Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Insect Mol Biol ; 33(2): 147-156, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37962063

RESUMO

Geranylgeranyl pyrophosphate (diphosphate) synthase (GGPPS) plays an important role in various physiological processes in insects, such as isoprenoid biosynthesis and protein prenylation. Here, we functionally characterised the GGPPS from the major agricultural lepidopteran pests Spodoptera frugiperda and Helicoverpa armigera. Partial disruption of GGPPS by CRISPR in S. frugiperda decreased embryo hatching rate and larval survival, suggesting that this gene is essential. Functional expression in vitro of Helicoverpa armigera GGPPS in Escherichia coli revealed a catalytically active enzyme. Next, we developed and optimised an enzyme assay to screen for potential inhibitors, such as the zoledronate and the minodronate, which showed a dose-dependent inhibition. Phylogenetic analysis of GGPPS across insects showed that GGPPS is highly conserved but also revealed several residues likely to be involved in substrate binding, which were substantially different in bee pollinator and human GGPPS. Considering the essentiality of GGPPS and its putative binding residue variability qualifies a GGPPS as a novel pesticide target. The developed assay may contribute to the identification of novel insecticide leads.


Assuntos
Praguicidas , Humanos , Animais , Abelhas/genética , Farnesiltranstransferase/genética , Farnesiltranstransferase/metabolismo , Filogenia , Ácido Zoledrônico
2.
Arch Insect Biochem Physiol ; 115(2): e22088, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38349673

RESUMO

Geranylgeranyl diphosphate synthase (GGPPS) as the short-chain prenyltransferases for catalyzing the formation of the acyclic precursor (E)-GGPP has been extensively investigated in mammals, plants, and microbes, but its functional plasticity is poorly understood in insect species. Here, a single GGPPS in leaf beetle Monolepta hieroglyphica, MhieGGPPS, was functionally investigated. Phylogenetic analysis showed that MhieGGPPS was clustered in one clade with homologs and had six conserved motifs. Molecular docking results indicated that binding sites of dimethylallyl diphosphate (DMAPP), (E)-geranyl pyrophosphate (GPP), and (E)-farnesyl pyrophosphate (FPP) were in the chain-length determination region of MhieGGPPS, respectively. In vitro, recombiant MhieGGPPS could catalyze the formation of (E)-geranylgeraniol against different combinations of substrates including isopentenyl pyrophosphate (IPP)/DMAPP, IPP/(E)-GPP, and IPP/(E)-FPP, suggesting that MhieGGPPS could not only use (E)-FPP but also (E)-GPP and DMAPP as the allylic cosubstrates. In kinetic analysis, the (E)-FPP was most tightly bound to MhieGGPPS than that of others. It was proposed that MhieGGPPS as a multifunctional enzyme is differentiated from the other GGPPSs in the animals and plants, which only accepted (E)-FPP as the allylic cosubstrate. These findings provide valuable insights into understanding the functional plasticity of GGPPS in M. hieroglyphica and the novel biosynthesis mechanism in the isoprenoid pathway.


Assuntos
Besouros , Hemiterpenos , Compostos Organofosforados , Fosfatos de Poli-Isoprenil , Sesquiterpenos , Animais , Farnesiltranstransferase , Cinética , Simulação de Acoplamento Molecular , Filogenia , Mamíferos
3.
Insect Mol Biol ; 32(3): 229-239, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36533988

RESUMO

Farnesyl/geranylgeranyl diphosphate synthases (FPPS/GGPPS) as the short-chain prenyltransferases catalyse the formation of the acyclic precursors (E)-FPP and (E)-GGPP for isoprenoid biosynthesis. Here, we first cloned the cDNAs encoding FPPS and GGPPS in the vetch aphid Megoura viciae (designated as MvFPPS and MvGGPPS). They had an open reading frame of 1185 and 930 bp in length, encoding 395 and 309 amino acids, with a theoretical isoelectric point of 6.52 and 6.21, respectively. Sequence alignment and phylogenetic analysis showed that MvFPPS and MvGGPPS shared the conserved aspartate-rich motifs characterized by all prenyltransferases identified to date and were clustered with their homologues in two large clades. RNA interference (RNAi) combined with gas chromatography/mass spectrometry (GC-MS) analysis showed that both MvFPPS and MvGGPPS were involved in the biosynthesis of alarm pheromone. Spatiotemporal expression profiling showed that the expression of MvFPPS and MvGGPPS was significantly higher in embryos than in other tissues. RNAi and GC-MS performed specifically in embryos corroborated the function of MvFPPS and MvGGPPS. In vitro, enzymatic activity assay and product analysis demonstrated that MvFPPS could catalysed the formation of (E)-FPP using DMAPP or (E)-GPP as the allylic cosubstrates in the presence of IPP, while MvGGPPS could only use (E)-GPP or (E)-FPP as cosubstrates. Functional interaction analysis using RNAi revealed that MvGGPPS exerts unidirectional functional compensation for MvFPPS. Moreover, it can regulate the biosynthesis of alarm pheromone by imposing a negative feedback regulation on MvFPPS. Our study helps to understand the molecular regulatory mechanism of terpenoid biosynthesis in the aphid.


Assuntos
Afídeos , Geraniltranstransferase , Animais , Geraniltranstransferase/genética , Geraniltranstransferase/química , Geraniltranstransferase/metabolismo , Afídeos/metabolismo , Feromônios , Filogenia
4.
Int J Mol Sci ; 24(2)2023 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-36674507

RESUMO

As one of the most imperative antioxidants in higher plants, carotenoids serve as accessory pigments to harvest light for photosynthesis and photoprotectors for plants to adapt to high light stress. Here, we report a small subunit (SSU) of geranylgeranyl diphosphate synthase (GGPPS) in Nicotiana tabacum, NtSSU II, which takes part in the regulation carotenoid biosynthesis by forming multiple enzymatic components with NtGGPPS1 and downstream phytoene synthase (NtPSY1). NtSSU II transcript is widely distributed in various tissues and stimulated by low light and high light treatments. The confocal image revealed that NtSSU II was localized in the chloroplast. Bimolecular fluorescence complementation (BiFC) indicated that NtSSU II and NtGGPPS1 formed heterodimers, which were able to interact with phytoene synthase (NtPSY1) to channel GGPP into the carotenoid production. CRISPR/Cas9-induced ntssu II mutant exhibited decreased leaf area and biomass, along with a decline in carotenoid and chlorophyll accumulation. Moreover, the genes involved in carotenoid biosynthesis were also downregulated in transgenic plants of ntssu II mutant. Taken together, the newly identified NtSSU II could form multiple enzymatic components with NtGGPPS1 and NtPSY1 to regulate carotenoid biosynthesis in N. tabacum, in addition to the co-expression of genes in carotenoids biosynthetic pathways.


Assuntos
Carotenoides , Nicotiana , Farnesiltranstransferase/genética , Farnesiltranstransferase/metabolismo , Nicotiana/genética , Nicotiana/metabolismo , Carotenoides/metabolismo , Fotossíntese , Geranil-Geranildifosfato Geranil-Geraniltransferase/genética , Geranil-Geranildifosfato Geranil-Geraniltransferase/metabolismo
5.
Protein Expr Purif ; 189: 105986, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34600111

RESUMO

To date, there is no functional characterization of EmGGPPS (from Elizabethkingia meningoseptica sp.F2) as enzymes catalyzing GGPP. In this research, maltose-binding protein (MBP), disulfide bond A (DbsA), disulfide bond C (DbsC), and two other small protein tags, GB1 (Protein G B1 domain) and ZZ (Protein A IgG ZZ repeat domain), were used as fusion partners to construct an EmGGPPS fusion expression system. The results indicated that the expression of MBP-EmGGPPS was higher than that of the other four fusion proteins in E. coli BL21 (DE3). Additionally, using EmGGPPS as a catalyst for the production of GGPP was verified using a color complementation assay in Escherichia coli. In parallel with it, the enzyme activity experiment in vitro showed that the EmGGPPS protein could produce GGPP, GPP and FPP. Finally, we successfully demonstrated MK-4 production in engineered E. coli by overexpression of EmGGPPS.


Assuntos
Farnesiltranstransferase/genética , Flavobacteriaceae/enzimologia , Proteínas Ligantes de Maltose/genética , Fosfatos de Poli-Isoprenil/biossíntese , Proteínas Recombinantes de Fusão/genética , Sequência de Aminoácidos , Clonagem Molecular , Dissulfetos/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Farnesiltranstransferase/metabolismo , Flavobacteriaceae/genética , Expressão Gênica , Proteínas Ligantes de Maltose/metabolismo , Plasmídeos/química , Plasmídeos/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Vitamina K 2/análogos & derivados , Vitamina K 2/metabolismo
6.
J Biol Chem ; 295(15): 5152-5162, 2020 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-32139507

RESUMO

Protein prenylation is an essential posttranslational modification and includes protein farnesylation and geranylgeranylation using farnesyl diphosphate or geranylgeranyl diphosphate as substrates, respectively. Geranylgeranyl diphosphate synthase is a branch point enzyme in the mevalonate pathway that affects the ratio of farnesyl diphosphate to geranylgeranyl diphosphate. Abnormal geranylgeranyl diphosphate synthase expression and activity can therefore disrupt the balance of farnesylation and geranylgeranylation and alter the ratio between farnesylated and geranylgeranylated proteins. This change is associated with the progression of nonalcoholic fatty liver disease (NAFLD), a condition characterized by hepatic fat overload. Of note, differential accumulation of farnesylated and geranylgeranylated proteins has been associated with differential stages of NAFLD and NAFLD-associated liver fibrosis. In this review, we summarize key aspects of protein prenylation as well as advances that have uncovered the regulation of associated metabolic patterns and signaling pathways, such as Ras GTPase signaling, involved in NAFLD progression. Additionally, we discuss unique opportunities for targeting prenylation in NAFLD/hepatocellular carcinoma with agents such as statins and bisphosphonates to improve clinical outcomes.


Assuntos
Farnesiltranstransferase/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , Fosfatos de Poli-Isoprenil/metabolismo , Prenilação de Proteína , Processamento de Proteína Pós-Traducional , Animais , Progressão da Doença , Humanos , Hepatopatia Gordurosa não Alcoólica/metabolismo
7.
Plant J ; 103(1): 248-265, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32064705

RESUMO

In plants, geranylgeranyl diphosphate (GGPP, C20 ) synthesized by GGPP synthase (GGPPS) serves as precursor for vital metabolic branches including specialized metabolites. Here, we report the characterization of a GGPPS (CrGGPPS2) from the Madagascar periwinkle (Catharanthus roseus) and demonstrate its role in monoterpene (C10 )-indole alkaloids (MIA) biosynthesis. The expression of CrGGPPS2 was not induced in response to methyl jasmonate (MeJA), and was similar to the gene encoding type-I protein geranylgeranyltransferase_ß subunit (CrPGGT-I_ß), which modulates MIA formation in C. roseus cell cultures. Recombinant CrGGPPS2 exhibited a bona fide GGPPS activity by catalyzing the formation of GGPP as the sole product. Co-localization of fluorescent protein fusions clearly showed CrGGPPS2 was targeted to plastids. Downregulation of CrGGPPS2 by virus-induced gene silencing (VIGS) significantly decreased the expression of transcription factors and pathway genes related to MIA biosynthesis, resulting in reduced MIA. Chemical complementation of CrGGPPS2-vigs leaves with geranylgeraniol (GGol, alcoholic form of GGPP) restored the negative effects of CrGGPPS2 silencing on MIA biosynthesis. In contrast to VIGS, transient and stable overexpression of CrGGPPS2 enhanced the MIA biosynthesis. Interestingly, VIGS and transgenic-overexpression of CrGGPPS2 had no effect on the main GGPP-derived metabolites, cholorophylls and carotenoids in C. roseus leaves. Moreover, silencing of CrPGGT-I_ß, similar to CrGGPPS2-vigs, negatively affected the genes related to MIA biosynthesis resulting in reduced MIA. Overall, this study demonstrated that plastidial CrGGPPS2 plays an indirect but necessary role in MIA biosynthesis. We propose that CrGGPPS2 might be involved in providing GGPP for modifying proteins of the signaling pathway involved in MIA biosynthesis.


Assuntos
Catharanthus/enzimologia , Farnesiltranstransferase/metabolismo , Monoterpenos/metabolismo , Proteínas de Plantas/metabolismo , Alcaloides de Triptamina e Secologanina/metabolismo , Catharanthus/genética , Catharanthus/metabolismo , Farnesiltranstransferase/genética , Redes e Vias Metabólicas , Filogenia , Plastídeos/metabolismo , Análise de Sequência de DNA , Transcriptoma
8.
Pharmacol Res ; 167: 105528, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33667685

RESUMO

Geranylgeranyl diphosphate synthase (GGDPS), an enzyme in the isoprenoid biosynthetic pathway (IBP), produces the isoprenoid (geranylgeranyl pyrophosphate, GGPP) used in protein geranylgeranylation reactions. Our prior studies utilizing triazole bisphosphonate-based GGDPS inhibitors (GGSIs) have revealed that these agents represent a novel strategy by which to induce cancer cell death, including multiple myeloma and pancreatic cancer. Statins inhibit the rate-limiting enzyme in the IBP and potentiate the effects of GGSIs in vitro. The in vivo effects of combination therapy with statins and GGSIs have not been determined. Here we evaluated the effects of combining VSW1198, a novel GGSI, with a statin (lovastatin or pravastatin) in CD-1 mice. Twice-weekly dosing with VSW1198 at the previously established maximally tolerated dose in combination with a statin led to hepatotoxicity, while once-weekly VSW1198-based combinations were feasible. No abnormalities in kidney, spleen, brain or skeletal muscle were observed with combination therapy. Combination therapy disrupted protein geranylgeranylation in vivo. Evaluation of hepatic isoprenoid levels revealed decreased GGPP levels in the single drug groups and undetectable GGPP levels in the combination groups. Additional studies with combinations using 50% dose-reductions of either VSW1198 or lovastatin revealed minimal hepatotoxicity with expected on-target effects of diminished GGPP levels and disruption of protein geranylgeranylation. Combination statin/GGSI therapy significantly slowed tumor growth in a myeloma xenograft model. Collectively, these studies are the first to demonstrate that combination IBP inhibitor therapy alters isoprenoid levels and disrupts protein geranylgeranylation in vivo as well as slows tumor growth in a myeloma xenograft model, thus providing the framework for future clinical exploration.


Assuntos
Vias Biossintéticas/efeitos dos fármacos , Diterpenos/administração & dosagem , Sistemas de Liberação de Medicamentos/métodos , Inibidores de Hidroximetilglutaril-CoA Redutases/administração & dosagem , Prenilação de Proteína/efeitos dos fármacos , Terpenos/metabolismo , Triazóis/administração & dosagem , Animais , Vias Biossintéticas/fisiologia , Linhagem Celular Tumoral , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/patologia , Diterpenos/toxicidade , Avaliação Pré-Clínica de Medicamentos/métodos , Quimioterapia Combinada , Inibidores Enzimáticos/administração & dosagem , Inibidores Enzimáticos/toxicidade , Farnesiltranstransferase/antagonistas & inibidores , Farnesiltranstransferase/metabolismo , Feminino , Inibidores de Hidroximetilglutaril-CoA Redutases/toxicidade , Lovastatina/administração & dosagem , Lovastatina/toxicidade , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Pravastatina/administração & dosagem , Pravastatina/toxicidade , Prenilação de Proteína/fisiologia , Terpenos/antagonistas & inibidores , Triazóis/toxicidade , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
10.
Bioorg Med Chem ; 44: 116307, 2021 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-34298413

RESUMO

Agents that inhibit the enzyme geranylgeranyl diphosphate synthase (GGDPS) have anti-cancer activity and our prior studies have investigated the structure-function relationship for a family of isoprenoid triazole bisphosphonates as GGDPS inhibitors. To further explore this structure-function relationship, a series of novel α-modified triazole phosphonates was prepared and evaluated for activity as GGDPS inhibitors in enzyme and cell-based assays. These studies revealed flexibility at the α position of the bisphosphonate derivatives with respect to being able to accommodate a variety of substituents without significantly affecting potency compared to the parent unsubstituted inhibitor. However, the monophosphonate derivatives lacked activity. These studies further our understanding of the structure-function relationship of the triazole-based GGDPS inhibitors and lay the foundation for future studies evaluating the impact of α-modifications on in vivo activity.


Assuntos
Difosfonatos/farmacologia , Inibidores Enzimáticos/farmacologia , Farnesiltranstransferase/antagonistas & inibidores , Triazóis/farmacologia , Difosfonatos/síntese química , Difosfonatos/química , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Farnesiltranstransferase/metabolismo , Humanos , Estrutura Molecular , Relação Estrutura-Atividade , Triazóis/síntese química , Triazóis/química
11.
Arch Insect Biochem Physiol ; 106(2): e21760, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33231898

RESUMO

The Chinese white pine beetle Dendroctonus armandi (Tsai and Li) is a significant pest of the Qinling and Bashan Mountains pine forests of China. The Chinese white pine beetle can overcome the defences of Chinese white pine Pinus armandi (Franch) through pheromone-assisted aggregation that results in a mass attack of host trees. We isolated five full-length complementary DNAs encoding mevalonate pathway-related enzyme genes from the Chinese white pine beetle (D. armandi), which are acetoacetyl-CoA thiolase (AACT), geranylgeranyl diphosphate synthase (GGPPS), mevalonate kinase (MK), mevalonate diphosphate decarboxylase (MPDC), and phosphomevalonate kinase (PMK). Bioinformatic analyses were performed on the full-length deduced amino acid sequences. Differential expression of these five genes was observed between sexes, and within these significant differences among topically applied juvenile hormone III (JH III), fed on phloem of P. armandi, tissue distribution, and development stage. Mevalonate pathway genes expression were induced by JH III and feeding.


Assuntos
Genes de Insetos , Proteínas de Insetos/genética , Redes e Vias Metabólicas/genética , Ácido Mevalônico/metabolismo , Transcriptoma , Gorgulhos/genética , Sequência de Aminoácidos , Animais , Feminino , Proteínas de Insetos/química , Proteínas de Insetos/metabolismo , Larva/enzimologia , Larva/crescimento & desenvolvimento , Masculino , Filogenia , Pupa/enzimologia , Pupa/crescimento & desenvolvimento , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Alinhamento de Sequência , Gorgulhos/enzimologia , Gorgulhos/crescimento & desenvolvimento
12.
Bioorg Med Chem ; 28(16): 115604, 2020 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-32690260

RESUMO

Geranylgeranyl diphosphate synthase (GGDPS) inhibitors are of potential therapeutic interest as a consequence of their activity against the bone marrow cancer multiple myeloma. A series of bisphosphonates linked to an isoprenoid tail through an amide linkage has been prepared and tested for the ability to inhibit GGDPS in enzyme and cell-based assays. The amides were designed as analogues to triazole-based GGDPS inhibitors. Several of the new compounds show GGDPS inhibitory activity in both enzyme and cell assays, with potency dependent on chain length and olefin stereochemistry.


Assuntos
Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Farnesiltranstransferase/antagonistas & inibidores , Triazóis/química , Triazóis/farmacologia , Amidas/química , Amidas/farmacologia , Linhagem Celular , Difosfonatos/química , Difosfonatos/farmacologia , Farnesiltranstransferase/metabolismo , Humanos , Modelos Moleculares , Relação Estrutura-Atividade , Terpenos/química , Terpenos/farmacologia
13.
Proc Natl Acad Sci U S A ; 114(26): 6866-6871, 2017 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-28607067

RESUMO

In plants, geranylgeranyl diphosphate (GGPP) is produced by plastidic GGPP synthase (GGPPS) and serves as a precursor for vital metabolic branches, including chlorophyll, carotenoid, and gibberellin biosynthesis. However, molecular mechanisms regulating GGPP allocation among these biosynthetic pathways localized in the same subcellular compartment are largely unknown. We found that rice contains only one functionally active GGPPS, OsGGPPS1, in chloroplasts. A functionally active homodimeric enzyme composed of two OsGGPPS1 subunits is located in the stroma. In thylakoid membranes, however, the GGPPS activity resides in a heterodimeric enzyme composed of one OsGGPPS1 subunit and GGPPS recruiting protein (OsGRP). OsGRP is structurally most similar to members of the geranyl diphosphate synthase small subunit type II subfamily. In contrast to members of this subfamily, OsGRP enhances OsGGPPS1 catalytic efficiency and specificity of GGPP production on interaction with OsGGPPS1. Structural biology and protein interaction analyses demonstrate that affinity between OsGRP and OsGGPPS1 is stronger than between two OsGGPPS1 molecules in homodimers. OsGRP determines OsGGPPS1 suborganellar localization and directs it to a large protein complex in thylakoid membranes, consisting of geranylgeranyl reductase (OsGGR), light-harvesting-like protein 3 (OsLIL3), protochlorophyllide oxidoreductase (OsPORB), and chlorophyll synthase (OsCHLG). Taken together, genetic and biochemical analyses suggest OsGRP functions in recruiting OsGGPPS1 from the stroma toward thylakoid membranes, thus providing a mechanism to control GGPP flux toward chlorophyll biosynthesis.


Assuntos
Clorofila/biossíntese , Geraniltranstransferase/metabolismo , Complexos Multiproteicos/metabolismo , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Tilacoides/metabolismo , Clorofila/genética , Geraniltranstransferase/genética , Complexos Multiproteicos/genética , Oryza/genética , Proteínas de Plantas/genética , Tilacoides/genética
14.
Biol Chem ; 400(12): 1617-1627, 2019 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-31120854

RESUMO

Geranylgeranyl diphosphate synthase (GGPPS) is an enzyme that catalyzes the synthesis of geranylgeranyl pyrophosphate (GGPP). GGPPS is implicated in many disorders, but its role in idiopathic pulmonary fibrosis (IPF) remains unclear. This study aimed to investigate the role of GGPPS in IPF. We established bleomycin-induced lung injury in a lung-specific GGPPS-deficient mouse (GGPPS-/-) and detected GGPPS expression in lung tissues by Western blot and immunohistochemistry analysis. We found that GGPPS expression increased during lung injury and fibrosis in mice induced by bleomycin, and GGPPS deficiency augmented lung fibrosis. GGPPS deficiency activated lung fibroblast by facilitating transforming growth factor ß1 while antagonizing bone morphogenetic protein 4 signaling. Notably, the supplementation of exogenous GGPP mitigated lung fibrosis in GGPPS-/- mice induced by bleomycin. In conclusion, our findings suggest that GGPPS provides protection against pulmonary fibrosis and that the restoration of protein geranylgeranylation may benefit statin-induced lung injury.


Assuntos
Proteína Morfogenética Óssea 4/metabolismo , Farnesiltranstransferase/metabolismo , Fibrose Pulmonar Idiopática/metabolismo , Complexos Multienzimáticos/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Animais , Farnesiltranstransferase/deficiência , Inibidores de Hidroximetilglutaril-CoA Redutases , Fibrose Pulmonar Idiopática/induzido quimicamente , Fibrose Pulmonar Idiopática/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Complexos Multienzimáticos/deficiência
15.
Microb Cell Fact ; 18(1): 169, 2019 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-31601211

RESUMO

BACKGROUND: With a variety of physiological and pharmacological functions, menaquinone is an essential prenylated product that can be endogenously converted from phylloquinone (VK1) or menadione (VK3) via the expression of Homo sapiens UBIAD1 (HsUBIAD1). The methylotrophic yeast, Pichia pastoris, is an attractive expression system that has been successfully applied to the efficient expression of heterologous proteins. However, the menaquinone biosynthetic pathway has not been discovered in P. pastoris. RESULTS: Firstly, we constructed a novel synthetic pathway in P. pastoris for the production of menaquinone-4 (MK-4) via heterologous expression of HsUBIAD1. Then, the glyceraldehyde-3-phosphate dehydrogenase constitutive promoter (PGAP) appeared to be mostsuitable for the expression of HsUBIAD1 for various reasons. By optimizing the expression conditions of HsUBIAD1, its yield increased by 4.37 times after incubation at pH 7.0 and 24 °C for 36 h, when compared with that under the initial conditions. We found HsUBIAD1 expressed in recombinant GGU-23 has the ability to catalyze the biosynthesis of MK-4 when using VK1 and VK3 as the isopentenyl acceptor. In addition, we constructed a ribosomal DNA (rDNA)-mediated multi-copy expression vector for the fusion expression of SaGGPPS and PpIDI, and the recombinant GGU-GrIG afforded higher MK-4 production, so that it was selected as the high-yield strain. Finally, the yield of MK-4 was maximized at 0.24 mg/g DCW by improving the GGPP supply when VK3 was the isopentenyl acceptor. CONCLUSIONS: In this study, we constructed a novel synthetic pathway in P. pastoris for the biosynthesis of the high value-added prenylated product MK-4 through heterologous expression of HsUBIAD1 and strengthened accumulation of GGPP. This approach could be further developed and accomplished for the biosynthesis of other prenylated products, which has great significance for theoretical research and industrial application.


Assuntos
Dimetilaliltranstransferase , Pichia , Vitamina K 2/análogos & derivados , Vias Biossintéticas , Dimetilaliltranstransferase/genética , Dimetilaliltranstransferase/metabolismo , Regulação Fúngica da Expressão Gênica , Pichia/genética , Pichia/metabolismo , Proteínas Recombinantes , Vitamina K 2/metabolismo
16.
J Cell Mol Med ; 22(4): 2177-2189, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29377583

RESUMO

This study aimed to evaluate the biological role of geranylgeranyl diphosphate synthase (GGPPS) in the progression of lung adenocarcinoma. GGPPS expression was detected in lung adenocarcinoma tissues by qRT-PCR, tissue microarray (TMA) and western blotting. The relationships between GGPPS expression and the clinicopathological characteristics and prognosis of lung adenocarcinoma patients were assessed. GGPPS was down-regulated in SPCA-1, PC9 and A549 cells using siRNA and up-regulated in A549 cells using an adenoviral vector. The biological roles of GGPPS in cell proliferation, apoptosis, migration and invasion were determined by MTT and colony formation assays, flow cytometry, and transwell and wound-healing assays, respectively. In addition, the regulatory roles of GGPPS on the expression of several epithelial-mesenchymal transition (EMT) markers were determined. Furthermore, the Rac1/Cdc42 prenylation was detected after knockdown of GGPPS in SPCA-1 and PC9 cells. GGPPS expression was significantly increased in lung adenocarcinoma tissues compared to that in adjacent normal tissues. Overexpression of GGPPS was correlated with large tumours, high TNM stage, lymph node metastasis and poor prognosis in patients. Knockdown of GGPPS inhibited the migration and invasion of lung adenocarcinoma cells, but did not affect cell proliferation and apoptosis. Meanwhile, GGPPS inhibition significantly increased the expression of E-cadherin and reduced the expression of N-cadherin and vimentin in lung adenocarcinoma cells. In addition, the Rac1/Cdc42 geranylgeranylation was reduced by GGPPS knockdown. Overexpression of GGPPS correlates with poor prognosis of lung adenocarcinoma and contributes to metastasis through regulating EMT.


Assuntos
Adenocarcinoma de Pulmão/enzimologia , Farnesiltranstransferase/metabolismo , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/patologia , Idoso , Apoptose/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Transição Epitelial-Mesenquimal/genética , Farnesiltranstransferase/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Invasividade Neoplásica , Metástase Neoplásica , Prognóstico , Prenilação de Proteína , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Regulação para Cima/genética , Proteína cdc42 de Ligação ao GTP/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo
17.
Invest New Drugs ; 36(5): 810-818, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29497895

RESUMO

Geranylgeranyl diphosphate synthase (GGDPS) is the enzyme in the isoprenoid biosynthesis pathway that catalyzes the synthesis of the 20-carbon isoprenoid GGPP, which serves as the isoprenoid donor for protein geranylgeranylation reactions. Rab proteins mediate vesicle trafficking within the cell and their activity is dependent on geranylgeranylation. Our prior work has demonstrated that agents that disrupt Rab geranylgeranylation disrupt monoclonal protein trafficking in myeloma cells, resulting in induction of the unfolded protein response pathway and apoptosis. VSW1198 is a potent GGDPS inhibitor with measurable cellular activity at concentrations as low as 30 nM. Due to its potent activity against myeloma cells in vitro, we were interested in evaluating the toxicology profile, pharmacokinetic (PK) profile, tissue distribution pattern and metabolic stability of VSW1198 in preparation for in vivo efficacy studies. Single dose testing via IV administration in CD-1 mice revealed a maximum tolerated dose of 0.5 mg/kg. Doses ≥1 mg/kg resulted in liver toxicity that peaked around 6-7 days post-injection. Disruption of protein geranylgeranylation following repeat dosing of VSW1198 was confirmed via immunoblot analysis of unmodified Rap1a in multiple organs. The PK studies revealed a half-life of 47.7 ± 7.4 h. VSW1198 was present in all tested tissues with the highest levels in the liver. In both human liver microsomes and mouse S9 studies VSW1198 showed complete stability, suggesting no phase I or phase II metabolism. In summary, these studies demonstrate systemic distribution, on-target disruption of protein geranylgeranylation, and metabolic stability of a potent GGDPS inhibitor VSW1198 and form the basis for future efficacy studies in mouse models of myeloma.


Assuntos
Antineoplásicos/farmacologia , Farnesiltranstransferase/antagonistas & inibidores , Animais , Feminino , Humanos , Fígado/efeitos dos fármacos , Dose Máxima Tolerável , Camundongos , Microssomos Hepáticos/metabolismo , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/metabolismo , Prenilação de Proteína , Distribuição Tecidual
18.
Insect Mol Biol ; 27(6): 824-834, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30039630

RESUMO

The terpenoid backbone biosynthesis pathway is responsible for the synthesis of different backbones for terpenoids; (E)-ß-farnesene (EßF), a sesquiterpene, is the major component of aphid alarm pheromone. Our previous studies eliminated the possibility of host plants and endosymbionts as the sources of EßF, and we thus speculate that the terpenoid pathway might affect the biosynthesis of EßF in aphids. First, the transcriptional responses of four genes encoding farnesyl diphosphate synthase (FPPS), geranylgeranyl diphosphate synthase (GGPPS) and decaprenyl diphosphate synthase in the cotton aphid Aphis gossypii to simulated stimulation were analysed using quantitative real-time PCR, showing an immediate decrease in the transcript abundances of the four genes. Next, RNA-interference-mediated gene knockdown was performed, indicating that fpps knockdown caused a significant cost in terms of body size and fecundity. Finally, an association analysis of gene knockdown with the amount of EßF was conducted, revealing that the concentration of EßF per milligram of aphid was drastically decreased in response to fpps knockdown, whereas ggpps knockdown significantly raised the concentration of EßF. Our data support a peculiar mode of biosynthesis and storage of the aphid alarm pheromone that relies directly on the terpenoid backbone biosynthesis pathway in the aphid.


Assuntos
Afídeos/metabolismo , Feromônios/biossíntese , Sesquiterpenos/metabolismo , Animais , Afídeos/genética , Tamanho Corporal , Fertilidade , Regulação da Expressão Gênica , Mortalidade , Interferência de RNA
19.
J Bone Miner Metab ; 36(2): 133-147, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28357594

RESUMO

Bone fracture healing is achieved through the proliferation and differentiation of stem cells, while bone marrow stem cells (BMSCs) contribute to endochondral ossification. During fracture healing, mesenchymal progenitor cells first form a cartilaginous blastema that becomes vascularized to recruit precursor cells of osteoblasts through the bone morphogenetic protein 2 (Bmp2)/Smad-dependent Runx2 pathway. Statins deplete geranylgeranyl diphosphate (GGPP), which participates in the regulation of BMSCs differentiation, through the inhibition of 3-hydroxy-3-methylglutaryl (HMG)-CoA reductase, leading to impaired protein geranylgeranylation, which strongly impacts the bone synthesis induced by Bmp2. Accordingly, we would like to investigate the role of geranylgeranyl diphosphate synthase 1 (Ggps1) in bone fracture via endochondral ossification in mice. We used a Cre-loxP system, namely the tamoxifen-inducible Collagen 2-CreERT2 Ggps1 fl/fl, to eliminate specifically the Ggps1 activity in chondrocytes of 8-10-week-old mice. We found that the endochondral bone formation, calcification and vasculogenesis of the bony callus were accelerated in fractures in Ggps1-/-mice. Together, the results of this study confirm that the specific deletion of Ggps1, using the Collagen 2-CreERT2 mice, will accelerate the fracture healing process by activating the Bmp2/Smad-dependent Runx2 pathway. In addition, we managed to improve the fracture healing process by inhibiting the Ggps1 activity and its related products with statin drugs.


Assuntos
Condrócitos/metabolismo , Farnesiltranstransferase/metabolismo , Consolidação da Fratura , Técnicas de Silenciamento de Genes , Complexos Multienzimáticos/metabolismo , Osteogênese , Animais , Biomarcadores/metabolismo , Fenômenos Biomecânicos , Proteína Morfogenética Óssea 2/metabolismo , Calo Ósseo/metabolismo , Calo Ósseo/patologia , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Farnesiltranstransferase/deficiência , Fêmur/irrigação sanguínea , Fêmur/diagnóstico por imagem , Fêmur/patologia , Fêmur/fisiopatologia , Consolidação da Fratura/genética , Regulação da Expressão Gênica , Antígeno Ki-67/metabolismo , Masculino , Camundongos Knockout , Complexos Multienzimáticos/deficiência , Neovascularização Fisiológica , Osteogênese/genética , Transdução de Sinais , Proteínas Smad/metabolismo , Fator de Crescimento Transformador beta/metabolismo
20.
Molecules ; 22(6)2017 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-28555000

RESUMO

The enzyme geranylgeranyl diphosphate synthase (GGDPS) catalyzes the synthesis of the 20-carbon isoprenoid geranylgeranyl diphosphate (GGPP). GGPP is the isoprenoid donor for protein geranylgeranylation reactions catalyzed by the enzymes geranylgeranyl transferase (GGTase) I and II. Inhibitors of GGDPS result in diminution of protein geranylgeranylation through depletion of cellular GGPP levels, and there has been interest in GGDPS inhibitors as potential anti-cancer agents. Here we discuss recent advances in the development of GGDPS inhibitors, including insights gained by structure-function relationships, and review the preclinical data that support the continued development of this novel class of drugs.


Assuntos
Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Farnesiltranstransferase/antagonistas & inibidores , Animais , Farnesiltranstransferase/metabolismo , Humanos , Prenilação de Proteína/efeitos dos fármacos , Relação Estrutura-Atividade , Terpenos/química , Terpenos/farmacologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa