Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38180325

RESUMO

A novel ligninase-producing and cellulose-degrading actinobacterium, designated strain NEAU-A12T, was isolated from a soil sample collected from Aohan banner, Chifeng City, Inner Mongolia Autonomous Region, PR China. A polyphasic taxonomic study was used to establish the status of strain NEAU-A12T. 16S rRNA gene sequence analysis revealed that strain NEAU-A12T belonged to the genus Actinoplanes and showed the highest similarity (98.3 %) to Actinoplanes palleronii DSM 43940T, while showing less than 98.3 % similarity to other members of the genus Actinoplanes. The phospholipid profile contained diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, phosphatidylinositol and glycosylphosphatidylinositol. The diagnostic sugars in cell hydrolysates were determined to be arabinose, glucose and xylose. The cell wall contained meso-diaminopimelic acid as the diagnostic diamino acid. The predominant menaquinones were MK-9(H4), MK-9(H6) and MK-9(H2). The major fatty acids were C15 : 0, C16 : 0, C16 : 1 ω7c and C17 : 0. Meanwhile, genomic analysis revealed a genome size of 10 192 524 bp and a DNA G+C content of 70.6 mol%, and indicated that strain NEAU-A12T had the potential to degrade lignin and cellulose, as well as produce bioactive compounds. In addition, the average nucleotide identity values between strain NEAU-A12T and its reference strains A. palleronii DSM 43940T, Actinoplanes regularis DSM 43151T, Actinoplanes philippinensis DSM 43019T, Actinoplanes xinjiangensis DSM 45184T and Actinoplanes italicus DSM 43146T were 80.3, 80.3, 84.1, 84.3 and 84.0 %, respectively. The levels of digital DNA-DNA hybridization between them were found to be 23.6 % (21.3-26.1 %), 23.8 % (21.5-26.3 %), 28.3 % (25.9-30.8 %), 28.6 % (26.0-30.9 %) and 28.4 % (26.2-31.1 %), respectively. Based on phenotypic, chemotaxonomic and genotypic data, strain NEAU-A12T is considered to represent a novel species of the genus Actinoplanes, for which the name Actinoplanes sandaracinus sp. nov. is proposed, with NEAU-A12T (=CCTCC AA 2020039T=DSM 112043T) as the type strain.


Assuntos
Actinoplanes , Celulose , Solo , RNA Ribossômico 16S/genética , Composição de Bases , Ácidos Graxos/química , Filogenia , Análise de Sequência de DNA , DNA Bacteriano/genética , Técnicas de Tipagem Bacteriana
2.
Artigo em Inglês | MEDLINE | ID: mdl-38619981

RESUMO

A Gram-stain-negative, rod-shaped, indole-producing, and cellulose-degrading bacterial strain, designated NEAU-G-C5T, was isolated from soil collected from a forest in Dali city, Yunnan province, south China. 16S rRNA gene sequence analysis showed that strain NEAU-G-C5T was assigned to the genus Massilia and showed high sequence similarities to Massilia phosphatilytica 12-OD1T (98.32 %) and Massilia putida 6 NM-7T (98.41 %). Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain NEAU-G-C5T formed a lineage related to M. phosphatilytica 12-OD1T and M. putida 6 NM-7T. The major fatty acids of the strain were C16 : 0, C16 : 1 ω7c, and C17 : 0 cyclo. The respiratory quinone was Q-8. The polar lipid profile of the strain showed the presence of diphosphatidylglycerol, phosphatidylglycerol, and phosphatidylethanolamine. In addition, the average nucleotide identity values between strain NEAU-G-C5T and its reference strains M. phosphatilytica 12-OD1T, M. putida 6 NM-7T, M. norwichensis NS9T, and M. kyonggiensis TSA1T were 89.7, 88.2, 81.3, and 88.0 %, respectively, and the levels of digital DNA-DNA hybridization between them were found to be 58.5 % (54.9-62.0 %), 53.2 % (49.8-56.7 %), 31.9 % (28.6-35.5 %), and 57.7 % (54.1-61.2 %), respectively, which were lower than the accepted threshold values of 95-96 % and 70 %, respectively. The DNA G+C content of strain NEAU-G-C5T was 66.5 mol%. The strain could produce indoleacetic acid and cellulase. On the basis of the phenotypic, genotypic, and chemotaxonomic characteristics, we conclude that strain NEAU-G-C5T represents a novel species of the genus Massilia, for which the name Massilia luteola sp. nov. is proposed. The type strain is NEAU-G-C5T (=MCCC 1K08668T=KCTC 8080T).


Assuntos
Ácidos Graxos , Fosfolipídeos , Ácidos Graxos/química , Fosfolipídeos/análise , Solo , Filogenia , RNA Ribossômico 16S/genética , DNA Bacteriano/genética , Análise de Sequência de DNA , Composição de Bases , China , Técnicas de Tipagem Bacteriana , Indóis , Microbiologia do Solo
3.
J Appl Microbiol ; 135(4)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38509027

RESUMO

AIMS: In this work, we aimed to isolate marine bacteria that produce metabolites with antifungal properties. METHODS AND RESULTS: Paenibacillus polymyxa 188 was isolated from a marine sediment sample, and it showed excellent antifungal activity against many fungi pathogenic to plants (Fusarium tricinctum, Pestalotiopsis clavispora, Fusarium oxysporum, F. oxysporum f. sp. Cubense (Foc), Curvularia plantarum, and Talaromyces pinophilus) and to humans (Aspergillus terreus, Penicillium oxalicum, and Microsphaeropsis arundinis). The antifungal compounds produced by P. polymyxa 188 were extracted and analyzed using matrix-assisted laser desorption ionization time-of-flight mass spectrometry. The complete genome sequence and biosynthetic gene clusters of P. polymyxa 188 were characterized and compared with those of other strains. A total of 238 carbohydrate-active enzymes (CAZymes) were identified in P. polymyxa 188. Two antibiotic gene clusters, fusaricidin and tridecaptin, exist in P. polymyxa 188, which is different from other strains that typically have multiple antibiotic gene clusters. CONCLUSIONS: Paenibacilluspolymyxa 188 was identified with numerous biosynthetic gene clusters, and its antifungal ability against pathogenic fungi was verified.


Assuntos
Paenibacillus polymyxa , Paenibacillus , Humanos , Paenibacillus polymyxa/metabolismo , Antifúngicos/química , Antibacterianos/metabolismo , Paenibacillus/genética
4.
Curr Issues Mol Biol ; 45(4): 3628-3639, 2023 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-37185760

RESUMO

Feline panleukopenia virus (FPV) is the causative agent of hemorrhagic gastroenteritis in feline animals. FPV has been evolving over time, and there have been several different strains of the virus identified. Some of these strains may be more virulent or more resistant to current vaccines than others, which highlights the importance of ongoing research and monitoring of FPV evolution. For FPV genetic evolution analysis, many studies focus on the main capsid protein (VP2), but limited information is available on the nonstructural gene NS1 and structural gene VP1. In the present study, we firstly isolated two novel FPV strains circulating in Shanghai, China, and performed full-length genome sequencing for the desired strains. Subsequently, we focused on analyzing the NS1, VP1 gene, and the encoding protein, and conducted a comparative analysis among the worldwide circulating FPV and Canine parvovirus Type 2 (CPV-2) strains, which included the strains isolated in this study. We found that the 2 structural viral proteins, VP1 and VP2, are splice variants, and VP1 has a 143 amino-acid-long N-terminal compared to VP2. Furthermore, phylogenetic analysis showed that divergent evolution between FPV and CPV-2 virus strains were clustered mostly by country and year of detection. In addition, much more continuous antigenic type changes happened in the process of CPV-2 circulating and evolution compared to FPV. These results stress the importance of the continuous study of viral evolution and provide a comprehensive perspective of the association between viral epidemiology and genetic evolution.

5.
Virol J ; 20(1): 141, 2023 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-37415207

RESUMO

Adenovirus (HAdV) F41 is a common cause of gastroenteritis and has rarely been reported associated with disseminated disease. In this report, an adult patient with a history of ulcerative colitis, cryptogenic cirrhosis, stage III adenocarcinoma, high-grade diffuse large B-cell lymphoma on chemotherapy was diagnosed with disseminated adenovirus infection. HAdV DNA was quantified in stool, plasma, and urine with viral loads of 7, 4, and 3 log10 copies/mL, respectively. The patient's course was rapidly progressive and he passed away 2 days after initiation of antiviral therapy. The patient's infecting virus was characterized as HAdV-F41 by whole genome sequencing.


Assuntos
Infecções por Adenoviridae , Infecções por Adenovirus Humanos , Adenovírus Humanos , Linfoma de Células B , Masculino , Adulto , Humanos , Adenovírus Humanos/genética , Adenoviridae/genética , Linfoma de Células B/complicações
6.
Artigo em Inglês | MEDLINE | ID: mdl-35639600

RESUMO

A Gram-stain-negative, aerobic, motile, rod-shaped novel bacterial strain, designated as MA21411-1T, was isolated from the Korean coast. The colonies were white-yellow-coloured, smooth, convex and entire, spherical and 1.0-1.8 mm in diameter. Phylogenetic analysis based on the 16S rRNA gene sequence showed that strain MA21411-1T is closely related to species of the genus Pseudophaeobacter. The 16S rRNA gene sequence similarities between strain MA21411-1T and Pseudophaeobacter arcticus DSM 23566T, Phaeobacter porticola DSM 103148T and Pseudophaeobacter leonis DSM 25627T were 98.31, 97.80 and 97.28 %, respectively. Strain MA21411-1T has a draft genome size of 4 294 042 bp, annotated with 4125 protein-coding genes, and 53 tRNA, three rRNA and one tmRNA genes. The genomic DNA G+C content was 59.2 mol%. Comparative genome analysis revealed that the average nucleotide identity, digital DNA-DNA hybridization and average amino acid identity values among strain MA21411-1T and other related species were below the cut-off levels of 95, 70 and 95.5 %, respectively. The growth temperature range for growth was 15-28 °C (optimum, 25 °C), pH range was 6.0-9.0 (optimum, pH 6.0), and salt tolerance range was 0.5-4 % (optimum 0.5 %). Ubiquinone-10 was the sole quinone present in MA21411-1T and all three closely related strains. The major cellular fatty acid (>10 %) of the strain was summed feature 8 (C18 : 1 ω7c and/or C18 : 1 ω6c). The polar lipid profile contained phosphatidylglycerol, diphosphatidylglycerol, phosphatidylethanolamine and four unidentified polar lipids. Based on the phylogenetic tree, as well as phenotypic, chemotaxonomic and genomic features, strain MA21411-1T represents a novel species of the genus Pseudophaeobacter, for which the name Pseudophaeobacter flagellatus sp. nov. is proposed. The type strain is MA21411-1T (=KCTC 92095T=GDMCC 1.2988T).


Assuntos
Ácidos Graxos , Fosfolipídeos , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Fosfolipídeos/química , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Água
7.
Int J Syst Evol Microbiol ; 72(10)2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36268867

RESUMO

A novel cellulose-degrading actinobacterium, designated strain NEAU-S10T, was isolated from soil collected from Chifeng, Inner Mongolia Autonomous Region, PR China, and characterized using a polyphasic approach. Pairwise similarity of the 16S rRNA gene sequence showed that strain NEAU-S10T was a representative of Saccharothrix and was closely related to Saccharothrix carnea NEAU-yn17T (99.2 %), Saccharothrix saharensis SA152T (99.0 %), Saccharothrix texasensis DSM 44231T (98.5 %) and Saccharothrix xinjiangensis NBRC 101911T (98.5 %). Physiological and chemotaxonomic characteristics of the strain further supported its affiliation to the genus Saccharothrix. The whole-cell sugars contained galactose, ribose and mannose. The polar lipids contained diphosphatidylglycerol, phosphatidylmonomethylethanolamine, phosphatidylethanolamine, phosphatidylinositol and phosphatidylinositol mannoside. The predominant menaquinones were MK-9(H0), MK-9(H2), MK-9(H4) and MK-10(H4). The major fatty acids were iso-C16 : 0, C16 : 0, anteiso-C17 : 0, iso-C15 : 0 and iso-C17 : 0. The genomic DNA G+C content was 71.8 mol%. The levels of digital DNA-DNA hybridization between isolate and S. carnea NEAU-yn17T, S. saharensis SA152T and S. texasensis DSM 44231T were 40.1 % (37.6-42.6 %), 38.soap8 % (36.3-41.3 %) and 44.8 % (42.2-47.3 %) and the ANI values between them were determined to be 90.2, 89.8 and 91.7 %, the results indicated that strain NEAU-S10T could be distinguished from its reference strains. The assembled genome sequence of strain NEAU-S10T was found to be 10 305 394 bp long. The NCBI Prokaryotic Genome Annotation Pipeline (PGAP) revealed 8 994 protein-coding genes. Genomic analysis and Congo red staining test indicated that strain NEAU-S10T had the potential to degrade cellulose. The genomic and phenotypic results indicate that strain NEAU-S10T represents a novel species of the genus Saccharothrix, for which the name Saccharothrix luteola sp. nov. is proposed, with NEAU-S10T (=CCTCC AA 2020037T=JCM 34800T) as the type strain.


Assuntos
Fosfatidiletanolaminas , Solo , RNA Ribossômico 16S/genética , Microbiologia do Solo , Vitamina K 2 , Celulose , Cardiolipinas , Vermelho Congo , Galactose , Manose , Ribose , Composição de Bases , Filogenia , Técnicas de Tipagem Bacteriana , DNA Bacteriano/genética , Ácidos Graxos/química , Análise de Sequência de DNA , Fosfatidilinositóis , Fosfolipídeos
8.
World J Microbiol Biotechnol ; 38(8): 140, 2022 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-35705700

RESUMO

Municipal landfills are known for methane production and a source of nitrate pollution leading to various environmental issues. Therefore, this niche was selected for the isolation of one-carbon (C1) utilizing bacteria with denitrifying capacities using anaerobic enrichment on nitrate mineral salt medium supplemented with methanol as carbon source. Eight axenic cultures were isolated of which, isolate AAK/M5 demonstrated the highest methanol removal (73.28%) in terms of soluble chemical oxygen demand and methane removal (41.27%) at the expense of total nitrate removal of 100% and 33% respectively. The whole genome characterization with phylogenomic approach suggested that the strain AAK/M5 could be assigned to Pseudomonas aeruginosa with close neighbours as type strains DVT779, AES1M, W60856, and LES400. The circular genome annotation showed the presence of complete set of genes essential for methanol utilization and complete denitrification process. The study demonstrates the potential of P. aeruginosa strain AAK/M5 in catalysing methane oxidation thus serving as a methane sink vis-à-vis utilization of nitrate. Considering the existence of such bacteria at landfill site, the study highlights the need to develop strategies for their enrichment and designing of efficient catabolic activity for such environments.


Assuntos
Solo , Resíduos Sólidos , Bactérias/metabolismo , Carbono/metabolismo , Desnitrificação , Genômica , Metano/metabolismo , Metanol/metabolismo , Nitratos/metabolismo , Oxirredução , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Solo/química , Instalações de Eliminação de Resíduos
9.
Virol J ; 17(1): 167, 2020 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-33126890

RESUMO

BACKGROUND: Papillomaviruses (PVs) infecting artiodactyls are very diverse, and only second in number to PVs infecting primates. PVs associated to lesions in economically important ruminant species have been isolated from cattle and sheep. METHODS: Potential PV DNA from teat lesions of a Damascus goat was isolated, cloned and sequenced. The PV genome was analyzed using bioinformatics approaches to detect open reading frames and to predict potential features of encoded proteins as well as putative regulatory elements. Sequence comparison and phylogenetic analyses using the concatenated E1E2L2L1 nucleotide and amino acid alignments was used to reveal the relationship of the new PV to the known PV diversity and its closest relevants. RESULTS: We isolated and characterized the full-genome of novel Capra hircus papillomavirus. We identified the E6, E7, E1, E2, L2, L1 open reading frames with protein coding potential and putative active elements in the ChPV2 proteins and putative regulatory genome elements. Sequence similarities of L1 and phylogenetic analyses using concatenated E1E2L2L1 nucleotide and amino acid alignments suggest the classification as a new PV type designated ChPV2 with a phylogenetic position within the XiPV genus, basal to the XiPV1 species. ChPV2 is not closely related to ChPV1, the other known goat PV isolated from healthy skin, although both of them belong confidently into a clade composed of PVs infecting cervids and bovids. Interestingly, ChPV2 contains an E6 open reading frame whereas all closely related PVs do not CONCLUSION: ChPV2 is a novel goat PV closely related to the Xi-PV1 species infecting bovines. Phylogenetic relationships and genome architecture of ChPV2 and closely related PV types suggest at least two independent E6 losses within the XiPV clade.


Assuntos
Genoma Viral , Cabras/virologia , Papillomaviridae/genética , Infecções por Papillomavirus/veterinária , Filogenia , Animais , DNA Viral/genética , Feminino , Genômica , Fases de Leitura Aberta , Papillomaviridae/isolamento & purificação , Infecções por Papillomavirus/virologia , Análise de Sequência de DNA , Turquia
10.
Virus Genes ; 56(3): 325-328, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32088806

RESUMO

Circoviruses are small circular DNA viruses causing severe pig and poultry disease, recently identified in various bat species worldwide. We report the detection and full-genome molecular characterization of a novel bat-associated Circovirus identified in faecal samples of Miniopterus schreibersii bats (Schreiber's bent-winged bats) from Sardinia, Italy. Full-genomic sequencing revealed a new putative member of Circoviridae family, with a genome size of 2063 nt. Sequencing allowed the characterization of the two major ORFs, inversely arranged, encoding replicase and capsid proteins, as well as the finding of a polythymidine tract within the genome, and highlighted phylogenetic relationships of the novel virus. This is the first report of circovirus in European bats. Giving the high level of genetic diversity of bat circoviruses, it is paramount to further investigate the relationships between these viruses and bats.


Assuntos
Quirópteros/virologia , Circovirus/classificação , Circovirus/genética , Genoma Viral , Genômica , Animais , Genômica/métodos , Filogenia
11.
Emerg Infect Dis ; 25(1): 166-170, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30561301

RESUMO

Despite molecular and serologic evidence of Nipah virus in bats from various locations, attempts to isolate live virus have been largely unsuccessful. We report isolation and full-genome characterization of 10 Nipah virus isolates from Pteropus medius bats sampled in Bangladesh during 2013 and 2014.


Assuntos
Quirópteros/virologia , Reservatórios de Doenças/virologia , Genoma Viral/genética , Infecções por Henipavirus/veterinária , Vírus Nipah/genética , Animais , Bangladesh , Geografia , Infecções por Henipavirus/virologia , Humanos , Vírus Nipah/isolamento & purificação , Filogenia , Zoonoses
12.
J Med Virol ; 91(6): 928-934, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30822356

RESUMO

Rubella is an acute and contagious viral infection whose gravidity resides in infection during pregnancy, which can result in miscarriage, fetal death, stillbirth, or infants with congenital malformations. This study aimed to describe the genome of rubella viruses (RUBVs) circulating in Cameroon. Throat swabs were collected from health districts as part of the measles surveillance program from 2010 to 2016 and sent to the Centre Pasteur of Cameroon. Samples were amplified by genotyping reverse transcription polymerase chain reaction (RT-PCR) in the search of two overlapping fragments of the gene that encodes the E1 envelope glycoprotein of RUBV. PCR products were sequenced and phylogenetic analysis was performed with MEGA 6 software. Overall, 9 of 43 samples (20.93%) were successfully amplified and sequenced but only eight sequences could be exploited for phylogenetic analysis with respect to the required fragment length of 739 nucleotides. Analysis of viral sequences from Cameroon with other epidemiologically relevant sequences from around the world showed that all RUBVs belonged to lineage L1 of genotype 1G. Cameroon sequences clustered with viruses from West Africa including Nigeria, Ivory Coast, and Ghana with a percentage similarity of 95.4% to 99.2%. This study will enable an update on the molecular epidemiology of RUBV in Cameroon and help in monitoring circulating RUBV for a better implementation of elimination strategies.


Assuntos
Genoma Viral , Vírus da Rubéola/genética , Rubéola (Sarampo Alemão)/epidemiologia , África/epidemiologia , Camarões/epidemiologia , Criança , Pré-Escolar , Análise por Conglomerados , Evolução Molecular , Feminino , Genômica , Genótipo , Humanos , Masculino , Filogenia , RNA Viral/genética , Análise de Sequência de DNA
13.
J Med Virol ; 91(8): 1400-1407, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30866072

RESUMO

In Cameroon, genome characterization of influenza virus has been performed only in the Southern regions meanwhile genetic diversity of this virus varies with respect to locality. The Northern region characterized by a Sudan tropical climate might have distinct genetic characterization. This study aimed to better understand the genetic diversity of influenza A(H3N2) viruses circulating in Northern Cameroon. Sequences of three gene segments (hemagglutinin (HA), neuraminidase (NA) and matrix (M) genes) were obtained from 16 A(H3N2) virus strains collected during the 2014 to 2016 influenza seasons in Garoua. The HA gene segments were analysed with respect to reference strains while the NA and M gene was analysed for reported genetic markers of resistance to antivirals. Analysis of the HA sequences revealed that majority of the virus strains grouped together with the 2016-2017 vaccine strain (3C.2a-A/Hong Kong/4801/2014) while 3/5 (60%) of the 2015 viral strains grouped together with the 2015-2016 vaccine strain 3C.3a-A/Switzerland/9715293/2013. Within clade 3C.2a, Northern Cameroon sequences mostly grouped in sub-clade A3 (10/16). Analysis of the coding regions of the NA and M genes showed that none had genetic markers of resistance to neuraminidase inhibitors but all strains possessed the S31N substitution of resistance to amantadine. Due to some discrepancies observed in this region with respect to the Southern regions of Cameroon, there is necessity of including all regions within a country in the sentinel surveillance of influenza. These data will enable to track changes in influenza viruses in Cameroon.


Assuntos
Variação Genética , Vírus da Influenza A Subtipo H3N2/classificação , Vírus da Influenza A Subtipo H3N2/genética , Influenza Humana/virologia , Camarões/epidemiologia , Análise por Conglomerados , Genótipo , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Humanos , Vírus da Influenza A Subtipo H3N2/isolamento & purificação , Influenza Humana/epidemiologia , Neuraminidase/genética , Filogenia , Análise de Sequência de DNA , Proteínas da Matriz Viral/genética , Proteínas Virais/genética
14.
Virus Genes ; 55(1): 117-121, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30460477

RESUMO

Air potato (Dioscorea bulbifera) plants being grown at the Florida Department of Agriculture and Consumer Services Division of Plant Industry Biological Control Laboratory II in Alachua County, Florida were observed exhibiting foliar mosaic symptoms characteristic of virus infection. A double-stranded RNA library generated from a symptomatic plant underwent high-throughput sequencing to determine if viral pathogens were present. Sequence data revealed the presence of two viral genomes, one with properties congruent with members of the genus Potyvirus (family Potyviridae), and the other with members of the genus Ampelovirus (family Closteroviridae). Sequence comparisons and phylogenetic placement indicate that both viruses represent novel species. The names "dioscorea mosaic virus" and "air potato virus 1" are proposed for the potyvirus and ampelovirus, respectively.


Assuntos
Closteroviridae , Coinfecção , Dioscorea/virologia , Doenças das Plantas/virologia , Potyvirus , Genoma Viral , Sequenciamento de Nucleotídeos em Larga Escala , Fenótipo
15.
Foodborne Pathog Dis ; 16(1): 42-53, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30673354

RESUMO

The study aimed to monitor the fecal shedding of cefotaxime-resistant Escherichia coli (CREC) in a cohort of healthy calves on a dairy farm with documented antimicrobial usage and to characterize selected AmpC beta-lactamase-producing E. coli isolates. Fecal samples from 13 suckling calves (1-63 d of age; 113 samples in total) were repeatedly collected and cultivated on MacConkey agar with cefotaxime (2 mg/L). Resistant colonies were counted, and one colony obtained from the highest dilution of each fecal sample was identified by matrix-assisted laser desorption-ionization time-of-flight mass spectrometry. Susceptibility to antimicrobials and production of AmpC and extended-spectrum beta-lactamase (ESBL) were tested. No ESBL-producing E. coli was found, but representative AmpC-positive E. coli isolates were subjected to further typing and whole-genome sequencing (WGS) for the analysis of clonal relationships, resistance genes, virulence factors, and plasmid replicons. High amounts of CREC were detected in the feces of all 13 calves during the study. The number of CREC colonies varied from 1.0 log10 to 8.0 log10 colony-forming unit per gram. Drops in CREC density or its discontinued shedding were recorded at the end of the study period. A total of 82 (94%, n = 87) CREC isolates were confirmed as AmpC producers and all but one showed resistance to multiple antimicrobials. Twenty-nine selected AmpC-positive E. coli isolates belonged to 12 and 13 unique rep-PCR fingerprints and pulsed-field gel electrophoresis types, respectively, highlighting the variation in E. coli genotypes in individual calves. WGS of 10 selected isolates showed diverse antimicrobial resistance and virulence gene content and the presence of a blaCMY-2 gene carried by an IncK2 plasmid. Clinically important multiresistant E. coli isolates belonging to emerging extraintestinal pathogenic E. coli ST69 and ST648 lineages were found. Our findings reinforce the urgency of efforts to prevent the spread of ESBL-/AmpC-producing bacteria in dairy cow farms.


Assuntos
Anti-Infecciosos/farmacologia , Cefotaxima/farmacologia , Infecções por Escherichia coli/veterinária , Escherichia coli/genética , Mastite Bovina/microbiologia , beta-Lactamases/genética , Animais , Animais Lactentes , Derrame de Bactérias , Bovinos , República Tcheca/epidemiologia , Escherichia coli/enzimologia , Escherichia coli/isolamento & purificação , Escherichia coli/patogenicidade , Infecções por Escherichia coli/epidemiologia , Infecções por Escherichia coli/microbiologia , Fazendas , Fezes/microbiologia , Feminino , Mastite Bovina/epidemiologia , Plasmídeos/genética , Fatores de Virulência/genética , Sequenciamento Completo do Genoma/veterinária
16.
J Med Virol ; 90(12): 1848-1855, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30036447

RESUMO

Influenza B is broadly divided into B/Victoria and B/Yamagata lineages based on its genetic and antigenic properties. We describe in this study the first report on genome characterization of type B influenza virus in the Cameroon National Influenza Center (NIC) between 2014 and 2017. Respiratory samples were collected as part of the influenza surveillance activity in the NIC. RNA products were tested for the presence of influenza using the CDC Influenza A/B typing panel. Thirty-five samples positive for influenza B were selected for sequencing three gene segments (HA, NA, and M) and phylogenetic trees were generated by MEGA version 6.0. Nucleotide phylogenetic analysis of the HA gene revealed the presence of three major clades among Cameroonian strains. All Victoria lineages grouped into B/Victoria clade 1A, while, Yamagata lineages grouped into Yamagata clade 2 (2014 strains) and Yamagata clade 3 (2015-2017). We observed a high frequency of reassortant viruses with Yamagata-like HA gene and Victoria-like NA gene (27.4%; 23/84). The results from this study confirm variations in the genome composition of type B influenza virus and emphasize on the relevance of molecular surveillance for spotting peculiar genetic variants of public health and clinical significance.


Assuntos
Variação Genética , Vírus da Influenza B/classificação , Vírus da Influenza B/isolamento & purificação , Influenza Humana/virologia , Vírus Reordenados/classificação , Vírus Reordenados/isolamento & purificação , Camarões , Genótipo , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Humanos , Vírus da Influenza B/genética , Neuraminidase/genética , Filogenia , Vírus Reordenados/genética , Análise de Sequência de DNA , Homologia de Sequência , Proteínas da Matriz Viral/genética , Proteínas Virais/genética
17.
Emerg Infect Dis ; 23(1): 152-154, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27983507
18.
Virol J ; 14(1): 40, 2017 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-28222808

RESUMO

BACKGROUND: In recent years, novel hepadnaviruses, hepeviruses, hepatoviruses, and hepaciviruses have been discovered in various species of bat around the world, indicating that bats may act as natural reservoirs for these hepatitis viruses. In order to further assess the distribution of hepatitis viruses in bat populations in China, we tested the presence of these hepatitis viruses in our archived bat liver samples that originated from several bat species and various geographical regions in China. METHODS: A total of 78 bat liver samples (involving two families, five genera, and 17 species of bat) were examined using nested or heminested reverse transcription PCR (RT-PCR) with degenerate primers. Full-length genomic sequences of two virus strains were sequenced followed by phylogenetic analyses. RESULTS: Four samples were positive for hepadnavirus, only one was positive for hepevirus, and none of the samples were positive for hepatovirus or hepacivirus. The hepadnaviruses were discovered in the horseshoe bats, Rhinolophus sinicus and Rhinolophus affinis, and the hepevirus was found in the whiskered bat Myotis davidii. The full-length genomic sequences were determined for one of the two hepadnaviruses identified in R. sinicus (designated BtHBVRs3364) and the hepevirus (designated BtHEVMd2350). A sequence identity analysis indicated that BtHBVRs3364 had the highest degree of identity with a previously reported hepadnavirus from the roundleaf bat, Hipposideros pomona, from China, and BtHEVMd2350 had the highest degree of identity with a hepevirus found in the serotine bat, Eptesicus serotinus, from Germany, but it exhibited high levels of divergence at both the nucleotide and the amino acid levels. CONCLUSIONS: This is the first study to report that the Chinese horseshoe bat and the Chinese whiskered bat have been found to carry novel hepadnaviruses and a novel hepevirus, respectively. The discovery of BtHBVRs3364 further supports the significance of host switches evolution while opposing the co-evolutionary theory associated with hepadnaviruses. According to the latest criterion of the International Committee on Taxonomy of Viruses (ICTV), we hypothesize that BtHEVMd2350 represents an independent genotype within the species Orthohepevirus D of the family Hepeviridae.


Assuntos
Quirópteros/virologia , Hepadnaviridae/classificação , Hepadnaviridae/isolamento & purificação , Hepevirus/classificação , Hepevirus/isolamento & purificação , Fígado/virologia , Filogenia , Animais , China , Análise por Conglomerados , Genoma Viral , Hepadnaviridae/genética , Hepevirus/genética , Reação em Cadeia da Polimerase , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise de Sequência de DNA
19.
Arch Microbiol ; 199(4): 635-640, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28175928

RESUMO

Pasteurella multocida: subspecies multocida, gallicida, and septica are noted to have a contribution to fowl cholera, a life-threatening disease to both domestic and wild bird species. The genome sequences of avian P. multocida subspecies gallicida and multocida have been well analyzed and compared. However, the genome characterization of avian P. multocida subspecies septica is rarely discussed. In this study, we determined the draft genome sequence of a virulent P. multocida subspecies septica serogroup A strain HB02. The genome of P. multocida HB02 was composed of a single chromosome of 2,213,604 bp with a 40.27% G + C content, which showed a similar genome size and %GC content to the P. multocida subspecies multocida and gallicida genomes. The entire sequence specified 2002 putative coding DNA sequences plus 2 encoded rRNAs and 46 encoded tRNAs. In addition, the subspecies septica had a similar content of genes coding for metabolic traits that found in the subspecies gallicida and multocida. In addition, comparison of virulent versus avirulent avian P. multocida genomes identified 657 unique genes in either of the virulent strains HB02, P1059 and/or X73 compared to the avirulent strain Pm70. These genes should be the potential virulence-associated genes. Our work may add a novel genome sequence for the avian P. multocida genome database and shed a light on the pathogenesis of P. multocida.


Assuntos
Genoma Bacteriano , Pasteurella multocida/genética , Pasteurella multocida/patogenicidade , Virulência/genética
20.
Emerg Infect Dis ; 22(12): 2078-2086, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27584691

RESUMO

Verotoxigenic Escherichia coli infections in humans cause disease ranging from uncomplicated intestinal illnesses to bloody diarrhea and systemic sequelae, such as hemolytic uremic syndrome (HUS). Previous research indicated that pigeons may be a reservoir for a population of verotoxigenic E. coli producing the VT2f variant. We used whole-genome sequencing to characterize a set of VT2f-producing E. coli strains from human patients with diarrhea or HUS and from healthy pigeons. We describe a phage conveying the vtx2f genes and provide evidence that the strains causing milder diarrheal disease may be transmitted to humans from pigeons. The strains causing HUS could derive from VT2f phage acquisition by E. coli strains with a virulence genes asset resembling that of typical HUS-associated verotoxigenic E. coli.


Assuntos
Genoma Bacteriano , Genômica , Síndrome Hemolítico-Urêmica/microbiologia , Toxina Shiga II/genética , Escherichia coli Shiga Toxigênica/classificação , Escherichia coli Shiga Toxigênica/genética , Animais , Bacteriófagos/genética , Genômica/métodos , Síndrome Hemolítico-Urêmica/epidemiologia , Humanos , Filogenia , Polimorfismo de Nucleotídeo Único , Sorogrupo , Toxina Shiga II/biossíntese , Escherichia coli Shiga Toxigênica/isolamento & purificação , Escherichia coli Shiga Toxigênica/virologia , Virulência/genética , Sequenciamento Completo do Genoma
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa