Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 250
Filtrar
1.
Trends Genet ; 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38871615

RESUMO

Circadian rhythms, ~24 h cycles of physiological and behavioral processes, can be synchronized by external signals (e.g., light) and persist even in their absence. Consequently, dysregulation of circadian rhythms adversely affects the well-being of the organism. This timekeeping system is generated and sustained by a genetically encoded endogenous mechanism composed of interlocking transcriptional/translational feedback loops that generate rhythmic expression of core clock genes. Genome-wide association studies (GWAS) and forward genetic studies show that SNPs in clock genes influence gene regulation and correlate with the risk of developing various conditions. We discuss genetic variations in core clock genes that are associated with various phenotypes, their implications for human health, and stress the need for thorough studies in this domain of circadian regulation.

2.
Am J Hum Genet ; 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38925119

RESUMO

Recent studies have highlighted the essential role of RNA splicing, a key mechanism of alternative RNA processing, in establishing connections between genetic variations and disease. Genetic loci influencing RNA splicing variations show considerable influence on complex traits, possibly surpassing those affecting total gene expression. Dysregulated RNA splicing has emerged as a major potential contributor to neurological and psychiatric disorders, likely due to the exceptionally high prevalence of alternatively spliced genes in the human brain. Nevertheless, establishing direct associations between genetically altered splicing and complex traits has remained an enduring challenge. We introduce Spliced-Transcriptome-Wide Associations (SpliTWAS) to integrate alternative splicing information with genome-wide association studies to pinpoint genes linked to traits through exon splicing events. We applied SpliTWAS to two schizophrenia (SCZ) RNA-sequencing datasets, BrainGVEX and CommonMind, revealing 137 and 88 trait-associated exons (in 84 and 67 genes), respectively. Enriched biological functions in the associated gene sets converged on neuronal function and development, immune cell activation, and cellular transport, which are highly relevant to SCZ. SpliTWAS variants impacted RNA-binding protein binding sites, revealing potential disruption of RNA-protein interactions affecting splicing. We extended the probabilistic fine-mapping method FOCUS to the exon level, identifying 36 genes and 48 exons as putatively causal for SCZ. We highlight VPS45 and APOPT1, where splicing of specific exons was associated with disease risk, eluding detection by conventional gene expression analysis. Collectively, this study supports the substantial role of alternative splicing in shaping the genetic basis of SCZ, providing a valuable approach for future investigations in this area.

3.
Brief Bioinform ; 25(3)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38770718

RESUMO

Polygenetic Risk Scores are used to evaluate an individual's vulnerability to developing specific diseases or conditions based on their genetic composition, by taking into account numerous genetic variations. This article provides an overview of the concept of Polygenic Risk Scores (PRS). We elucidate the historical advancements of PRS, their advantages and shortcomings in comparison with other predictive methods, and discuss their conceptual limitations in light of the complexity of biological systems. Furthermore, we provide a survey of published tools for computing PRS and associated resources. The various tools and software packages are categorized based on their technical utility for users or prospective developers. Understanding the array of available tools and their limitations is crucial for accurately assessing and predicting disease risks, facilitating early interventions, and guiding personalized healthcare decisions. Additionally, we also identify potential new avenues for future bioinformatic analyzes and advancements related to PRS.


Assuntos
Predisposição Genética para Doença , Herança Multifatorial , Software , Humanos , Biologia Computacional/métodos , Estudo de Associação Genômica Ampla/métodos , Fatores de Risco , Medição de Risco/métodos , Estratificação de Risco Genético
4.
BMC Genomics ; 25(1): 507, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38778248

RESUMO

BACKGROUND: Alpha-papillomavirus 9 (α-9) is a member of the human papillomavirus (HPV) α genus, causing 75% invasive cervical cancers worldwide. The purpose of this study was to provide data for effective treatment of HPV-induced cervical lesions in Taizhou by analysing the genetic variation and antigenic epitopes of α-9 HPV E6 and E7. METHODS: Cervical exfoliated cells were collected for HPV genotyping. Positive samples of the α-9 HPV single type were selected for E6 and E7 gene sequencing. The obtained nucleotide sequences were translated into amino acid sequences (protein primary structure) using MEGA X, and positive selection sites of the amino acid sequences were evaluated using PAML. The secondary and tertiary structures of the E6 and E7 proteins were predicted using PSIPred, SWISS-MODEL, and PyMol. Potential T/B-cell epitopes were predicted by Industrial Engineering Database (IEDB). RESULTS: From 2012 to 2023, α-9 HPV accounted for 75.0% (7815/10423) of high-risk HPV-positive samples in Taizhou, both alone and in combination with other types. Among these, single-type-positive samples of α-9 HPV were selected, and the entire E6 and E7 genes were sequenced, including 298 HPV16, 149 HPV31, 185 HPV33, 123 HPV35, 325 HPV52, and 199 HPV58 samples. Compared with reference sequences, 34, 12, 10, 2, 17, and 17 nonsynonymous nucleotide mutations were detected in HPV16, 31, 33, 35, 52, and 58, respectively. Among all nonsynonymous nucleotide mutations, 19 positive selection sites were selected, which may have evolutionary significance in rendering α-9 HPV adaptive to its environment. Immunoinformatics predicted 57 potential linear and 59 conformational B-cell epitopes, many of which are also predicted as CTL epitopes. CONCLUSION: The present study provides almost comprehensive data on the genetic variations, phylogenetics, positive selection sites, and antigenic epitopes of α-9 HPV E6 and E7 in Taizhou, China, which will be helpful for local HPV therapeutic vaccine development.


Assuntos
Proteínas Oncogênicas Virais , Filogenia , China , Humanos , Proteínas Oncogênicas Virais/genética , Proteínas Oncogênicas Virais/imunologia , Feminino , Proteínas E7 de Papillomavirus/genética , Proteínas E7 de Papillomavirus/imunologia , Alphapapillomavirus/genética , Alphapapillomavirus/imunologia , Epitopos de Linfócito B/imunologia , Epitopos de Linfócito B/genética , Epitopos/imunologia , Epitopos/genética , Epitopos de Linfócito T/imunologia , Epitopos de Linfócito T/genética , Infecções por Papillomavirus/virologia , Sequência de Aminoácidos
5.
Curr Issues Mol Biol ; 46(2): 1091-1106, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38392187

RESUMO

Wild teas are valuable genetic resources for studying evolution and breeding. Here, we report the complete chloroplast genome of the ancient Korean tea 'Hadong Cheon-nyeon Cha' (C. sinensis var. sinensis), which is known as the oldest tea tree in Korea. This study determined seven Camellia sinensis var. sinenesis, including Hadong Cheon-nyeon Cha (HCNC) chloroplast genome sequences, using Illumina sequencing technology via de novo assembly. The chloroplast genome sizes ranged from 157,019 to 157,114 bp and were organized into quadripartite regions with the typical chloroplast genomes. Further, differences in SNPs and InDels were detected across the seven chloroplast genomes through variance analysis. Principal component and phylogenetic analysis suggested that regional constraints, rather than functional constraints, strongly affected the sequence evolution of the cp genomes in this study. These genomic resources provide evolutionary insight into Korean tea plant cultivars and lay the foundation for a better understanding of the ancient Korean tea plant HCNC.

6.
Clin Genet ; 105(2): 115-129, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37961936

RESUMO

Anthracyclines remain the cornerstone of numerous chemotherapeutic protocols, with beneficial effects against haematological malignancies and solid tumours. Unfortunately, the clinical usefulness of anthracyclines is compromised by the development of cardiotoxic side effects, leading to dose limitations or treatment discontinuation. There is no absolute linear correlation between the incidence of cardiotoxicity and the threshold dose, suggesting that genetic factors may modify the association between anthracyclines and cardiotoxicity risk. And the majority of single nucleotide polymorphisms (SNPs) associated with anthracycline pharmacogenomics were identified in the ATP-binding cassette (ABC) and solute carrier (SLC) transporters, generating increasing interest in the pharmacogenetic implications of their genetic variations for anthracycline-induced cardiotoxicity (AIC). This review focuses on the influence of SLC and ABC polymorphisms on AIC and highlights the prospects and clinical significance of pharmacogenetics for individualised preventive approaches.


Assuntos
Antraciclinas , Cardiotoxicidade , Humanos , Cardiotoxicidade/genética , Antraciclinas/efeitos adversos , Antibióticos Antineoplásicos/efeitos adversos , Proteínas de Membrana Transportadoras/genética , Polimorfismo de Nucleotídeo Único
7.
Rev Med Virol ; 33(4): e2450, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37062916

RESUMO

The genetic variability of each individual may lead to the identification of completely different genetic polymorphisms which are associated with a different sensitivity to infectious diseases in humans. Such genetic variability allows the immune system to respond differently to viral agents, therefore only a fraction of humans develop severe symptoms, as happened with SARS-CoV-2. Such knowledge is critical to enable the development of appropriate pharmacological solutions to prevent the consequences of insufficient immunity in dealing with serious viral diseases such as SARS-CoV-2. For instance, global epidemiological data show that male sex is a risk factor for the severe evolution of SARS-CoV-2 disease. Men, due to higher production of Testosterone (TLT), are more vulnerable than females. Women, due to greater expression of the TLR7 gene found on the X chromosome, a key innate immunity gene that encodes Toll-like proteins, are able to synthesise more antiviral proteins and interferons in dendritic cells, resulting in a more robust immune system capable of preventing severe SARS-CoV-2 viral disease. This manuscript highlights how human genetic variability can lead to severe infectious symptoms in some individuals who must take appropriate prophylactic actions, such as vaccination, to prevent this.


Assuntos
COVID-19 , Viroses , Masculino , Feminino , Humanos , SARS-CoV-2 , Interferons , Imunidade Inata
8.
Proc Natl Acad Sci U S A ; 118(21)2021 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-34001600

RESUMO

G-quadruplexes (G4s) formed by guanine-rich nucleic acids play a role in essential biological processes such as transcription and replication. Besides the >1.5 million putative G-4-forming sequences (PQSs), the human genome features >640 million single-nucleotide variations (SNVs), the most common type of genetic variation among people or populations. An SNV may alter a G4 structure when it falls within a PQS motif. To date, genome-wide PQS-SNV interactions and their impact have not been investigated. Herein, we present a study on the PQS-SNV interactions and the impact they can bring to G4 structures and, subsequently, gene expressions. Based on build 154 of the Single Nucleotide Polymorphism Database (dbSNP), we identified 5 million gains/losses or structural conversions of G4s that can be caused by the SNVs. Of these G4 variations (G4Vs), 3.4 million are within genes, resulting in an average load of >120 G4Vs per gene, preferentially enriched near the transcription start site. Moreover, >80% of the G4Vs overlap with transcription factor-binding sites and >14% with enhancers, giving an average load of 3 and 7.5 for the two regulatory elements, respectively. Our experiments show that such G4Vs can significantly influence the expression of their host genes. These results reveal genome-wide G4Vs and their impact on gene activity, emphasizing an understanding of genetic variation, from a structural perspective, of their physiological function and pathological implications. The G4Vs may also provide a unique category of drug targets for individualized therapeutics, health risk assessment, and drug development.


Assuntos
Proteínas de Ligação a DNA/ultraestrutura , Quadruplex G , Genoma Humano/genética , Conformação de Ácido Nucleico , Proteínas de Ligação a DNA/genética , Regulação da Expressão Gênica/genética , Humanos , Polimorfismo de Nucleotídeo Único/genética , Regiões Promotoras Genéticas/genética , Ligação Proteica/genética , Sequências Reguladoras de Ácido Nucleico/genética , Sítio de Iniciação de Transcrição , Ativação Transcricional/genética
9.
Int J Mol Sci ; 25(5)2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38474042

RESUMO

Plants are continuously exposed to various environmental stresses. Because they can not escape stress, they have to develop mechanisms of remembering stress exposures somatically and passing it to the progeny. We studied the Arabidopsis thaliana ecotype Columbia plants exposed to cold stress for 25 continuous generations. Our study revealed that multigenerational exposure to cold stress resulted in the changes in the genome and epigenome (DNA methylation) across generations. Main changes in the progeny were due to the high frequency of genetic mutations rather than epigenetic changes; the difference was primarily in single nucleotide substitutions and deletions. The progeny of cold-stressed plants exhibited the higher rate of missense non-synonymous mutations as compared to the progeny of control plants. At the same time, epigenetic changes were more common in the CHG (C = cytosine, H = cytosine, adenine or thymine, G = guanine) and CHH contexts and favored hypomethylation. There was an increase in the frequency of C to T (thymine) transitions at the CHH positions in the progeny of cold stressed plants; because this type of mutations is often due to the deamination of the methylated cytosines, it can be hypothesized that environment-induced changes in methylation contribute to mutagenesis and may be to microevolution processes and that RNA-dependent DNA methylation plays a crucial role. Our work supports the existence of heritable stress response in plants and demonstrates that genetic changes prevail.


Assuntos
Arabidopsis , Arabidopsis/genética , Epigenômica/métodos , Resposta ao Choque Frio , Timina , Epigênese Genética , Metilação de DNA , Citosina
10.
Artigo em Russo | MEDLINE | ID: mdl-38640209

RESUMO

The article considers issues of implementation into clinical practice the principles of 5P medicine in its part of individualization of therapeutic tactics considering genetic characteristics of patients. The analysis of studies concerning influence of allelic variations on metabolism, safety and tolerance of the most often prescribed medicinal preparations was implemented. The main assumptions of pharmacogenomics were considered. Despite broad perspective of applying obtained data in clinical practice, there are a number of unresolved problems related to accessibility of genetic testing to population, ambiguity of approaches to interpretation of obtaining results, ethical issues and legal regulation.


Assuntos
Farmacogenética , Medicina de Precisão , Humanos , Farmacogenética/métodos , Medicina de Precisão/métodos , Testes Genéticos
11.
Plant J ; 112(4): 1051-1069, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36176211

RESUMO

Plants' primary metabolites are of great importance from the survival and nutritional perspectives. However, the genetic bases underlying the profiles of primary metabolites in oilseed crops remain largely unclear. As one of the main oilseed crops, sesame (Sesamum indicum L.) is a potential model plant for investigating oil metabolism in plants. Therefore, the objective of this study is to disclose the genetic variants associated with variation in the content of primary metabolites in sesame. We performed a comprehensive metabolomics analysis of primary metabolites in 412 diverse sesame accessions using gas chromatography-mass spectrometry and identified a total of 45 metabolites, including fatty acids, monoacylglycerols (MAGs), and amino acids. Genome-wide association study unveiled 433 significant single-nucleotide polymorphism loci associated with variation in primary metabolite contents in sesame. By integrating diverse genomic analyses, we identified 10 key candidate causative genes of variation in MAG, fatty acid, asparagine, and sucrose contents. Among them, SiDSEL was significantly associated with multiple traits. SiCAC3 and SiKASI were strongly associated with variation in oleic acid and linoleic acid contents. Overexpression of SiCAC3, SiKASI, SiLTPI.25, and SiLTPI.26 in transgenic Arabidopsis and Saccharomyces cerevisiae revealed that SiCAC3 is a potential target gene for improvement of unsaturated fatty acid levels in crops. Furthermore, we found that it may be possible to breed several quality traits in sesame simultaneously. Our results provide valuable genetic resources for improving sesame seed quality and our understanding of oilseed crops' primary metabolism.


Assuntos
Sesamum , Sesamum/genética , Estudo de Associação Genômica Ampla , Melhoramento Vegetal , Produtos Agrícolas/genética , Metaboloma/genética
12.
BMC Genomics ; 24(1): 132, 2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-36941544

RESUMO

BACKGROUND: Vascular endothelial growth factor A (VEGFA) is a major angiogenic factor that plays an important role in the formation of blood vessels during embryonic development. VEGFA has been implicated in the pathophysiology of pre-eclampsia (PE), since pre-eclamptic women present with reduced levels of free circulating VEGFA. The 3' untranslated region (3'-UTR) of the VEGFA gene consists of elements that regulate the transcription and hence expression of the VEGFA protein in circulation. Hence it is suggested that variations thereof could underlie the reduced VEGFA levels observed in pre-eclamptic women. The purpose of this study was to investigate presence of the + 936C/T polymorphism, a common single nucleotide polymorphism (SNP) in the 3'-UTR of the VEGFA gene, and determine its association with PE among pregnant women in Uganda. RESULTS: There was no significant difference observed in the allele and genotype frequencies of the + 936C/T 3' UTR-VEGFA polymorphism between pre-eclamptic and normotensive pregnant women (P > 0.05). Additionally, there was no significant difference in the median plasma levels of free VEGFA among women with the wild type, CT and TT genotypes of the + 936C/T VEGFA polymorphism (median = 0.84 pg/mL (IQR = 0.39-1.41) Vs 1.05 (0.61-1.18) Vs 1.05 (1.05-1.05) respectively, p-value = 0.7161). CONCLUSIONS: These study findings indicate that the + 936C/T 3' UTR-VEGFA polymorphism had no significant association with increased susceptibility to PE among women in Uganda. Further studies with a larger sample size are recommended.


Assuntos
Pré-Eclâmpsia , Humanos , Feminino , Gravidez , Pré-Eclâmpsia/genética , Gestantes , Fator A de Crescimento do Endotélio Vascular/genética , Regiões 3' não Traduzidas , Uganda , Genótipo , Polimorfismo de Nucleotídeo Único , Estudos de Casos e Controles , Predisposição Genética para Doença
13.
J Intern Med ; 294(4): 378-396, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37093654

RESUMO

Complex diseases are caused by a combination of genetic, lifestyle, and environmental factors and comprise common noncommunicable diseases, including allergies, cardiovascular disease, and psychiatric and metabolic disorders. More than 25% of Europeans suffer from a complex disease, and together these diseases account for 70% of all deaths. The use of genomic, molecular, or imaging data to develop accurate diagnostic tools for treatment recommendations and preventive strategies, and for disease prognosis and prediction, is an important step toward precision medicine. However, for complex diseases, precision medicine is associated with several challenges. There is a significant heterogeneity between patients of a specific disease-both with regards to symptoms and underlying causal mechanisms-and the number of underlying genetic and nongenetic risk factors is often high. Here, we summarize precision medicine approaches for complex diseases and highlight the current breakthroughs as well as the challenges. We conclude that genomic-based precision medicine has been used mainly for patients with highly penetrant monogenic disease forms, such as cardiomyopathies. However, for most complex diseases-including psychiatric disorders and allergies-available polygenic risk scores are more probabilistic than deterministic and have not yet been validated for clinical utility. However, subclassifying patients of a specific disease into discrete homogenous subtypes based on molecular or phenotypic data is a promising strategy for improving diagnosis, prediction, treatment, prevention, and prognosis. The availability of high-throughput molecular technologies, together with large collections of health data and novel data-driven approaches, offers promise toward improved individual health through precision medicine.


Assuntos
Transtornos Mentais , Medicina de Precisão , Humanos , Medicina de Precisão/métodos , Genômica/métodos , Fatores de Risco
14.
New Phytol ; 239(3): 1068-1082, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37212042

RESUMO

Photoprotection against excess light via nonphotochemical quenching (NPQ) is indispensable for plant survival. However, slow NPQ relaxation under low light conditions can decrease yield of field-grown crops up to 40%. Using semi-high-throughput assay, we quantified the kinetics of NPQ and photosystem II operating efficiency (ΦPSII) in a replicated field trial of more than 700 maize (Zea mays) genotypes across 2 yr. Parametrized kinetics data were used to conduct genome-wide association studies. For six candidate genes involved in NPQ and ΦPSII kinetics in maize the loss of function alleles of orthologous genes in Arabidopsis (Arabidopsis thaliana) were characterized: two thioredoxin genes, and genes encoding a transporter in the chloroplast envelope, an initiator of chloroplast movement, a putative regulator of cell elongation and stomatal patterning, and a protein involved in plant energy homeostasis. Since maize and Arabidopsis are distantly related, we propose that genes involved in photoprotection and PSII function are conserved across vascular plants. The genes and naturally occurring functional alleles identified here considerably expand the toolbox to achieving a sustainable increase in crop productivity.


Assuntos
Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Complexo de Proteína do Fotossistema II/genética , Complexo de Proteína do Fotossistema II/metabolismo , Luz , Estudo de Associação Genômica Ampla , Cloroplastos/metabolismo , Fotossíntese , Clorofila/metabolismo
15.
Appl Microbiol Biotechnol ; 107(24): 7601-7620, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37792060

RESUMO

Blood biochemical indicators play a crucial role in assessing an individual's overall health status and metabolic function. In this study, we measured five blood biochemical indicators, including total cholesterol (CHOL), low-density lipoprotein cholesterol (LDL-CH), triglycerides (TG), high-density lipoprotein cholesterol (HDL-CH), and blood glucose (BG), as well as 19 growth traits of 206 male chickens. By integrating host whole-genome information and 16S rRNA sequencing of the duodenum, jejunum, ileum, cecum, and feces microbiota, we assessed the contributions of host genetics and gut microbiota to blood biochemical indicators and their interrelationships. Our results demonstrated significant negative phenotypic and genetic correlations (r = - 0.20 ~ - 0.67) between CHOL and LDL-CH with growth traits such as body weight, abdominal fat content, muscle content, and shin circumference. The results of heritability and microbiability indicated that blood biochemical indicators were jointly regulated by host genetics and gut microbiota. Notably, the heritability of HDL-CH was estimated to be 0.24, while the jejunal microbiability for BG and TG reached 0.45 and 0.23. Furthermore, by conducting genome-wide association study (GWAS) with the single-nucleotide polymorphism (SNPs), insertion/deletion (indels), and structural variation (SV), we identified RAP2C, member of the RAS oncogene family (RAP2C), dedicator of cytokinesis 11 (DOCK11), neurotensin (NTS) and BOP1 ribosomal biogenesis factor (BOP1) as regulators of HDL-CH, and glycerophosphodiester phosphodiesterase domain containing 5 (GDPD5), dihydrodiol dehydrogenase (DHDH), and potassium voltage-gated channel interacting protein 1 (KCNIP1) as candidate genes of BG. Moreover, our findings suggest that cecal RF39 and Clostridia_UCG_014 may be linked to the regulation of CHOL, and jejunal Streptococcaceae may be involved in the regulation of TG. Additionally, microbial GWAS results indicated that the presence of gut microbiota was under host genetic regulation. Our findings provide valuable insights into the complex interaction between host genetics and microbiota in shaping the blood biochemical profile of chickens. KEY POINTS: • Multiple candidate genes were identified for the regulation of CHOL, HDL-CH, and BG. • RF39, Clostridia_UCG_014, and Streptococcaceae were implicated in CHOL and TG modulation. • The composition of gut microbiota is influenced by host genetics.


Assuntos
Microbioma Gastrointestinal , Masculino , Animais , Galinhas , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo , Estudo de Associação Genômica Ampla , Triglicerídeos/metabolismo , Colesterol/metabolismo
16.
Molecules ; 28(3)2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36770634

RESUMO

Lipoprotein(a) (Lp(a)) is a low-density lipoprotein (LDL) cholesterol-like particle bound to apolipoprotein(a). Increased Lp(a) levels are an independent, heritable causal risk factor for atherosclerotic cardiovascular disease (ASCVD) as they are largely determined by variations in the Lp(a) gene (LPA) locus encoding apo(a). Lp(a) is the preferential lipoprotein carrier for oxidized phospholipids (OxPL), and its role adversely affects vascular inflammation, atherosclerotic lesions, endothelial function and thrombogenicity, which pathophysiologically leads to cardiovascular (CV) events. Despite this crucial role of Lp(a), its measurement lacks a globally unified method, and, between different laboratories, results need standardization. Standard antilipidemic therapies, such as statins, fibrates and ezetimibe, have a mediocre effect on Lp(a) levels, although it is not yet clear whether such treatments can affect CV events and prognosis. This narrative review aims to summarize knowledge regarding the mechanisms mediating the effect of Lp(a) on inflammation, atherosclerosis and thrombosis and discuss current diagnostic and therapeutic potentials.


Assuntos
Aterosclerose , Doenças Cardiovasculares , Inibidores de Hidroximetilglutaril-CoA Redutases , Humanos , Lipoproteína(a)/genética , Lipoproteína(a)/metabolismo , Aterosclerose/diagnóstico , Aterosclerose/tratamento farmacológico , Aterosclerose/genética , Fatores de Risco , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Inflamação/diagnóstico , Inflamação/tratamento farmacológico , Inflamação/complicações , Doenças Cardiovasculares/tratamento farmacológico
17.
J Pediatr ; 244: 139-147.e2, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34995642

RESUMO

OBJECTIVE: To determine the outcomes of patients with later-onset Pompe disease (LOPD) identified through newborn screening (NBS). STUDY DESIGN: A prospective observational cohort study was conducted from the initiation of Pompe disease NBS by following subjects every 3-12 months for motor development and biochemical markers. RESULTS: Between 2005 and 2018, 39 of 994 975 newborns evaluated were classified as having LOPD based on low acid α-glucosidase (GAA) activity but no cardiac involvement at the time of screening. As of December 2020, 8 of these 39 infants (21%) were treated with enzyme replacement therapy owing to persistent elevation of creatine kinase (CK), cardiac involvement, or developmental delay. All subjects' physical performance and endurance improved after treatment. Subjects carrying c.[752C>T;761C>T] and c.[546+5G>T; 1726G>A] presented a phenotype of nonprogressive hypotonia, muscle weakness, and impairment in physical fitness tests, but they have not received treatment. CONCLUSIONS: One-fifth of subjects identified through NBS as having LOPD developed symptoms after a follow-up of up to 15 years. NBS was found to facilitate the early detection and early treatment of those subjects. GAA variants c.[752C>T;761C>T] and c.[546+5G>T; 1726G>A] might not cause Pompe disease but still may affect skeletal muscle function.


Assuntos
Doença de Depósito de Glicogênio Tipo II , Terapia de Reposição de Enzimas , Doença de Depósito de Glicogênio Tipo II/diagnóstico , Doença de Depósito de Glicogênio Tipo II/genética , Doença de Depósito de Glicogênio Tipo II/terapia , Humanos , Recém-Nascido , Triagem Neonatal , Estudos Prospectivos , alfa-Glucosidases/genética
18.
J Med Virol ; 94(9): 4301-4308, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35656887

RESUMO

Human metapneumovirus (HMPV) plays an important role in acute respiratory tract infections (ARTIs), especially in children. We investigated the epidemiology of HMPV associated with ARTIs among pediatric inpatients and identified HMPV genetic variations in Qingdao, China, from January 2018 to June 2019. HMPV-positive samples were identified from throat swabs by multiplex real-time reverse transcriptase polymerase chain reaction (RT-PCR). The G gene sequences of HMPV were obtained, followed by phylogenetic analysis. As a result, 71 out of 1051 (6.76%) patients were HMPV positive, and the HMPV-positive rate in children under 5 years of age was three times higher than that in those aged 5-17 years. The epidemic season of HMPV was in spring, with a peak mainly in March. Thirty-two nucleotide sequences of the HMPV G gene successfully obtained were clustered into three genotypes, A2c (25/32, 78.13%), B1 (3/32, 9.38%) and B2 (4/32, 12.50%). In addition, 76% (19/25) of A2c viruses were identified as the emerging A2c111nt-dup variants, which were predominantly circulating among pediatric inpatients with ARTIs between January 2018 and June 2019 in Qingdao. The emerging A2c111nt-dup variants have spread between countries and cities and might spread more widely in the future. Further prevalence monitoring of this duplication variant is needed to clarify the potentially expanding transmission and to provide a scientific basis for disease control and vaccine development.


Assuntos
Metapneumovirus , Infecções por Paramyxoviridae , Infecções Respiratórias , Criança , Pré-Escolar , China/epidemiologia , Genótipo , Humanos , Lactente , Metapneumovirus/genética , Infecções por Paramyxoviridae/epidemiologia , Filogenia , Infecções Respiratórias/epidemiologia
19.
J Med Virol ; 94(9): 4088-4096, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35538614

RESUMO

Innate and acquired immunity responses are crucial for viral infection elimination. However, genetic variations in coding genes may exacerbate the inflammation or initiate devastating cytokine storms which poses severe respiratory conditions in coronavirus disease-19 (COVID-19). Host genetic variations in particular those related to the immune responses determine the patients' susceptibility and COVID-19 severity and pathophysiology. Gene polymorphisms such as single nucleotide polymorphisms (SNPs) of interferons, TNF, IL1, IL4, IL6, IL7, IL10, and IL17 predispose patients to the severe form of COVID-19 or severe acute respiratory syndrome coronavirus-2 (SARS-COV-2). These variations mainly alter the gene expression and cause a severe response by B cells, T cells, monocytes, neutrophils, and natural killer cells participating in a cytokine storm. Moreover, cytokines and chemokines SNPs are associated with the severity of COVID-19 and clinical outcomes depending on the corresponding effect. Additionally, genetic variations in genes encoding toll-like receptors (TLRs) mainly TLR3, TLR7, and TLR9 have been related to the COVID-19 severe respiratory symptoms. The specific relation of these mutations with the novel variants of concern (VOCs) infection remains to be elucidated. Genetic variations mainly within genes encoding proinflammatory cytokines, cytokine receptors, and TLRs predispose patients to COVID-19 disease severity. Understanding host immune gene variations associated with the SARS-COV-2 infection opens insights to control the pathophysiology of emerging viral infections.


Assuntos
COVID-19 , Citocinas , Receptores de Citocinas , Receptores Toll-Like , COVID-19/genética , COVID-19/fisiopatologia , Síndrome da Liberação de Citocina/genética , Citocinas/genética , Humanos , Receptores de Citocinas/genética , SARS-CoV-2 , Receptores Toll-Like/genética
20.
J Exp Bot ; 73(19): 6942-6954, 2022 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-36052968

RESUMO

Head rice yield (HRY) is an essential quality trait, and is sensitive to environmental stresses during the grain-filling, harvest, and postharvest stages. It is therefore important for rice production and global food security to select for superior HRY traits; however, the molecular basis of this trait remains unknown. Using diverse rice germplasm material, we performed a genome-wide association study of grain fissure resistance (GFR), the phenotype most associated with HRY, and found that the granule-bound starch synthase I gene Waxy is an important gene controlling GFR. Analysis of near-isogenic lines demonstrated that genetic variations in Waxy conferred different levels of tolerance to fissuring in grains. The null allele wx resulted in the highest GFR, while alleles that increased amylose synthesis reduced GFR. Increases in amylose content led to increases in the ratio of the widths of the amorphous layer to the semi-crystalline layer of the starch granules, and also to increased occurrence of chalkiness. The layer structure determined GFR by affecting the degree of swelling of granules in response to moisture, and chalkiness acted as an accelerator of moisture infiltration to rapidly increase the number of swelling granules. Our study reveals the molecular basis of GFR and HRY, thus opening the door for further understanding of the molecular networks of GFR and HRY.


Assuntos
Oryza , Sintase do Amido , Oryza/fisiologia , Amilose , Estudo de Associação Genômica Ampla , Ceras , Amido/química , Sintase do Amido/genética , Grão Comestível/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa