Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Br J Haematol ; 201(1): 35-44, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36786081

RESUMO

Germline predisposition to haematological cancers is increasingly being recognised. Widespread adoption of high-throughput and whole genome sequencing is identifying large numbers of causative germline mutations. Constitutional pathogenic variants in six genes (DEAD-box helicase 41 [DDX41], ETS variant transcription factor 6 [ETV6], CCAAT enhancer binding protein alpha [CEBPA], RUNX family transcription factor 1 [RUNX1], ankyrin repeat domain containing 26 [ANKRD26] and GATA binding protein 2 [GATA2]) are particularly significant in increasing the risk of haematological cancers, with variants in some of these genes also associated with non-malignant syndromic features. Allogeneic blood and marrow transplantation (BMT) is central to management in many haematological cancers. Identification of germline variants may have implications for the patient and potential family donors. Beyond selection of an appropriate haematopoietic stem cell donor there may be sensitive issues surrounding identification and counselling of hitherto asymptomatic relatives. If BMT is needed, there is frequently a clinical urgency that demands a rapid integrated multidisciplinary approach to testing and decision making involving haematologists in collaboration with Clinical and Laboratory Geneticists. Here, we present best practice consensus guidelines arrived at following a meeting convened by the UK Cancer Genetics Group (UKCGG), the Cancer Research UK (CRUK) funded CanGene-CanVar research programme (CGCV), NHS England Genomic Laboratory Hub (GLH) Haematological Oncology Malignancies Working Group and the British Society of Blood and Marrow Transplantation and Cellular Therapy (BSBMTCT).


Assuntos
Neoplasias Hematológicas , Transplante de Células-Tronco Hematopoéticas , Humanos , Medula Óssea , Medicina Estatal , Neoplasias Hematológicas/genética , Neoplasias Hematológicas/terapia , Predisposição Genética para Doença , Mutação em Linhagem Germinativa , Genômica , Fatores de Transcrição/genética , Reino Unido
2.
Genet Med ; 25(8): 100875, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37149759

RESUMO

PURPOSE: Clinical checklists are the standard of care to determine whether a child with cancer shows indications for genetic testing. Nevertheless, the efficacy of these tests to reliably detect genetic cancer predisposition in children with cancer is still insufficiently investigated. METHODS: We assessed the validity of clinically recognizable signs to identify cancer predisposition by correlating a state-of-the-art clinical checklist to the corresponding exome sequencing analysis in an unselected single-center cohort of 139 child-parent data sets. RESULTS: In total, one-third of patients had a clinical indication for genetic testing according to current recommendations, and 10.1% (14 of 139) of children harbored a cancer predisposition. Of these, 71.4% (10 of 14) were identified through the clinical checklist. In addition, >2 clinical findings in the checklist increased the likelihood to identifying genetic predisposition from 12.5% to 50%. Furthermore, our data revealed a high rate of genetic predisposition (40%, 4 of 10) in myelodysplastic syndrome cases, while no (likely) pathogenic variants were identified in the sarcoma and lymphoma group. CONCLUSION: In summary, our data show high checklist sensitivity, particularly in identifying childhood cancer predisposition syndromes. Nevertheless, the checklist used here also missed 29% of children with a cancer predisposition, highlighting the drawbacks of sole clinical evaluation and underlining the need for routine germline sequencing in pediatric oncology.


Assuntos
Neoplasias , Síndromes Neoplásicas Hereditárias , Humanos , Criança , Predisposição Genética para Doença , Detecção Precoce de Câncer , Neoplasias/diagnóstico , Neoplasias/genética , Neoplasias/patologia , Testes Genéticos , Genótipo , Síndromes Neoplásicas Hereditárias/diagnóstico , Síndromes Neoplásicas Hereditárias/genética , Mutação em Linhagem Germinativa/genética
3.
Breast Cancer Res ; 24(1): 11, 2022 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-35135604

RESUMO

PURPOSE: Estrogen-receptor (ER) and progesterone-receptor (PR) expression levels in breast cancer, which have been principally compared via binomial descriptors, can vary widely across tumors. We sought to characterize ER and PR expression levels using semi-quantitative analyses of receptor staining in germline pathogenic variant (PV) carriers of cancer predisposition genes. METHODS: We conducted a retrospective chart review of patients who underwent germline genetic testing for cancer predisposition genes at a tertiary cancer center genetics clinic. We performed comparisons of semi-quantitative ER and PR percentage staining levels across carriers and non-carriers of cancer predisposition genes. RESULTS: Breast cancers from BRCA1 PV carriers expressed significantly lower ER (15.2% vs 78.2%, p < 0.001) and lower PR (6.8% vs 41.1%, p < 0.001) staining compared to non-PV carriers. Similarly, breast cancers of BRCA2 (66.7% vs 78.2%, p = 0.005) and TP53 (50.6% vs 78.2%, p = 0.015) PV tumors also displayed moderate decreases in ER staining. Conversely, CHEK2 tumors displayed higher ER (93.1% vs 78.2%, p = 0.005) and PR (72% vs 48.8%, p = 0.001) staining when compared to non-PV carriers. We observed a wide range of dispersion across the ER and PR staining levels of the carriers and noncarriers. ER and PR ranges of dispersion of CHEK2 tumors were uniquely narrower than all other groups. CONCLUSION: The findings of our study suggest that precise expression levels of ER and PR in breast cancers can vary widely. These differences are further augmented when comparing expression staining across PV and non-PV carriers, suggesting potentially unique tumorigenesis and progression pathways influenced by germline cancer predisposition genes.


Assuntos
Neoplasias da Mama , Neoplasias da Mama/patologia , Quinase do Ponto de Checagem 2/genética , Feminino , Predisposição Genética para Doença , Células Germinativas/metabolismo , Mutação em Linhagem Germinativa , Hormônios , Humanos , Mutação , Receptores de Progesterona/genética , Receptores de Progesterona/metabolismo , Estudos Retrospectivos
4.
Int J Mol Sci ; 23(9)2022 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-35563565

RESUMO

Somatic loss of function mutations in cohesin genes are frequently associated with various cancer types, while cohesin disruption in the germline causes cohesinopathies such as Cornelia-de-Lange syndrome (CdLS). Here, we present the discovery of a recurrent heterozygous RAD21 germline aberration at amino acid position 298 (p.P298S/A) identified in three children with lymphoblastic leukemia or lymphoma in a total dataset of 482 pediatric cancer patients. While RAD21 p.P298S/A did not disrupt the formation of the cohesin complex, it altered RAD21 gene expression, DNA damage response and primary patient fibroblasts showed increased G2/M arrest after irradiation and Mitomycin-C treatment. Subsequent single-cell RNA-sequencing analysis of healthy human bone marrow confirmed the upregulation of distinct cohesin gene patterns during hematopoiesis, highlighting the importance of RAD21 expression within proliferating B- and T-cells. Our clinical and functional data therefore suggest that RAD21 germline variants can predispose to childhood lymphoblastic leukemia or lymphoma without displaying a CdLS phenotype.


Assuntos
Proteínas de Ciclo Celular , Proteínas de Ligação a DNA , Linfoma , Leucemia-Linfoma Linfoblástico de Células Precursoras , Apoptose , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Criança , Proteínas de Ligação a DNA/genética , Síndrome de Cornélia de Lange/genética , Pontos de Checagem da Fase G2 do Ciclo Celular , Células Germinativas/metabolismo , Humanos , Linfoma/genética , Mutação , Fenótipo , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética
5.
Int J Mol Sci ; 22(21)2021 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-34769003

RESUMO

While the shelterin complex guards and coordinates the mechanism of telomere regulation, deregulation of this process is tightly linked to malignant transformation and cancer. Here, we present the novel finding of a germline stop-gain variant (p.Q199*) in the shelterin complex gene POT1, which was identified in a child with acute myeloid leukemia. We show that the cells overexpressing the mutated POT1 display increased DNA damage and chromosomal instabilities compared to the wildtype counterpart. Protein and mRNA expression analyses in the primary patient cells further confirm that, physiologically, the variant leads to a nonfunctional POT1 allele in the patient. Subsequent telomere length measurements in the primary cells carrying heterozygous POT1 p.Q199* as well as POT1 knockdown AML cells revealed telomeric elongation as the main functional effect. These results show a connection between POT1 p.Q199* and telomeric dysregulation and highlight POT1 germline deficiency as a predisposition to myeloid malignancies in childhood.


Assuntos
Predisposição Genética para Doença/genética , Leucemia Mieloide Aguda/genética , Transtornos Mieloproliferativos/genética , Complexo Shelterina/genética , Proteínas de Ligação a Telômeros/genética , Adulto , Dano ao DNA/genética , Células Germinativas , Mutação em Linhagem Germinativa/genética , Células HEK293 , Humanos , Células Mieloides , RNA Mensageiro/genética , Telômero/genética , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa