant chimera enabled us to determine the cryoelectron microscopy (cryo-EM) structure of the channel functionally arrested by tarantula toxin. Our structure reveals a high-affinity resting-state-specific toxin-channel interaction between a key lysine residue that serves as a "stinger" and penetrates a triad of carboxyl groups in the S3-S4 linker of the voltage sensor. By unveiling this high-affinity binding mode, our studies establish a high-resolution channel-docking and resting-state locking mechanism for huwentoxin-IV and provide guidance for developing future resting-state-targeted analgesic drugs.


Assuntos
Canal de Sódio Disparado por Voltagem NAV1.7/química , Venenos de Aranha/química , Substituição de Aminoácidos , Animais , Humanos , Mutação de Sentido Incorreto , Canal de Sódio Disparado por Voltagem NAV1.7/genética , Canal de Sódio Disparado por Voltagem NAV1.7/metabolismo , Células Sf9 , Spodoptera
2.
Proc Natl Acad Sci U S A ; 117(25): 14187-14193, 2020 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-32513729

RESUMO

NaChBac, the first bacterial voltage-gated Na+ (Nav) channel to be characterized, has been the prokaryotic prototype for studying the structure-function relationship of Nav channels. Discovered nearly two decades ago, the structure of NaChBac has not been determined. Here we present the single particle electron cryomicroscopy (cryo-EM) analysis of NaChBac in both detergent micelles and nanodiscs. Under both conditions, the conformation of NaChBac is nearly identical to that of the potentially inactivated NavAb. Determining the structure of NaChBac in nanodiscs enabled us to examine gating modifier toxins (GMTs) of Nav channels in lipid bilayers. To study GMTs in mammalian Nav channels, we generated a chimera in which the extracellular fragment of the S3 and S4 segments in the second voltage-sensing domain from Nav1.7 replaced the corresponding sequence in NaChBac. Cryo-EM structures of the nanodisc-embedded chimera alone and in complex with HuwenToxin IV (HWTX-IV) were determined to 3.5 and 3.2 Å resolutions, respectively. Compared to the structure of HWTX-IV-bound human Nav1.7, which was obtained at an overall resolution of 3.2 Å, the local resolution of the toxin has been improved from ∼6 to ∼4 Å. This resolution enabled visualization of toxin docking. NaChBac can thus serve as a convenient surrogate for structural studies of the interactions between GMTs and Nav channels in a membrane environment.


Assuntos
Proteínas de Bactérias/química , Microscopia Crioeletrônica/métodos , Nanoestruturas/química , Canais de Sódio Disparados por Voltagem/química , Canais de Sódio Disparados por Voltagem/metabolismo , Animais , Proteínas de Bactérias/genética , Humanos , Bicamadas Lipídicas/química , Modelos Moleculares , Conformação Proteica , Canais de Sódio , Venenos de Aranha/química , Canais de Sódio Disparados por Voltagem/genética
3.
Front Pharmacol ; 13: 858348, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35370700

RESUMO

Voltage-gated ion channels are important drug targets because they play crucial physiological roles in both excitable and non-excitable cells. About 15% of clinical drugs used for treating human diseases target ion channels. However, most of these drugs do not provide sufficient specificity to a single subtype of the channels and their off-target side effects can be serious and sometimes fatal. Recent advancements in imaging techniques have enabled us for the first time to visualize unique and hidden parts of voltage-gated sodium channels in different structural conformations, and to develop drugs that further target a selected functional state in each channel subtype with the potential for high precision and low toxicity. In this review we describe the druggability of voltage-gated sodium channels in distinct functional states, which could potentially be used to selectively target the channels. We review classical drug receptors in the channels that have recently been structurally characterized by cryo-electron microscopy with natural neurotoxins and clinical drugs. We further examine recent drug discoveries for voltage-gated sodium channels and discuss opportunities to use distinct, state-dependent receptor sites in the voltage sensors as unique drug targets. Finally, we explore potential new receptor sites that are currently unknown for sodium channels but may be valuable for future drug discovery. The advancement presented here will help pave the way for drug development that selectively targets voltage-gated sodium channels.

4.
Acta Naturae ; 13(1): 134-139, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33959393

RESUMO

Voltage-gated sodium channels (NaV) have a modular architecture and contain five membrane domains. The central pore domain is responsible for ion conduction and contains a selectivity filter, while the four peripheral voltage-sensing domains (VSD-I/IV) are responsible for activation and rapid inactivation of the channel. "Gating modifier" toxins from arthropod venoms interact with VSDs, influencing the activation and/or inactivation of the channel, and may serve as prototypes of new drugs for the treatment of various channelopathies and pain syndromes. The toxin-binding sites located on VSD-I, II and IV of mammalian NaV channels have been previously described. In this work, using the example of the Hm-3 toxin from the crab spider Heriaeus melloteei, we showed the presence of a toxin-binding site on VSD-III of the human skeletal muscle NaV1.4 channel. A developed cell-free protein synthesis system provided milligram quantities of isolated (separated from the channel) VSD-III and its 15N-labeled analogue. The interactions between VSD-III and Hm-3 were studied by NMR spectroscopy in the membrane-like environment of DPC/LDAO (1 : 1) micelles. Hm-3 has a relatively high affinity to VSD-III (dissociation constant of the complex Kd ~6 µM), comparable to the affinity to VSD­I and exceeding the affinity to VSD-II. Within the complex, the positively charged Lys25 and Lys28 residues of the toxin probably interact with the S1-S2 extracellular loop of VSD-III. The Hm-3 molecule also contacts the lipid bilayer surrounding the channel.

5.
Int J Pharm ; 577: 119071, 2020 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-31991184

RESUMO

Gating modifier toxins (GMTs) from animal venom have shown great potential in controlling blood glucose levels in type II diabetes (T2D), but their high acute toxicity and quick clearance in the body hamper their potential therapeutic use. Inspired by their highly positive charge, we have developed a nanocomplex system based on polyelectrolytes, in which strong interactions form between positively charged GMTs and negatively charged dextran sulfate (DS). Using melittin as a model GMT and adapting flash nanocomplexation (FNC) technology for complex preparation, uniform nanocomplexes (polydispersity index: ~0.1) with high melittin encapsulation efficiency (~100%), high payload capacity (~30%), and tunable release profiles were formulated. In contrast to the high acute liver toxicity and low survival rate (60% after 8 days) observed after a single intraperitoneal (i.p.) injection of 3 mg/kg free melittin, melittin-loaded nanocomplexes displayed improved safety (100% survival after 8 days) due to prolonged melittin release. In a mouse model of T2D, a single i.p. injection of nanocomplexes decreased the blood glucose level to 12 mmol/L within 12 h and maintained it within the therapeutic range (<15 mmol/L) for 48 h. In addition, body weight decreased following treatment. This GMT/DS binary system shows great promise due to its simple components, facile preparation method, and enhanced potential druggability, including a decreased dosing frequency, decreased acute toxicity, and improved pathological indicators.


Assuntos
Glicemia/efeitos dos fármacos , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Tipo 2/tratamento farmacológico , Meliteno/administração & dosagem , Animais , Preparações de Ação Retardada , Sulfato de Dextrana/química , Portadores de Fármacos/química , Liberação Controlada de Fármacos , Feminino , Masculino , Meliteno/farmacologia , Meliteno/toxicidade , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos ICR , Nanopartículas , Polieletrólitos/química , Testes de Toxicidade Aguda
6.
Neurosci Lett ; 679: 35-47, 2018 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-29684532

RESUMO

Voltage-gated ion channels (VGICs) are specialised ion channels that have a voltage dependent mode of action, where ion conduction, or gating, is controlled by a voltage-sensing mechanism. VGICs are critical for electrical signalling and are therefore important pharmacological targets. Among these, voltage-gated sodium channels (NaVs) have attracted particular attention as potential analgesic targets. NaVs, however, comprise several structurally similar subtypes with unique localisations and distinct functions, ranging from amplification of action potentials in nociception (e.g. NaV1.7) to controlling electrical signalling in cardiac function (NaV1.5). Understanding the structural basis of NaV function is therefore of great significance, both to our knowledge of electrical signalling and in development of subtype and state selective drugs. An important tool in this pursuit has been the use of peptides from animal venoms as selective NaV modulators. In this review, we look at peptides, particularly from spider venoms, that inhibit NaVs by binding to the voltage sensing domain (VSD) of this channel, known as gating modifier toxins (GMT). In the first part of the review, we look at the structural determinants of voltage sensing in VGICs, the gating cycle and the conformational changes that accompany VSD movement. Next, the modulation of the analgesic target NaV1.7 by GMTs is reviewed to develop bioinformatic tools that, based on sequence information alone, can identify toxins that are likely to inhibit this channel. The same approach is also used to define VSD sequences, other than that from NaV1.7, which are likely to be sensitive to this class of toxins. The final section of the review focuses on the important role of the cellular membrane in channel modulation and also how the lipid composition affects measurements of peptide-channel interactions both in binding kinetics measurements in solution and in cell-based functional assays.


Assuntos
Ativação do Canal Iônico/efeitos dos fármacos , Bloqueadores do Canal de Sódio Disparado por Voltagem/farmacologia , Canais de Sódio Disparados por Voltagem/metabolismo , Analgésicos/farmacologia , Animais , Membrana Celular/metabolismo , Humanos , Canais Iônicos/metabolismo , Peptídeos/farmacologia , Venenos de Aranha/química , Canais de Sódio Disparados por Voltagem/química
7.
Adv Pharmacol ; 79: 67-116, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28528674

RESUMO

Venomous animals including cone snails, spiders, scorpions, anemones, and snakes have evolved a myriad of components in their venoms that target the opening and/or closing of voltage-gated sodium channels to cause devastating effects on the neuromuscular systems of predators and prey. These venom peptides, through design and serendipity, have not only contributed significantly to our understanding of sodium channel pharmacology and structure, but they also represent some of the most phyla- and isoform-selective molecules that are useful as valuable tool compounds and drug leads. Here, we review our understanding of the basic function of mammalian voltage-gated sodium channel isoforms as well as the pharmacology of venom peptides that act at these key transmembrane proteins.


Assuntos
Peptídeos/farmacologia , Canais de Sódio/metabolismo , Peçonhas/farmacologia , Sequência de Aminoácidos , Animais , Humanos , Canais de Sódio Disparados por Voltagem/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa