Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 28(10)2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-37241986

RESUMO

Progesterone injection is oily because of its poor solubility. It is necessary to develop new dosage forms or delivery methods for Progesterone. Six cocrystals of Progesterone with nitrogen heterocyclic compounds (2,6-diaminopyridine, isonicotinamide, 4-aminopyridine, aminopyrazine, picolinamide and pyrazinamide) have been designed and prepared by ethyl acetate-assisted grinding, of which four cocrystals (2,6-diaminopyridine, isonicotinamide, 4-aminopyridine and aminopyrazine) had single crystal data in 1:1 stoichiometry. Metadynamics-genetic crossing was used to search and optimize various cluster structures to explain the reason the other two cocrystals could not be obtained with suitable size for single crystal X-ray diffraction. In contrast to the carboxyl group, the amide group and amino group were good substituents in the pyridine/pyrazine ring for cocrystallization with Progesterone, which meant inductive effect played an important role in nitrogen heterocyclic compounds containing reactive hydrogen. All cocrystals were more soluble than Progesterone in water, and Progesterone-pyrazinamide cocystal featured the best water solubility performance with an approximately six-fold increase over free Progesterone. This successful attempt provides an effective route for designing and manufacturing novel solid states of Progesterone.

2.
Front Plant Sci ; 11: 535, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32431725

RESUMO

Modern maize hybrids often contain biotech and native traits. To-date all biotech traits have been randomly inserted in the genome. Consequently, developing hybrids with multiple traits is expensive, time-consuming, and complex. Here we report using CRISPR-Cas9 to generate a complex trait locus (CTL) to facilitate trait stacking. A CTL consists of multiple preselected sites positioned within a small well-characterized chromosomal region where trait genes are inserted. We generated individual lines, each carrying a site-specific insertion landing pad (SSILP) that was targeted to a preselected site and capable of efficiently receiving a transgene via recombinase-mediated cassette exchange. The selected sites supported consistent transgene expression and the SSILP insertion had no effect on grain yield. We demonstrated that two traits residing at different sites within a CTL can be combined via genetic recombination. CTL technology is a major step forward in the development of multi-trait maize hybrids.

3.
Plant Methods ; 13: 52, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28649269

RESUMO

BACKGROUND: Two crossing techniques for hybridization of chickpea have been reported and include pollination after emasculation and pollination without emasculation. Success of crossing with emasculation varied from 5 to 17%; while the success rate varied from 20 to 50% by pollination without emasculation. The important reason for the low success rate of the two procedures could be lack of detailed information on the flowering stages chosen for crossing together with the environment where plants grow. RESULTS: We describe a comprehensive method for chickpea crossing where two genotypes, ICCV96029 as female and PI503023 as male parent were used. Leaf shape and seed size were used as morphological markers to select hybrids. For crossing, incision was made along the central line of the keel petal for the removal of anthers and to expose the stigma for placement of pollen from donor parent on its surface. After pollination, style was inserted back gently inside the keel petal and covered by wing petals and standard petals to make a natural sac which prevents drying of internal organs. Alternatively, if the conditions are favorable there is no need to protect the pollinated flower and therefore petal removal method for cross-pollination can be used. Our method showed around 78% crossing success rate which is much higher than the previous results. CONCLUSIONS: We have shown that the crossing by keel petal incision or petal removal is an effective approach which significantly increases the crossing success rate. Furthermore, our detailed method shows that the flowering stage, selection of parents and temperature play crucial roles in crossing success.

4.
Plant Methods ; 10: 11, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24966878

RESUMO

BACKGROUND: Genetic crossing is an essential tool in both forward and reverse genetic approaches to understand the biological functions of genes. For Medicago truncatula (barrel medic) various crossing techniques have been used which differ in the methods used to dissect the female parent's unopened flower bud to remove immature anthers for prevention of self-pollination. Previously described methods including front, side or back incision methods may damage the flower bud, impeding successful fertilization and/or seed development because they may allow pollen to dislodge and floral organs to desiccate after crossing, all of which diminish the success rates of crossing. RESULTS: We report the keel petal incision method for genetic crossing in M. truncatula ecotype R108 and demonstrate successful crosses with two other M. truncatula ecotypes, A17 and A20. In the method presented here, an incision is made along the central line of the keel petal from the bottom 1/3rd of the female parent's flower bud to its distal end. This allows easy removal of anthers from the flower bud and access for cross-pollination. After pollination, the stigma and the deposited pollen from the male donor are covered by the keel petal, wing petals and standard petal, forming a natural pouch. The pouch prevents dislodging of deposited pollen from the stigma and protects the internal floral organs from drying out, without using cling-film or water-containing chambers to maintain a humid environment. The keel petal incision method showed an approximate 80% success rate in the M. truncatula R108 ecotype and also in other ecotypes including Jemalong A17 and A20. CONCLUSIONS: Our keel petal incision protocol shows marked improvement over existing methods with respect to the ease of crossing and the percentage of successful crosses. Developed for the M. truncatula R108 ecotype, the protocol has been demonstrated with A17 and A20 ecotypes and is expected to work with other ecotypes. Investigators of varying experience have achieved genetic crosses in M. truncatula using this method.

5.
Int J Biol Sci ; 7(6): 902-11, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21814485

RESUMO

Five BC1 lines and 16 house fly mass-cross homozygous lines were generated from crosses of the pyrethroid resistant ALHF (wild-type) and susceptible aabys (bearing recessive morphological markers on each of five autosomes) strains. Each of the resulting homozygous lines had different combinations of autosomes from the resistant ALHF strain. Levels of resistance to permethrin were measured for each line to determine the autosomal linkage, interaction and, possibly, regulation in pyrethroid resistance of house flies. Results indicated that factors on autosome 4 are not involved in the development of resistance in house flies, while factors on autosomes 1, 2, 3 and 5 play important roles in pyrethroid resistance. The sodium channel gene has been mapped on autosome 3 and multiple cytochrome P450 genes overexpressed in resistant ALHF house flies have been genetically mapped on autosome 5, suggesting that P450 mediated detoxification and sodium channel-mediated target site insensitivity located on autosomes 3 and 5, respectively, are major factors related to resistance development in house flies. However, neither the factors on autosome 3 or 5 alone, nor the factors from both autosomes 3 and 5 combined could confer high levels of resistance to pyrethroid. In addition, strong synergistic effects on resistance was obtained when autosomes 1 and 2 interact with autosome 3 and/or 5, suggesting that the trans factors on autosomes 1 and 2 may interact with factors on autosomes 3 and 5, therefore, playing regulatory roles in the development of sodium channel insensitivity- and P450 detoxification-mediated resistance.


Assuntos
Cromossomos de Insetos , Moscas Domésticas/genética , Inseticidas , Piretrinas , Canais de Sódio/genética , Animais , Feminino , Ligação Genética , Resistência a Inseticidas/genética , Masculino
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa