Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
J Infect Chemother ; 28(11): 1513-1518, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35948249

RESUMO

INTRODUCTION: Small-colony variants (SCVs) of bacteria are subpopulations with a small colony size, low growth rate, and atypical colony morphology. The purpose of this study was to comprehensively elucidate the characteristics and underlying mechanism of the development of a glutamine-dependent SCV of E. coli, GU-92SCV, isolated from the blood of a patient with pyelonephritis. METHODS: The GU-92SCV strain was tested for auxotrophy testing for glutamine. DNA mutations in genes related to glutamine synthesis were analysed by sequencing. The isolate's proliferation and antimicrobial susceptibility in Mueller-Hinton II medium supplemented with glutamine were examined. RESULTS: The colony of the GU-92SCV strain did not grow on Mueller-Hinton II agar, but growth around the filter paper containing l-glutamine was enhanced on Mueller-Hinton II agar. The GU-92SCV strain had a single nucleotide substitution in glnA, c.193G>A, corresponding to p.Asp65Asn. Changing c.193G>A to the wild-type sequence in glnA restored these phenotypes. Because GU-92SCV did not grow in Mueller-Hinton II broth, antimicrobial susceptibility test results were not obtained; however, in the presence of 10 mg mL-1l-glutamine, the results were consistent with those of the revertant strain GU-92REV. CONCLUSION: To the best of our knowledge, this is the first clinical isolation of a glutamine-dependent E. coli SCV from a patient blood culture. Our data showed that glnA was important for the growth of E. coli in Mueller-Hinton II medium, which also required the presence of glutamine when performing antimicrobial susceptibility testing for glutamine-dependent SCV strains.


Assuntos
Anti-Infecciosos , Infecções por Escherichia coli , Escherichia coli , Glutamato-Amônia Ligase , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Infecções por Escherichia coli/tratamento farmacológico , Glutamato-Amônia Ligase/genética , Glutamina/genética , Humanos , Mutação de Sentido Incorreto
2.
Int J Mol Sci ; 23(7)2022 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-35409114

RESUMO

Streptomyces coelicolor is a soil bacterium living in a habitat with very changeable nutrient availability. This organism possesses a complex nitrogen metabolism and is able to utilize the polyamines putrescine, cadaverine, spermidine, and spermine and the monoamine ethanolamine. We demonstrated that GlnA2 (SCO2241) facilitates S. coelicolor to survive under high toxic polyamine concentrations. GlnA2 is a gamma-glutamylpolyamine synthetase, an enzyme catalyzing the first step in polyamine catabolism. The role of GlnA2 was confirmed in phenotypical studies with a glnA2 deletion mutant as well as in transcriptional and biochemical analyses. Among all GS-like enzymes in S. coelicolor, GlnA2 possesses the highest specificity towards short-chain polyamines (putrescine and cadaverine), while its functional homolog GlnA3 (SCO6962) prefers long-chain polyamines (spermidine and spermine) and GlnA4 (SCO1613) accepts only monoamines. The genome-wide RNAseq analysis in the presence of the polyamines putrescine, cadaverine, spermidine, or spermine revealed indication of the occurrence of different routes for polyamine catabolism in S. coelicolor involving GlnA2 and GlnA3. Furthermore, GlnA2 and GlnA3 are differently regulated. From our results, we can propose a complemented model of polyamine catabolism in S. coelicolor, which involves the gamma-glutamylation pathway as well as other alternative utilization pathways.


Assuntos
Streptomyces coelicolor , Cadaverina , Ligases , Poliaminas/metabolismo , Putrescina/metabolismo , Espermidina/metabolismo , Espermina/metabolismo , Streptomyces coelicolor/genética , Streptomyces coelicolor/metabolismo
3.
Can J Microbiol ; 67(4): 323-331, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33136443

RESUMO

The enormous spread of Staphylococcus aureus infections through biofilms is a major concern in hospital-acquired infections. Biofilm formation by S. aureus on any surface is facilitated by adjusting its redox status. This organism is a facultative anaerobe shift more towards reductive conditions by enhancing nitrogen metabolism where glutamine synthesis plays a key role. Glutamine is synthesized by glutamine synthetase (GS) encoded by the glnA gene. The gene was amplified by PCR from the chromosomal DNA of S. aureus, sequenced (HQ329146.1), and cloned. The pure recombinant GS exhibited Km of 11.06 ± 0.05 mmol·L-1 for glutamate and 2.4 ± 0.03 mmol·L-1 for ATP. The glnA gene sequence showed a high degree of variability with its human counterpart, while it was highly conserved in bacteria. Structural analysis revealed that the GS structure of S. aureus showed close homology with other Gram-positive bacteria and exhibited a high degree of variation with Escherichia coli GS. In the present study, we observed the increased presence of GS activity in multidrug-resistant strains of S. aureus with elevated biofilm units, grown in brain heart infusion broth; among them methicillin-resistant strains S. aureus LMV 3, 4, and 5 showed higher biofilm units. All these results explain the important role of glutamine biosynthesis with elevated biofilm units in the pathogenesis of S. aureus.


Assuntos
Biofilmes/crescimento & desenvolvimento , Glutamina/biossíntese , Staphylococcus aureus/fisiologia , Anaerobiose , Bactérias/classificação , Bactérias/genética , Variação Genética , Glutamato-Amônia Ligase/genética , Glutamato-Amônia Ligase/metabolismo , Humanos , Staphylococcus aureus Resistente à Meticilina/crescimento & desenvolvimento , Staphylococcus aureus Resistente à Meticilina/metabolismo , Staphylococcus aureus Resistente à Meticilina/patogenicidade , Staphylococcus aureus Resistente à Meticilina/fisiologia , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/crescimento & desenvolvimento , Staphylococcus aureus/metabolismo , Staphylococcus aureus/patogenicidade
4.
Ecotoxicol Environ Saf ; 222: 112486, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34237637

RESUMO

Ammonia emissions are a high-focus pollution issue in the livestock industry. Ammonia-degrading bacteria can assimilate ammonia nitrogen as a nitrogen source to promote their growth and reproduction, providing an environmentally friendly, low-cost and safe biological way to reduce ammonia emissions from livestock. However, it remains unclear how ammonia-degrading bacteria reduce ammonia emissions from animals and what are the key ammonia assimilation genes. In the present study, two strains with ammonia nitrogen-degrading abilities (Enterococcus faecium strain C2 and Bacillus coagulans strain B1) were screened from laying chicken caecal and faecal samples and reduced ammonia emission rates by 53.60% and 31.38%, respectively. The expression levels of the ammonia assimilation genes gdhA, glnA, and GMPS increased significantly. On this basis, we successfully constructed three clone strains (PET-GDH, PET-GS, and PET-GMPS) that expressed the gdhA, glnA and GMPS genes in E. coli, respectively, to verify their ammonia-reducing activities. The results of an in vitro fermentation study showed that the ammonia production of the PET-GDH and PET-GS groups was significantly lower than that of the empty vector group (p < 0.05), with ammonia emission reduction rates of 55.5% and 54.8%, respectively. However, there was no difference between the PET-GMPS and empty vector groups. These results indicate that gdhA and glnA may be key genes involved in the bacterial-mediated regulation of ammonia emissions by laying hens, and ammonia emissions may be reduced by regulating their expression. The results of the present study provide a theoretical basis for the construction of engineered bacteria to reduce ammonia production in animals.


Assuntos
Amônia , Escherichia coli , Animais , Ceco , Galinhas , Escherichia coli/genética , Feminino , Glutamato-Amônia Ligase , Nitrogênio
5.
Curr Genet ; 65(2): 523-538, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30324432

RESUMO

The acetyltransferase GcnE is part of the SAGA complex which regulates fungal gene expression through acetylation of chromatin. Target genes of the histone acetyltransferase GcnE include those involved in secondary metabolism and asexual development. Here, we show that the absence of GcnE not only abrogated conidiation, but also strongly impeded vegetative growth of hyphae in the human pathogenic fungus Aspergillus fumigatus. A yeast two-hybrid screen using a Saccharomyces cerevisiae strain whose tRNA molecules were specifically adapted to express A. fumigatus proteins identified two unprecedented proteins that directly interact with GcnE. Glutamine synthetase GlnA as well as a hypothetical protein located on chromosome 8 (GbpA) were identified as binding partners of GcnE and their interaction was confirmed in vivo via bimolecular fluorescence complementation. Phenotypic characterization of gbpA and glnA deletion mutants revealed a role for GbpA during conidiogenesis and confirmed the central role of GlnA in glutamine biosynthesis. The increase of glutamine synthetase activity in the absence of GcnE indicated that GcnE silences GlnA through binding. This finding suggests an expansion of the regulatory role of GcnE in A. fumigatus.


Assuntos
Aspergillus fumigatus/genética , Aspergillus fumigatus/metabolismo , Expressão Gênica , Glutamina/biossíntese , Histona Acetiltransferases/genética , Histona Acetiltransferases/metabolismo , Técnicas do Sistema de Duplo-Híbrido , Aspergillus fumigatus/crescimento & desenvolvimento , Cromatografia Líquida , Clonagem Molecular , Deleção de Genes , Regulação Fúngica da Expressão Gênica , Biblioteca Gênica , Genes Fúngicos , Teste de Complementação Genética , Genótipo , Espectrometria de Massas , Microscopia de Fluorescência , Fenótipo , Mapeamento de Interação de Proteínas , Esporos Fúngicos
6.
Cell Immunol ; 328: 70-78, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29625705

RESUMO

Tuberculosis remains a serious health problem worldwide. Characterization of the dendritic cell (DC)-activating mycobacterial proteins has driven the development of effective TB vaccine candidates besides improving the understanding of immune responses. Some studies have emphasized the essential role of protein Rv2220 from M. tuberculosis in mycobacterial growth. Nonetheless, little is known about cellular immune responses to Rv2220. In this study, our aim was to test whether protein Rv2220 induces maturation and activation of DCs. Rv2220-activated DCs appeared to be in a mature state with elevated expression of relevant surface molecules and proinflammatory cytokines. DC maturation caused by Rv2220 was mediated by MAPK and NF-κB signaling pathways. Specifically, Rv2220-matured DCs induced the expansion of memory CD62LlowCD44highCD4+ T cells in the spleen of mycobacteria-infected mice. Our results suggest that Rv2220 regulates host immune responses through maturation of DCs, a finding that points to a new vaccine candidate against tuberculosis.


Assuntos
Células Dendríticas/imunologia , Imunidade Celular/imunologia , Mycobacterium tuberculosis/imunologia , Animais , Antígenos de Bactérias/imunologia , Proteínas de Bactérias/metabolismo , Diferenciação Celular/imunologia , Citocinas/metabolismo , Células Dendríticas/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Mycobacterium tuberculosis/patogenicidade , NF-kappa B/metabolismo , Cultura Primária de Células , Transdução de Sinais , Células Th1/imunologia , Tuberculose/imunologia
7.
Bioorg Med Chem Lett ; 25(7): 1455-9, 2015 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-25770781
8.
J Hazard Mater ; 480: 135808, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39288524

RESUMO

There is a correlation between long-term manganese (Mn) exposure and the Parkinson's-like disease (PD), with depression as an early symptom of PD. However, the direct relationship between Mn exposure and depression, and the mechanisms involved, remain unclear. We found that Mn exposure led to depressive-like behavior and mild cognitive impairment in mice, with Mn primarily accumulating in the cornu ammonis 3 (CA3) area of the hippocampus. Mice displayed a reduction in neuronal dendritic spines and damage to astrocytes specifically in the CA3 area. Spatial metabolomics revealed that Mn downregulated glutamic acid decarboxylase 1 (GAD1) expression in astrocytes, disrupting the Glutamine-Glutamate-γ-aminobutyric acid (GlnGluGABA) metabolic cycle in the hippocampus, leading to neurotoxicity. We established an in vitro astrocyte Gad1 overexpression (OEX) model and found that the cultured medium from Gad1 OEX astrocytes reversed neuronal synaptic damage and the expression of gamma-aminobutyric acid (GABA) related receptors. Using the astrocyte Gad1 OEX mouse model, results showed that OEX of Gad1 ameliorated depressive-like behavior and cognitive dysfunction in mice. These findings provide new insight into the important role of GAD1 mediated GlnGluGABA metabolism disorder in Mn exposure induced depressive-like behavior. This study offers a novel sight to understanding abnormal emotional states following central nervous system damage induced by Mn exposure.

9.
FEMS Microbiol Lett ; 3702023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-37796882

RESUMO

In this work, we present the first inhibitor of GlnA2Sc, a gamma-glutamylpolyamine synthetase, which allows Streptomyces coelicolor to detoxify high concentrations of polyamines and to utilize them as a carbon or nitrogen source. GlnA2 belongs to the class of glutamine synthetase-like (GS-like) enzymes that catalyze the glutamylation of different nitrogen-containing compounds. Whereas a number of inhibitors for GS are known, none of them are known to inhibit GlnA2. In this work, PPU268, an inhibitor for GlnA2 is presented that is structurally derived from the prototypic GS inhibitor-methionine sulfoximine (MSO). It combines two features: the binding mechanism of MSO and the amine substrate specificity of GlnA2Sc. This inhibitor is a novel compound to block the polyamine utilization in bacteria resulting in the inability to detoxify polyamines. This may offer a possibility to develop novel therapeutic strategies to combat actinobacterial human pathogens that encounter polyamines in the course of the infection processes.


Assuntos
Streptomyces coelicolor , Humanos , Streptomyces coelicolor/metabolismo , Poliaminas/metabolismo , Glutamato-Amônia Ligase/metabolismo , Nitrogênio/metabolismo
10.
Evolution ; 76(3): 605-622, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35044684

RESUMO

Glutamine synthetase (GS; EC 6.3.1.2, L-glutamate: ammonia ligase) is an essential enzyme in nitrogen assimilation. It catalyzes glutamine synthesis using glutamate and ammonium with ATP hydrolysis. Four forms of GSs have been described in literature. These enzyme types are discriminated based on their primary and quaternary structures. GS-encoding genes are believed to be of the oldest functioning genes studied, and its evolutionary history was explored in classic studies in the 90s. Here, we evaluated GS-homologous sequences from the three life domains to revisit their origins and evolutionary history. There are clear examples of ancient duplications and interdomain horizontal gene transfers. We present GS-encoding genes as one multigenic family that comprises three distinct groups. Our findings are presented in light of two main hypotheses for GS origins and evolutions, and we argue in favor of gene duplications giving rise to the three genes in the Last Universal Common Ancestral. Type I family is the most diverse one, presenting a subgroup of polyamine metabolizing enzymes, besides many examples of noncatalytic GS homologs. Many instances of gene loss, duplication, and transfer have occurred after life diversification, contributing to GS complex evolutionary history.


Assuntos
Evolução Biológica , Glutamato-Amônia Ligase , Glutamato-Amônia Ligase/genética , Nitrogênio
11.
Front Microbiol ; 13: 982674, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36312953

RESUMO

It is unknown whether nirBDs, which conventionally encode an NADH nitrite reductase, play other novel roles in nitrogen cycling. In this study, we explored the role of nirBDs in the nitrogen cycling of Pseudomonas putida Y-9. nirBDs had no effect on organic nitrogen transformation by strain Y-9. The △nirBD strain exhibited higher ammonium removal efficiency (90.7%) than the wild-type strain (76.1%; P < 0.05) and lower end gaseous nitrogen (N2O) production. Moreover, the expression of glnA (control of the ammonium assimilation) in the △nirBD strain was higher than that in the wild-type strain (P < 0.05) after being cultured in ammonium-containing medium. Furthermore, nitrite noticeably inhibited the ammonium elimination of the wild-type strain, with a corresponding removal rate decreasing to 44.8%. However, no similar impact on ammonium transformation was observed for the △nirBD strain, with removal efficiency reaching 97.5%. In conclusion, nirBDs in strain Y-9 decreased the ammonium assimilation and increased the ammonium oxidation to nitrous oxide.

12.
Chemosphere ; 292: 133507, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34979206

RESUMO

High salinity seriously inhibits the growth and metabolism of microorganisms, resulting in poor settleability, excessive biomass loss and low treatment efficiency of biological wastewater treatment systems. The development of halophilic aerobic granular sludge (HAGS) is a feasible strategy for addressing this challenge. However, there are problems with the granulation of HAGS and the stability of granules at decreasing temperatures. In this study, granular activated carbon (GAC) with a large specific surface area and good biocompatibility was used to enhance the robustness of HAGS. The results showed that the addition of GAC shortened the granulation time from 60 d (control system) to 35 d (GAC-addition system). The proteins contents of extracellular polymeric substances (EPS) in the GAC-addition system was significantly higher (p < 0.05) than that in the control system during granulation. Satisfactory NH4+-N and chemical oxygen demand (COD) removal efficiencies reached more than 96% in both systems at 18-26 °C. When the operating temperature was lower than 15 °C, the GAC-addition system exhibited better NH4+-N removal performance (>80%) than the control system (<60%). Moreover, the abundance of almost all nitrogen metabolism-related genes in the GAC-addition system was higher than that in the control system. During the granulation process, the enrichment of functional microorganisms, including family Flavobacteriaceae, Rhodobacteraceae, and Cryomorphaceae, may promote the production of EPS by significantly upregulating (p < 0.05) the metabolic pathway "Signaling Molecules and Interaction" in the GAC-addition system. The overexpression of the nitrogen assimilation gene glnA in heterotrophic bacteria (Halomonas and Marinobacterium) may promote the conversion of inorganic nitrogen to extracellular proteins to adapt to the decreased operational temperature. Our findings confirm that GAC addition is a simple but effective strategy to accelerate granulation and enhance the robustness of HAGS in saline wastewater treatment.


Assuntos
Carvão Vegetal , Esgotos , Aerobiose , Reatores Biológicos , Nitrogênio , Temperatura , Eliminação de Resíduos Líquidos
13.
Microb Physiol ; 31(3): 233-247, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34044403

RESUMO

Soil bacteria from the genus Streptomyces, phylum Actinobacteria, feature a complex metabolism and diverse adaptations to environmental stress. These characteristics are consequences of variable nutrition availability in the soil and allow survival under changing nitrogen conditions. Streptomyces coelicolor is a model organism for Actinobacteria and is able to use nitrogen from a variety of sources including unusual compounds originating from the decomposition of dead plant and animal material, such as polyamines or monoamines (like ethanolamine). Assimilation of nitrogen from these sources in S. coelicolor remains largely unstudied. Using microbiological, biochemical and in silico approaches, it was recently possible to postulate polyamine and monoamine (ethanolamine) utilization pathways in S. coelicolor. Glutamine synthetase-like enzymes (GS-like) play a central role in these pathways. Extensive studies have revealed that these enzymes are able to detoxify polyamines or monoamines and allow the survival of S. coelicolor in soil containing an excess of these compounds. On the other hand, at low concentrations, polyamines and monoamines can be utilized as nitrogen and carbon sources. It has been demonstrated that the first step in poly-/monoamine assimilation is catalyzed by GlnA3 (a γ-glutamylpolyamine synthetase) and GlnA4 (a γ-glutamylethanolamide synthetase), respectively. First insights into the regulation of polyamine and ethanolamine metabolism have revealed that the expression of the glnA3 and the glnA4 gene are controlled on the transcriptional level.


Assuntos
Monoaminas Biogênicas/metabolismo , Glutamato-Amônia Ligase/metabolismo , Poliaminas/metabolismo , Streptomyces coelicolor , Etanolamina , Nitrogênio , Streptomyces coelicolor/enzimologia
14.
Int J Biol Macromol ; 165(Pt A): 222-230, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-32987068

RESUMO

Curdlan is a neutral linear exopolysaccharide produced by Agrobacterium spp. under nitrogen-limiting conditions. In this study, we explored the role of glnA in curdlan biosynthesis in Agrobacterium sp. CGMCC 11546. The curdlan production of the ΔglnA strain was impaired, decreasing by 93% compared with that of the wild-type strain after 96 h fermentation. Analysis of fermentation profiles revealed that cell growth and utilization of carbon and nitrogen sources were impaired in the ΔglnA strain. Transcriptome analysis indicated that various of genes involved in curdlan biosynthesis were downregulated after 24 h fermentation in the ΔglnA strain, particularly genes involved in heme synthesis and the electron transport chain, which are essential for energy generation. Metabolomics analysis revealed flavin adenine dinucleotide (FAD) and adenosine diphosphate (ADP) accumulation in the ΔglnA strain, suggesting insufficient energy supply. Furthermore, glnA overexpression led to an 18% increase in the curdlan yield of the ΔglnA mutant compared with that of the wild-type strain after 96 h fermentation. Taken together, the findings demonstrate that glnA plays a vital role in curdlan biosynthesis by supplying ATP via regulating the expression of genes involved in heme synthesis and the electron transport chain.


Assuntos
Agrobacterium/metabolismo , Proteínas de Bactérias/metabolismo , Glutamato-Amônia Ligase/metabolismo , beta-Glucanas/metabolismo , Agrobacterium/genética , Proteínas de Bactérias/genética , Glutamato-Amônia Ligase/genética , Mutação
15.
Front Microbiol ; 11: 428, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32265871

RESUMO

Ciprofloxacin is the choice treatment for infections caused by Salmonella Typhi, however, reduced susceptibility to ciprofloxacin has been reported for this pathogen. Considering the decreased approbation of new antimicrobials and the crisis of resistance, one strategy to combat this problem is to find new targets that enhances the antimicrobial activity for approved antimicrobials. In search of mutants with increased susceptibility to ciprofloxacin; 3,216 EZ-Tn5 transposon mutants of S. Typhi were screened. S. Typhi zxx::EZ-Tn5 mutants susceptible to ciprofloxacin were confirmed by agar diffusion and MIC assays. The genes carrying EZ-Tn5 transposon insertions were sequenced. Null mutants of interrupted genes, as well as inducible genetic constructs, were produced using site-directed mutagenesis, to corroborate phenotypes. SDS-PAGE and Real-time PCR were used to evaluate the expression of proteins and genes, respectively. Five mutants with increased ciprofloxacin susceptibility were found in the screening. The first confirmed mutant was the glutamine synthetase-coding gene glnA. Analysis of outer membrane proteins revealed increased OmpF, a channel for the influx of ciprofloxacin and nalidixic acid, in the glnA mutant. Expression of ompF increased four times in the glnA null mutant compared to WT strain. To understand the relationship between the expression of glnA and ompF, a strain with the glnA gene under control of the tetracycline-inducible Ptet promoter was created, to modulate glnA expression. Induction of glnA decreased expression of ompF, at the same time that reduced susceptibility to ciprofloxacin. Expression of sRNA MicF, a negative regulator of OmpF was reduced to one-fourth in the glnA mutant, compared to WT strain. In addition, expression of glnL and glnG genes (encoding the two-component system NtrC/B that may positively regulate OmpF) were increased in the glnA mutant. Further studies indicate that deletion of glnG decreases susceptibility to CIP, while deletion of micF gene increases susceptibility CIP. Our findings indicate that glnA inactivation promotes ompF expression, that translates into increased OmpF protein, facilitating the entry of ciprofloxacin, thus increasing susceptibility to ciprofloxacin through 2 possible mechanisms.

16.
FEMS Microbiol Lett ; 365(4)2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29346648

RESUMO

Edwardsiella piscicida is a gram-negative bacterial pathogen invading a wide range of fish species. Response regulator EsrB is essential for the activation of type III and type VI secretion systems (T3/T6SS). In this study, proteomes of the wild-type E. piscicida EIB202 and ΔesrB mutant strains were compared to identify the regulon components of EsrB cultured in DMEM allowing T3/T6SS expression. As a result, 19 proteins showed different expression, which were identified to be associated with T3/T6SS, related to amino acid transport and metabolism, and energy production. Particularly, GlnA, a glutamine synthetase essential for ammonia assimilation and glutamine biosynthesis from glutamate, was found to be regulated negatively by EsrB. Moreover, GlnA affected bacterial growth in vitro and bacterial colonization in vivo. Collectively, our results indicated that EsrB plays important roles in regulating the expression of metabolic pathways and virulence genes, including glutamine biosynthesis in E. piscicida during infection.


Assuntos
Proteínas de Bactérias/genética , Edwardsiella/enzimologia , Infecções por Enterobacteriaceae/veterinária , Doenças dos Peixes/microbiologia , Regulação Bacteriana da Expressão Gênica , Glutamato-Amônia Ligase/metabolismo , Amônia/metabolismo , Animais , Proteínas de Bactérias/metabolismo , Regulação para Baixo , Edwardsiella/genética , Infecções por Enterobacteriaceae/microbiologia , Glutamato-Amônia Ligase/genética , Glutamina/metabolismo , Sistemas de Secreção Tipo III/genética , Sistemas de Secreção Tipo III/metabolismo , Sistemas de Secreção Tipo VI/genética , Sistemas de Secreção Tipo VI/metabolismo
17.
Front Microbiol ; 8: 726, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28487688

RESUMO

Streptomyces coelicolor M145 was shown to be able to grow in the presence of high concentrations of polyamines, such as putrescine, cadaverine, spermidine, or spermine, as a sole nitrogen source. However, hardly anything is known about polyamine utilization and its regulation in streptomycetes. In this study, we demonstrated that only one of the three proteins annotated as glutamine synthetase-like protein, GlnA3 (SCO6962), was involved in the catabolism of polyamines. Transcriptional analysis revealed that the expression of glnA3 was strongly induced by exogenous polyamines and repressed in the presence of ammonium. The ΔglnA3 mutant was shown to be unable to grow on defined Evans agar supplemented with putrescine, cadaverine, spermidine, and spermine as sole nitrogen source. HPLC analysis demonstrated that the ΔglnA3 mutant accumulated polyamines intracellularly, but was unable to degrade them. In a rich complex medium supplemented with a mixture of the four different polyamines, the ΔglnA3 mutant grew poorly showing abnormal mycelium morphology and decreased life span in comparison to the parental strain. These observations indicated that the accumulation of polyamines was toxic for the cell. An in silico analysis of the GlnA3 protein model suggested that it might act as a gamma-glutamylpolyamine synthetase catalyzing the first step of polyamine degradation. GlnA3-catalyzed glutamylation of putrescine was confirmed in an enzymatic in vitro assay and the GlnA3 reaction product, gamma-glutamylputrescine, was detected by HPLC/ESI-MS. In this work, the first step of polyamine utilization in S. coelicolor has been elucidated and the putative polyamine utilization pathway has been deduced based on the sequence similarity and transcriptional analysis of homologous genes expressed in the presence of polyamines.

18.
Front Microbiol ; 7: 969, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27446010

RESUMO

The marine picocyanobacterium Synechococcus sp. WH7803 possesses two glutamine synthetases (GSs; EC 6.3.1.2), GSI encoded by glnA and GSIII encoded by glnN. This is the first work addressing the physiological regulation of both enzymes in a marine cyanobacterial strain. The increase of GS activity upon nitrogen starvation was similar to that found in other model cyanobacteria. However, an unusual response was found when cells were grown under darkness: the GS activity was unaffected, reflecting adaptation to the environment where they thrive. On the other hand, we found that GSIII did not respond to nitrogen availability, in sharp contrast with the results observed for this enzyme in other cyanobacteria thus far studied. These features suggest that GS activities in Synechococcus sp. WH7803 represent an intermediate step in the evolution of cyanobacteria, in a process of regulatory streamlining where GSI lost the regulation by light, while GSIII lost its responsiveness to nitrogen. This is in good agreement with the phylogeny of Synechococcus sp. WH7803 in the context of the marine cyanobacterial radiation.

19.
New Phytol ; 144(3): 463-470, 1999 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33862853

RESUMO

The growth of the marine flagellate Isochrysis galbana was followed in batch cultures at four concentrations of dissolved inorganic carbon (DIC), from C- and N-replete lag phase into C- and/or N-deplete stationary phase. Organic buffers were omitted from the growth medium, and culture pH was maintained at 8.30±0.05 by the addition of acid or alkali. The responses of the flagellate to N stress included an increase in the C∶N ratio, and decreases in the ratios of glutamine (Gln)∶glutamate (Glu) and Chl a∶C, and the cell Chl a quota. Conversely, the responses to C stress included a decrease in the C∶N ratio, and increases in the ratios of Gln∶Glu and Chl a∶C, and the cell Chl a quota. The relationship between carbon-specific growth rate (C-µ), and the concentration of extracellular DIC, [DIC]ext , exhibited Michaelis-Menten type kinetics with a half saturation constant, KG(DIC) , of 81 µM. Comparative studies of the diatom Phaeodactylum tricornutum showed similar results, although the value of KG(DIC) was lower at 30 µM.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa