RESUMO
A complex DNA repair network maintains genome integrity and genetic stability. In this study, the influence of edaphic factors on DNA damage and repair in wild wheat Triticum dicoccoides was addressed. Plants inhabiting two abutting microsites with dry terra rossa and humid basalt soils were studied. The relative expression level of seven genes involved in DNA repair pathways-RAD51, BRCA1, LigIV, KU70, MLH1, MSH2, and MRE11-was assessed using quantitative real-time PCR (qPCR). Immunolocalization of RAD51, LigIV, γH2AX, RNA Polymerase II, and DNA-RNA hybrid [S9.6] (R-loops) in somatic interphase nuclei and metaphase chromosomes was carried out in parallel. The results showed a lower expression level of genes involved in DNA repair and a higher number of DNA double-strand breaks (DSBs) in interphase nuclei in plants growing in terra rossa soil compared with plants in basalt soil. Further, the number of DSBs and R-loops in metaphase chromosomes was also greater in plants growing on terra rossa soil. Finally, RAD51 and LigIV foci on chromosomes indicate ongoing DSB repair during the M-phase via the Homologous Recombination and Non-Homologous End Joining pathways. Together, these results show the impact of edaphic factors on DNA damage and repair in the wheat genome adapted to contrasting environments.
Assuntos
Poaceae , Triticum , Triticum/genética , Triticum/metabolismo , Poaceae/genética , Dano ao DNA , Reparo do DNA , DNA/metabolismo , Rad51 Recombinase/genética , Reparo do DNA por Junção de ExtremidadesRESUMO
Retrotransposons are the most abundant group of transposable elements (TEs) in plants, providing an extraordinarily versatile source of genetic variation. Thlaspi arvense, a close relative of the model plant Arabidopsis thaliana with worldwide distribution, thrives from sea level to above 4,000 m elevation in the Qinghai-Tibet Plateau (QTP), China. Its strong adaptability renders it an ideal model system for studying plant adaptation in extreme environments. However, how the retrotransposons affect the T. arvense genome evolution and adaptation is largely unknown. We report a high-quality chromosome-scale genome assembly of T. arvense with a scaffold N50 of 59.10 Mb. Long terminal repeat retrotransposons (LTR-RTs) account for 56.94% of the genome assembly, and the Gypsy superfamily is the most abundant TEs. The amplification of LTR-RTs in the last six million years primarily contributed to the genome size expansion in T. arvense. We identified 351 retrogenes and 303 genes flanked by LTRs, respectively. A comparative analysis showed that orthogroups containing those retrogenes and genes flanked by LTRs have a higher percentage of significantly expanded orthogroups (SEOs), and these SEOs possess more recent tandem duplicated genes. All present results indicate that RNA-based gene duplication (retroduplication) accelerated the subsequent tandem duplication of homologous genes resulting in family expansions, and these expanded gene families were implicated in plant growth, development, and stress responses, which were one of the pivotal factors for T. arvense's adaptation to the harsh environment in the QTP regions. In conclusion, the high-quality assembly of the T. arvense genome provides insights into the retroduplication mediated mechanism of plant adaptation to extreme environments.
RESUMO
Staphylococcus aureus is one of the main pathogens isolated from diabetic foot infections (DFI). The purpose of this study was to evaluate the importance of the persistence of S. aureus in this environment and the possible modifications of the bacterial genome content over time. Molecular typing of S. aureus isolates cultured from patients with the same DFI over a 7-year study revealed a 25% rate of persistence of this species in 48 patients, with a short median persistence time of 12weeks (range: 4-52weeks). Non-specific clonal complexes were linked to this persistence. During the follow-up, bla genes were acquired in three cases, whereas some virulence markers were lost in all cases after a long period of colonization (21.5weeks). Only one patient (2%) had a long-term persistence of 48weeks. The genome sequencing of a clonal pair of early/late strains isolated in this patient showed mutations in genes encoding bacterial defence and two-component signal transduction systems. Although, this study suggests that the long-term persistence of S. aureus in DFI is a rare event, genomic evolution is observed, highlighting the low adaptive ability of S. aureus to the specific environment and stressful conditions of diabetic foot ulcers. These results provide the basis for better understanding of S. aureus dynamics during persistent colonization in chronic wounds.
RESUMO
The complete mitochondrial genome sequence of Desis martensi (L. Koch, 1872) was reported. In this study, we sequenced, assembled and annotated the mitochondrial genome of Desis martensi using next-generation sequencing (NGS). The sequence was 14,662 base pairs (bp) in length and consisted of 37 mitochondrial genes (13 protein-coding genes, 22 transfer RNAs, two ribosomal RNA genes). The overall base composition of the genome showed slightly A + T bias, AT content (77.2%) higher than GC content (22.9%). The phylogenetic analyses based on 13 protein-coding genes indicated that the family Desidae belonged to the Retrolateral Tibial Apophysis (RTA) clade in Araneae.
RESUMO
Orientia tsutsugamushi, formerly Rickettsia tsutsugamushi, is an obligate intracellular pathogen that causes scrub typhus, an underdiagnosed acute febrile disease with high morbidity. Scrub typhus is transmitted by the larval stage (chigger) of Leptotrombidium mites and is irregularly distributed across endemic regions of Asia, Australia and islands of the western Pacific Ocean. Previous work to understand population genetics in O. tsutsugamushi has been based on sub-genomic sampling methods and whole-genome characterization of two genomes. In this study, we compared 40 genomes from geographically dispersed areas and confirmed patterns of extensive homologous recombination likely driven by transposons, conjugative elements and repetitive sequences. High rates of lateral gene transfer (LGT) among O. tsutsugamushi genomes appear to have effectively eliminated a detectable clonal frame, but not our ability to infer evolutionary relationships and phylogeographical clustering. Pan-genomic comparisons using 31â082 high-quality bacterial genomes from 253 species suggests that genomic duplication in O. tsutsugamushi is almost unparalleled. Unlike other highly recombinant species where the uptake of exogenous DNA largely drives genomic diversity, the pan-genome of O. tsutsugamushi is driven by duplication and divergence. Extensive gene innovation by duplication is most commonly attributed to plants and animals and, in contrast with LGT, is thought to be only a minor evolutionary mechanism for bacteria. The near unprecedented evolutionary characteristics of O. tsutsugamushi, coupled with extensive intra-specific LGT, expand our present understanding of rapid bacterial evolutionary adaptive mechanisms.
Assuntos
Evolução Molecular , Variação Genética , Genoma Bacteriano , Orientia tsutsugamushi/genética , Duplicação Gênica , Transferência Genética Horizontal , Genômica , Modelos Genéticos , Orientia tsutsugamushi/classificação , Filogenia , Polimorfismo de Nucleotídeo Único , Recombinação GenéticaRESUMO
Bacterial adaptation to growth with toxic halogenated chemicals was explored in the context of methylotrophic metabolism of Methylobacterium extorquens, by comparing strains CM4 and DM4, which show robust growth with chloromethane and dichloromethane, respectively. Dehalogenation of chlorinated methanes initiates growth-supporting degradation, with intracellular release of protons and chloride ions in both cases. The core, variable and strain-specific genomes of strains CM4 and DM4 were defined by comparison with genomes of non-dechlorinating strains. In terms of gene content, adaptation toward dehalogenation appears limited, strains CM4 and DM4 sharing between 75 and 85% of their genome with other strains of M. extorquens. Transcript abundance in cultures of strain CM4 grown with chloromethane and of strain DM4 grown with dichloromethane was compared to growth with methanol as a reference C1 growth substrate. Previously identified strain-specific dehalogenase-encoding genes were the most transcribed with chlorinated methanes, alongside other genes encoded by genomic islands (GEIs) and plasmids involved in growth with chlorinated compounds as carbon and energy source. None of the 163 genes shared by strains CM4 and DM4 but not by other strains of M. extorquens showed higher transcript abundance in cells grown with chlorinated methanes. Among the several thousand genes of the M. extorquens core genome, 12 genes were only differentially abundant in either strain CM4 or strain DM4. Of these, 2 genes of known function were detected, for the membrane-bound proton translocating pyrophosphatase HppA and the housekeeping molecular chaperone protein DegP. This indicates that the adaptive response common to chloromethane and dichloromethane is limited at the transcriptional level, and involves aspects of the general stress response as well as of a dehalogenation-specific response to intracellular hydrochloric acid production. Core genes only differentially abundant in either strain CM4 or strain DM4 total 13 and 58 CDS, respectively. Taken together, the obtained results suggest different transcriptional responses of chloromethane- and dichloromethane-degrading M. extorquens strains to dehalogenative metabolism, and substrate- and pathway-specific modes of growth optimization with chlorinated methanes.