Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Histochem Cell Biol ; 158(6): 561-569, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35852615

RESUMO

The cannabinoid CB1 receptor-mediated functions in astrocytes are highly dependent on the CB1 receptor distribution in these glial cells relative to neuronal sites, particularly at the nearby synapses under normal or pathological conditions. However, the portrait of the CB1 receptor distribution in astroglial compartments remains uncompleted because of the scarce CB1 receptor expression in these cells and the limited identification of astrocytes. The glial fibrillary acidic protein (GFAP) is commonly used as astroglial marker. However, because GFAP is a cytoskeleton protein mostly restricted to the astroglial cell bodies and their main branches, it seems not ideal for the localization of CB1 receptor distribution in astrocytes. Therefore, alternative markers to decipher the actual astroglial CB1 receptors are required. In this work, we have compared the glutamate aspartate transporter (GLAST) versus GFAP for the CB1 receptor localization in astrocytes. We found by immunoelectron microscopy that GLAST reveals almost three-fold astroglial area and four-fold astroglial membranes compared to GFAP. In addition, this better visualization of astrocytes was associated with the detection of 12% of the total CB1 receptor labeling in GLAST-positive astrocytes.


Assuntos
Sistema X-AG de Transporte de Aminoácidos , Astrócitos , Proteína Glial Fibrilar Ácida , Receptores de Canabinoides
2.
J Anat ; 235(3): 590-615, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-30901080

RESUMO

The astroglial lineage consists of heterogeneous cells instrumental for normal brain development, function and repair. Unfortunately, this heterogeneity complicates research in the field, which suffers from lack of truly specific and sensitive astroglial markers. Nevertheless, single astroglial markers are often used to describe astrocytes in different settings. We therefore investigated and compared spatiotemporal patterns of immunoreactivity in developing human brain from 12 to 21 weeks post conception and publicly available RNA expression data for four established and potential astroglial markers - GFAP, S100, AQP4 and YKL-40. In the hippocampal region, we also screened for C3, a complement component highly expressed in A1-reactive astrocytes. We found diverging partly overlapping patterns of the established astroglial markers GFAP, S100 and AQP4, confirming that none of these markers can fully describe and discriminate different developmental forms and subpopulations of astrocytes in human developing brain, although AQP4 seems to be the most sensitive and specific marker for the astroglial lineage at midgestation. AQP4 characterizes a brain-wide water transport system in cerebral cortex with regional differences in immunoreactivity at midgestation. AQP4 distinguishes a vast proportion of astrocytes and subpopulations of radial glial cells destined for the astroglial lineage, including astrocytes determined for the future glia limitans and apical truncated radial glial cells in ganglionic eminences, devoid of GFAP and S100. YKL-40 and C3d, previously found in reactive astrocytes, stain different subpopulations of astrocytes/astroglial progenitors in developing hippocampus at midgestation and may characterize specific subpopulations of 'developmental astrocytes'. Our results clearly reflect that lack of pan-astrocytic markers necessitates the consideration of time, region, context and aim when choosing appropriate astroglial markers.


Assuntos
Astrócitos , Biomarcadores/metabolismo , Encéfalo/embriologia , Aquaporina 4/metabolismo , Encéfalo/metabolismo , Proteína 1 Semelhante à Quitinase-3/metabolismo , Proteína Glial Fibrilar Ácida/metabolismo , Humanos , Proteínas S100/metabolismo
3.
Int J Dev Neurosci ; 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39285780

RESUMO

BACKGROUND: Finding effective pharmacological interventions to address the complex array of neurodevelopmental disorders is currently an urgent imperative within the scientific community as these conditions present significant challenges for patients and their families, often impacting cognitive, emotional, and social development. In this study, we aimed to explore non-invasive method to diagnose autism spectrum disorders (ASD) within Pakistan children population and to identify clinical drugs for its treatment. AIMS: The current report outlines a comprehensive bidirectional investigation showcasing the successful utilization of saliva samples to quantify the expression patterns of profilins (PFN1, 2, and 3); and ERM (ezrin, radixin, and moesin) proteins; and additionally moesin pseudogene 1 and moesin pseudogene 1 antisense (MSNP1AS). Subsequently, these expression profiles were employed to forecast interactions between drugs and genes in children diagnosed with ASD. METHODS: This study sought to delve into the intricate gene expression profiles using qualitative polymerase chain reaction of profilin isoforms (PFN1, 2, and 3) and ERM genes extracted from saliva samples obtained from children diagnosed with ASD. Through this analysis, we aimed to elucidate potential molecular mechanisms underlying ASD pathogenesis, shedding light on novel biomarkers and therapeutic targets for this complex neurological condition. (n = 22). Subsequently, we implemented a diagnostic model utilizing sparse partial least squares discriminant analysis (sPLS-DA) to predict drugs against our genes of interest. Furthermore, connectivity maps were developed to illustrate the predicted associations of 24 drugs with the genes expression. RESULTS: Our study results showed varied expression profile of cytoskeleton linked genes. Similarly, sPLS-DA model precisely predicted drug to genes response. Sixteen of the examined drugs had significant positive correlations with the expression of the targeted genes whereas eight of the predicted drugs had shown negative correlations. CONCLUSION: Here we report the role of cytoskeleton linked genes (PFN and ERM) in co-relation to ASD. Furthermore, variable yet significant quantitative expression of these genes successfully predicted drug-gene interactions as shown with the help of connectivity maps that can be used to support the clinical use of these drugs to treat individuals with ASD in future studies.

4.
Brain Struct Funct ; 2024 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-39153086

RESUMO

Specific spatiotemporal patterns of the normal glial differentiation during human brain development have not been thoroughly studied. Immunomorphological studies on postmortem material have remained a basic method for human neurodevelopmental studies so far. The main problem for the immunohistochemical research of astrogliogenesis is that now there are no universal astrocyte markers, that characterize the whole mature astrocyte population or precursors at each stage of development. To define the general course of astrogliogenesis in the developing human cortex, 25 fetal autopsy samples at the stages from eight postconceptional weeks to birth were collected for the immunomorphological analysis. Spatiotemporal immunoreactivity patterns with the panel of markers (ALDH1L1, GFAP, S100, SOX9, and Olig-2), related to glial differentiation were described and compared. The early S100 + cell population of ventral origin was described as well. This S100 + cell distribution deviated from the SOX9-immunoreactivity pattern and was similar to the Olig-2 one. In the given material the dorsal gliogenic wave was characterized by ALDH1L1-, GFAP-, and S100-immunoreactivity manifestation in the dorsal proliferative niche at the end of the early fetal period. The time point of dorsal astrogliogenesis was agreed upon not later than the 17 GW stage. ALDH1L1 + , GFAP + , S100 + , and SOX9 + cell expansion patterns from the ventricular and subventricular zones to the intermediate zone, subplate, and cortical plate were described at the end of early fetal, middle, and late fetal periods. The ALDH1L1-, GFAP-, and S100-immunoreactivity patterns were shown to be not completely identical.

5.
Front Neurol ; 11: 608, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32765393

RESUMO

Background: The diagnostic use of biomarkers in body fluids of multiple sclerosis (MS) patients allows the monitoring of different pathophysiological aspects of the disease. We previously reported elevated cerebrospinal fluid (CSF) and serum levels of glial fibrillary acidic protein (GFAP) but not neurofilament light chain (NfL) in progressive (PMS) compared to relapsing-remitting MS (RRMS) patients. Objectives: We analyzed the glial marker chitinase-3-like protein 1 (CHI3L1) in the CSF and serum of PMS and RRMS patients. To capture the extent of glial processes in relation to axonal damage in each individual patient, we established a score based on CHI3L1, GFAP, and NfL and compared this score between RRMS and PMS patients and its association with the extended disability status scale (EDSS). Methods: For this retrospective study, we included 86 MS patients (47 RRMS and 39 PMS) and 20 patients with other non-inflammatory neurological diseases (OND) as controls. NfL and GFAP levels were determined by the single-molecule array (Simoa). CHI3L1 levels were measured with classical enzyme-linked immunosorbent assay. A score was calculated based on glial to axonal markers (CHI3L1*GFAP/NfL, referred to as "Glia score"). Results: CHI3L1 showed higher CSF levels in PMS vs. RRMS and controls (p < 0.001 and p < 0.0001, respectively), RMS vs. controls (p < 0.01), and higher serum levels for PMS vs. RRMS (p < 0.05). The Glia score was higher in the CSF of PMS compared to RRMS patients (p < 0.0001) and in the serum of PMS patients compared to RRMS (p < 0.01). Furthermore, the Glia score and CHI3L1 in serum but not in CSF correlated with the disability as determined by EDSS in the PMS group but not in the RRMS group (Spearman ρ = 0.46 and 0.45, p = 0.003 and 0.004, respectively). Discussion: Our data indicate the involvement of glial mechanisms during the pathogenesis of PMS. Moreover, a calculated score may help to differentiate between PMS and RMS in the CSF and monitor disease progression in the serum of PMS patients.

6.
J Neurol ; 267(6): 1699-1708, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32100123

RESUMO

Neurofilament light chain protein (NfL) is currently the most accurate cerebrospinal fluid (CSF) biomarker in amyotrophic lateral sclerosis (ALS) in terms of both diagnostic and prognostic value, but the mechanism underlying its increase is still a matter of debate. Similarly, emerging CSF biomarkers of neurodegeneration and neuroinflammation showed promising results, although further studies are needed to clarify their clinical and pathophysiological roles. In the present study we compared the diagnostic accuracy of CSF NfL, phosphorylated (p)-tau/total (t)-tau ratio, chitinase-3-like protein 1 (YKL-40) and chitotriosidase 1 (CHIT1), in healthy controls (n = 43) and subjects with ALS (n = 80) or ALS mimics (n = 46). In ALS cases, we also investigated the association between biomarker levels and clinical variables, the extent of upper motor neuron (UMN) and lower motor neuron (LMN) degeneration, and denervation activity through electromyography (EMG). ALS patients showed higher levels of CSF NfL, YKL-40, CHIT1, and lower values of p-tau/t-tau ratio compared to both controls and ALS mimics. Among all biomarkers, NfL yielded the highest diagnostic performance (> 90% sensitivity and specificity) and was the best predictor of disease progression rate and survival in ALS. NfL levels showed a significant  correlation with the extent of LMN involvement, whereas YKL-40 levels increased together with the number of areas showing both UMN and LMN damage. EMG denervation activity did not correlate with any CSF biomarker change. These findings confirm the highest value of NfL among currently available CSF biomarkers for the diagnostic and prognostic assessment of ALS and contribute to the understanding of the pathophysiological and electrophysiological correlates of biomarker changes.


Assuntos
Esclerose Lateral Amiotrófica/líquido cefalorraquidiano , Esclerose Lateral Amiotrófica/diagnóstico , Esclerose Lateral Amiotrófica/fisiopatologia , Proteína 1 Semelhante à Quitinase-3/líquido cefalorraquidiano , Hexosaminidases/líquido cefalorraquidiano , Proteínas de Neurofilamentos/líquido cefalorraquidiano , Proteínas tau/líquido cefalorraquidiano , Idoso , Biomarcadores/líquido cefalorraquidiano , Progressão da Doença , Eletromiografia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Prognóstico , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa