Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Mol Genet Metab ; 142(3): 108494, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38820907

RESUMO

BACKGROUND: Fabry disease (FD) is characterized by deficient activity of α-galactosidase A (GLA). Consequently, globotriaosylceramide (Gb3) accumulates in various organs, causing cardiac, renal, and cerebrovascular damage. Gene therapies for FD have been investigated in humans. Strong conditioning is required for hematopoietic stem cell-targeted gene therapy (HSC-GT). However, strong conditioning leads to various side effects and should be avoided. In this study, we tested antibody-based conditioning for HSC-GT in wild-type and FD model mice. METHODS: After preconditioning with an antibody-drug conjugate, HSC-GT using a lentiviral vector was performed in wild-type and Fabry model mice. In the wild-type experiment, the EGFP gene was introduced into HSCs and transplanted into preconditioned mice, and donor chimerism and EGFP expression were analyzed. In the FD mouse model, the GLA gene was introduced into HSCs and transplanted into preconditioned Fabry mice. GLA activity and Gb3 accumulation in the organs were analyzed. RESULTS: In the wild-type mouse experiment, when anti-CD45 antibody-drug conjugate was used, the percentage of donor cells at 6 months was 64.5%, and 69.6% of engrafted donor peripheral blood expressed EGFP. When anti-CD117 antibody-drug conjugate and ATG were used, the percentage of donor cells at 6 months was 80.7%, and 73.4% of engrafted donor peripheral blood expressed EGFP. Although large variations in GLA activity among mice were observed in the FD mouse experiment for both preconditioning regimens, Gb3 was significantly reduced in many organs. CONCLUSIONS: Antibody-based preconditioning may be an alternative preconditioning strategy for HSC-GT for treating FD.


Assuntos
Modelos Animais de Doenças , Doença de Fabry , Terapia Genética , Transplante de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas , Triexosilceramidas , alfa-Galactosidase , Animais , Doença de Fabry/terapia , Doença de Fabry/genética , Camundongos , alfa-Galactosidase/genética , alfa-Galactosidase/imunologia , Células-Tronco Hematopoéticas/metabolismo , Triexosilceramidas/metabolismo , Imunoconjugados/farmacologia , Humanos , Vetores Genéticos/genética , Vetores Genéticos/administração & dosagem , Lentivirus/genética , Condicionamento Pré-Transplante/métodos
2.
J Inherit Metab Dis ; 47(4): 818-833, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38623626

RESUMO

Fabry disease (FD) is an X-linked disease characterized by an accumulation of glycosphingolipids, notably of globotriaosylceramide (Gb3) and globotriaosylsphingosine (lysoGb3) leading to renal failure, cardiomyopathy, and cerebral strokes. Inflammatory processes are involved in the pathophysiology. We investigated the immunological phenotype of peripheral blood mononuclear cells in Fabry patients depending on the clinical phenotype, treatment, Gb3, and lysoGb3 levels and the presence of anti-drug antibodies (ADA). Leucocytes from 41 male patients and 20 controls were analyzed with mass cytometry using both unsupervised and supervised algorithms. FD patients had an increased expression of CD27 and CD28 in memory CD45- and CD45 + CCR7-CD4 T cells (respectively p < 0.014 and p < 0.02). Percentage of CD45RA-CCR7-CD27 + CD28+ cells in CD4 T cells was correlated with plasma lysoGb3 (r = 0.60; p = 0.0036) and phenotype (p < 0.003). The correlation between Gb3 and CD27 in CD4 T cells almost reached significance (r = 0.33; p = 0.058). There was no immune profile associated with the presence of ADA. Treatment with agalsidase beta was associated with an increased proportion of Natural Killer cells. These findings provide valuable insights for understanding FD, linking Gb3 accumulation to inflammation, and proposing new prognostic biomarkers.


Assuntos
Linfócitos T CD4-Positivos , Doença de Fabry , Triexosilceramidas , Membro 7 da Superfamília de Receptores de Fatores de Necrose Tumoral , Humanos , Doença de Fabry/imunologia , Masculino , Triexosilceramidas/metabolismo , Adulto , Linfócitos T CD4-Positivos/imunologia , Membro 7 da Superfamília de Receptores de Fatores de Necrose Tumoral/metabolismo , Pessoa de Meia-Idade , Adulto Jovem , Adolescente , Esfingolipídeos/metabolismo , Estudos de Casos e Controles , Antígenos Comuns de Leucócito , Células T de Memória/imunologia , Células T de Memória/metabolismo , Citometria de Fluxo , Antígenos CD28 , Memória Imunológica , Receptores CCR7/metabolismo , Glicolipídeos
3.
BMC Neurol ; 24(1): 113, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38580906

RESUMO

BACKGROUND: Fabry disease is a multisystemic disorder characterized by deposition of globotriaosylceramide (Gb3) and its deacylated form in multiple organs, sometimes localized in specific systems such as the nervous or cardiovascular system. As disease-modifying therapies are now available, early diagnosis is paramount to improving life quality and clinical outcomes. Despite the widespread use of non-invasive techniques for assessing organ damage, such as cardiac magnetic resonance imaging (MRI) for patients with cardiac disease, organ biopsy remains the gold standard to assess organ involvement. CASE PRESENTATION: The cases of two patients, father and daughter with a W162C mutation, are described. The father presented with late-onset, cardiac Fabry disease, subsequently developing systolic dysfunction and heart failure. His daughter, while asymptomatic and with normal cardiac assessment (except for slightly reduced native T1 values by cardiac MRI), had already initial myocyte Gb3 deposits on the endomyocardial biopsy, allowing her to start therapy precociously and potentially modifying the course of her disease. A review of the literature concerning the W162C mutation is then provided, showing that it is usually associated to classic, multisystemic Fabry disease rather than the cardiac-restricted form as in these two cases. CONCLUSIONS: Three main points can be concluded from this report. First, the W162C mutation can present with a more variegate phenotype than that predicted on a molecular basis. Second, endomyocardial biopsy was shown in this case to precede non-invasive investigation in determining organ involvement, justifying further studies on this potentially reliable technique, Third, difficulties can arise in the management of asymptomatic female carriers.


Assuntos
Doença de Fabry , Cardiopatias , Insuficiência Cardíaca , Humanos , Feminino , Doença de Fabry/complicações , Biópsia , Mutação/genética , alfa-Galactosidase/genética
4.
Brain Commun ; 6(2): fcae095, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38638148

RESUMO

Acral burning pain triggered by fever, thermal hyposensitivity and skin denervation are hallmarks of small fibre neuropathy in Fabry disease, a life-threatening X-linked lysosomal storage disorder. Variants in the gene encoding alpha-galactosidase A may lead to impaired enzyme activity with cellular accumulation of globotriaosylceramide. To study the underlying pathomechanism of Fabry-associated small fibre neuropathy, we generated a neuronal in vitro disease model using patient-derived induced pluripotent stem cells from three Fabry patients and one healthy control. We further generated an isogenic control line via gene editing. We subjected induced pluripotent stem cells to targeted peripheral neuronal differentiation and observed intra-lysosomal globotriaosylceramide accumulations in somas and neurites of Fabry sensory neurons using super-resolution microscopy. At functional level, patch-clamp analysis revealed a hyperpolarizing shift of voltage-gated sodium channel steady-state inactivation kinetics in isogenic control neurons compared with healthy control neurons (P < 0.001). Moreover, we demonstrate a drastic increase in Fabry sensory neuron calcium levels at 39°C mimicking clinical fever (P < 0.001). This pathophysiological phenotype was accompanied by thinning of neurite calibres in sensory neurons differentiated from induced pluripotent stem cells derived from Fabry patients compared with healthy control cells (P < 0.001). Linear-nonlinear cascade models fit to spiking responses revealed that Fabry cell lines exhibit altered single neuron encoding properties relative to control. We further observed mitochondrial aggregation at sphingolipid accumulations within Fabry sensory neurites utilizing a click chemistry approach together with mitochondrial dysmorphism compared with healthy control cells. We pioneer pilot insights into the cellular mechanisms contributing to pain, thermal hyposensitivity and denervation in Fabry small fibre neuropathy and pave the way for further mechanistic in vitro studies in Fabry disease and the development of novel treatment approaches.

5.
Cells ; 13(8)2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38667321

RESUMO

BACKGROUND: Fabry disease is a progressive, X chromosome-linked lysosomal storage disorder with multiple organ dysfunction. Due to the absence or reduced activity of alpha-galactosidase A (AGAL), glycosphingolipids, primarily globotriaosyl-ceramide (Gb3), concentrate in cells. In heterozygous women, symptomatology is heterogenous and currently routinely used fluorometry-based assays measuring mean activity mostly fail to uncover AGAL dysfunction. The aim was the development of a flow cytometry assay to measure AGAL activity in individual cells. METHODS: Conventional and multispectral imaging flow cytometry was used to detect AGAL activity. Specificity was validated using the GLA knockout (KO) Jurkat cell line and AGAL inhibitor 1-deoxygalactonojirimycin. The GLA KO cell line was generated via CRISPR-Cas9-based transfection, validated with exome sequencing, gene expression and substrate accumulation. RESULTS: Flow cytometric detection of specific AGAL activity is feasible with fluorescently labelled Gb3. In the case of Jurkat cells, a substrate concentration of 2.83 nmol/mL and 6 h of incubation are required. Quenching of the aspecific exofacial binding of Gb3 with 20% trypan blue solution is necessary for the specific detection of lysosomal substrate accumulation. CONCLUSION: A flow cytometry-based assay was developed for the quantitative detection of AGAL activity at the single-cell level, which may contribute to the diagnosis of Fabry patients.


Assuntos
Citometria de Fluxo , alfa-Galactosidase , Humanos , Citometria de Fluxo/métodos , Células Jurkat , alfa-Galactosidase/metabolismo , alfa-Galactosidase/genética , Doença de Fabry/metabolismo , Doença de Fabry/enzimologia , Doença de Fabry/diagnóstico , 1-Desoxinojirimicina/farmacologia , 1-Desoxinojirimicina/análogos & derivados
6.
Curr Protoc ; 4(6): e1087, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38896100

RESUMO

Fabry disease (FD) is a lysosomal storage disorder caused by variants in the GLA gene encoding α-galactosidase A, an enzyme required for catabolism of globotriaosylceramide (Gb3). Accumulation of Gb3 in patients' cells, tissues, and biological fluids causes clinical manifestations including ventricular hypertrophy, renal insufficiency, and strokes. This protocol describes a methodology to analyze urinary Gb3 and creatinine. Samples are diluted with an internal standard solution containing Gb3(C17:0) and creatinine-D3, centrifuged, and directly analyzed by ultra-high performance liquid chromatography coupled to tandem mass spectrometry (UHPLC-MS/MS) using an 8.7-min method. Eight Gb3 isoforms [C16:0, C18:0, C20:0, C22:1, C22:0, C24:1, C24:0, and (C24:0)OH] are analyzed and the total is normalized to creatinine. Confirmation ions are monitored to detect potential interferences. The Gb3 limit of quantification is 0.023 µg/ml. Its interday coefficients of variation (3 concentrations measured) are ≤15.4%. This method minimizes matrix effects (≤6.5%) and prevents adsorption or precipitation of Gb3. Urine samples are stable (bias <15%) for 2 days at 21°C, 7 days at 4°C, and 4 freeze/thaw cycles, whereas prepared samples are stable for 5 days at 21°C, and 14 days at 4°C. The Gb3/creatinine age-related upper reference limits (mean + 2 standard deviations) are 29 mg/mol creatinine (<7 years) and 14 mg/mol creatinine (≥7 years). This simple, robust protocol has been fully validated (ISO 15189) and provides a valuable tool for diagnosis and monitoring of FD patients. © 2024 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol: Analysis of urinary globotriaosylceramide (Gb3) and creatinine by UHPLC-MS/MS Support Protocol 1: Preparation of the urinary quality controls Support Protocol 2: Preparation of the urine matrix used for the Gb3 calibration curve Support Protocol 3: Preparation of the Gb3 calibrators Support Protocol 4: Preparation of the working solution containing the internal standards Support Protocol 5: Preparation of the creatinine calibrators Support Protocol 6: Preparation of the UHPLC solutions and mobile phases.


Assuntos
Doença de Fabry , Espectrometria de Massas em Tandem , Triexosilceramidas , Humanos , Espectrometria de Massas em Tandem/métodos , Triexosilceramidas/urina , Triexosilceramidas/metabolismo , Cromatografia Líquida de Alta Pressão/métodos , Doença de Fabry/urina , Doença de Fabry/diagnóstico , Creatinina/urina
7.
Clin Pharmacol Drug Dev ; 13(6): 696-709, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38363061

RESUMO

Glycosphingolipid (GSL) storage diseases are caused by deficiencies in the enzymes that metabolize different GSLs in the lysosome. Glucosylceramide synthase (GCS) inhibitors reduce GSL production and have potential to treat multiple GSL storage diseases. AL01211 is a potent, oral GCS inhibitor being developed for the treatment of Type 1 Gaucher disease and Fabry disease. AL01211 has minimal central nervous system penetration, allowing for treatment of peripheral organs without risking CNS-associated adverse effects. AL01211 was evaluated in a Phase 1 healthy volunteer study with single ascending dose (SAD) and multiple ascending dose (MAD) arms, to determine safety, pharmacokinetics including food effect, and pharmacodynamic effects on associated GSLs. In the SAD arm, AL01211 showed a Tmax of approximately 3.5 hours, mean clearance (CL/F) of 130.1 L/h, and t1/2 of 39.3 hours. Consuming a high-fat meal prior to dose administration reduced exposures 3.5-5.5-fold, indicating a food effect. In the MAD arm, AL01211 had an approximately 2-fold accumulation, reaching steady-state levels by 10 days. Increasing exposure inversely correlated with a decrease in GSL with plasma glucosylceramide and globotriacylceramide reduction from baseline levels, reaching 78% and 52% by day 14, respectively. AL01211 was generally well-tolerated with no AL01211 associated serious adverse events, thus supporting its further clinical development.


Assuntos
Inibidores Enzimáticos , Doença de Fabry , Doença de Gaucher , Glucosiltransferases , Voluntários Saudáveis , Humanos , Doença de Gaucher/tratamento farmacológico , Glucosiltransferases/antagonistas & inibidores , Adulto , Masculino , Feminino , Administração Oral , Adulto Jovem , Pessoa de Meia-Idade , Inibidores Enzimáticos/farmacocinética , Inibidores Enzimáticos/administração & dosagem , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/efeitos adversos , Doença de Fabry/tratamento farmacológico , Relação Dose-Resposta a Droga , Interações Alimento-Droga , Método Duplo-Cego , Estudos Cross-Over , Adolescente
8.
CEN Case Rep ; 13(4): 290-296, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38135868

RESUMO

Fabry disease is an X-linked hereditary disorder caused by deficient α-galactosidase A (GLA) activity. Patients with Fabry disease are often treated with enzyme replacement therapy (ERT). However, ERT often induces the formation of neutralizing antidrug antibodies (ADAs), which may impair the therapeutic efficacy. Here, we report the case of a 32-year-old man with Fabry disease and resultant neutralizing ADAs who was treated by switching from agalsidase-α to agalsidase-ß. We monitored biomarkers, such as plasma globotriaosylsphingosine (lyso-Gb3), urinary globotriaosylceramide (Gb3), urinary mulberry bodies, renal and cardiac parameters, and disease severity during the treatment period. Although plasma lyso-Gb3 and urinary Gb3 levels quickly decreased within two months after the initiation of ERT with agalsidase-α, they gradually increased thereafter. The urinary mulberry bodies continued to appear. Both the ADA titer and serum mediated GLA inhibition rates started to increase after two months. Moreover, 3.5 years after ERT, the vacuolated podocyte area in the renal biopsy decreased slightly from 23.1 to 18.9%. However, plasma lyso-Gb3 levels increased, and urinary Gb3, mulberry body levels, and ADA titers remained high. Therefore, we switched to agalsidase-ß which reduced, but did not normalize, plasma lyso-Gb3 levels and stabilized renal and cardiac parameters. Disease severity was attenuated. However, urinary Gb3 and mulberry body levels did not decrease noticeably in the presence of high ADA titers. The kidneys take up a small amount of the administered recombinant enzyme, and the clearance of Gb3 that has accumulated in the kidney may be limited despite the switching from agalsidase-α to agalsidase-ß.


Assuntos
Anticorpos Neutralizantes , Biomarcadores , Terapia de Reposição de Enzimas , Doença de Fabry , Isoenzimas , Esfingolipídeos , Triexosilceramidas , alfa-Galactosidase , Humanos , Doença de Fabry/tratamento farmacológico , Doença de Fabry/diagnóstico , Masculino , Adulto , alfa-Galactosidase/uso terapêutico , alfa-Galactosidase/administração & dosagem , alfa-Galactosidase/imunologia , Biomarcadores/sangue , Terapia de Reposição de Enzimas/métodos , Isoenzimas/uso terapêutico , Isoenzimas/administração & dosagem , Anticorpos Neutralizantes/sangue , Triexosilceramidas/urina , Esfingolipídeos/sangue , Glicolipídeos , Rim/patologia , Índice de Gravidade de Doença , Resultado do Tratamento , Proteínas Recombinantes
9.
Mol Genet Metab Rep ; 38: 101029, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38469097

RESUMO

Fabry disease (FD) is a life-limiting disorder characterized by intracellular globotriaosylceramide (Gb3) accumulations. The underlying α-galactosidase A (α-GAL A) deficiency is caused by variants in the gene GLA. Variants of unknown significance (VUS) are frequently found in GLA and challenge clinical management. Here, we investigated a 49-year old man with cryptogenic lacunar cerebral stroke and the chance finding of the VUS S126G, who was sent to our center for diagnosis and initiation of a costly and life-long FD-specific treatment. We combined clinical examination with in vitro investigations of dermal fibroblasts (HDF), induced pluripotent stem cells (iPSC), and iPSC-derived sensory neurons. We analyzed α-GAL A activity in iPSC, Gb3 accumulation in all three cell types, and action potential firing in sensory neurons. Neurological examination and small nerve fiber assessment was normal except for reduced distal skin innervation. S126G iPSC showed normal α-GAL A activity compared to controls and no Gb3 deposits were found in all three cell types. Baseline electrophysiological characteristics of S126G neurons showed no difference compared to healthy controls as investigated by patch-clamp recordings. We pioneer multi-level cellular characterization of the VUS S126G using three cell types derived from a patient and provide further evidence for the benign nature of S126G in GLA, which is of great importance in the management of such cases in clinical practice.

10.
medRxiv ; 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-38168318

RESUMO

Background: While cardiovascular complications are the most common cause of mortality in Fabry disease, the relationship between globotriaosylceramide (GL-3) accumulation, the hallmark of Fabry cardiomyopathy, and cardiac hypertrophy has not been fully elucidated. Methods: We developed unbiased stereology protocols to quantify the ultrastrcture of Fabry cardiomyopathy. Endomyocardial biopsies from 10 adult male enzyme replacement therapy naïve Fabry patients with IVS4 + 919G>A GLA mutation were studied. The findings were correlated with cardiac MRI and clinical data. Results: Ultrastructural parameters showed significant relationships with key imaging and clinical and functional variables. Average cardiomyocyte volume and GL-3 volume per cardiomyocyte were progressively increased with age. Eighty-four percent of left ventricular mass index (LVMI) variability was explained by cardiomyocyte nuclear volume, age and plasma globotriaosylsphingosine with cardiomyocyte nuclear volume being the only independent predictor of LVMI. Septal thickness was directly and left ventricular ejection fraction (LVEF) was inversely correlated with cardiomyocyte GL-3 accumulation. Sixty-five percent of left ventricular ejection fraction (LVEF) variability was explained by cardiomyocyte GL3 volume, serum α-galactosidase-A activity and age with cardiomyocyte GL3 volume being the only independent predictor of LVEF. Residual α-galactosidase-A activity was directly correlated with myocardial microvasculature density. Conclusions: The unbiased stereological methods introduced in this study unraveled novel relationships between cardiomyocyte structure and important imaging and clinical parameters. These novel tools can help better understand Fabry cardiomyopathy pathophysiology.

11.
Nefrologia (Engl Ed) ; 43 Suppl 2: 91-95, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-38278716

RESUMO

Fabry disease or also called Anderson-Fabry disease (FD) is a rare disease caused by pathogenic variants in the GLA gene, located on the X chromosome. This gene is involved in the metabolism of glycosphingolipids and its pathogenic variants cause a deficit or absence of α-galactosidase A causing the deposition of globotriaosylceramide throughout the body. Females have a variable phenotypic expression and a better prognosis than males. This is due to the X chromosome inactivation phenomenon. We present a clinical case of Fabry disease in a female with predominantly renal involvement and demonstrate how the X chromosome inactivation phenomenon is tissue dependent, showing preferential inactivation of the mutated allele at the renal level.


Assuntos
Doença de Fabry , Masculino , Feminino , Humanos , Doença de Fabry/genética , Doença de Fabry/patologia , Inativação do Cromossomo X , alfa-Galactosidase/genética , alfa-Galactosidase/metabolismo , Rim/patologia , Fenótipo
12.
Artigo em Espanhol | LILACS-Express | LILACS | ID: biblio-1535968

RESUMO

Contexto: la enfermedad de Fabry es una patología de depósito lisosomal poco frecuente, ligada al cromosoma X y causada por la deficiencia o ausencia de la enzima α-galactosidasa-A. La nefropatía, junto con la cardiopatía y el compromiso neurológico de la enfermedad, conduce a una muerte prematura. Objetivo: esta revisión describe la monoterapia oral con migalastat en pacientes con enfermedad de Fabry y mutaciones "amenables". Metodología: una chaperona farmacológica oral denominada migalastat (Galafold®), estabiliza y favorece el pasaje de formas mutadas "amenables" de la enzima hacia los lisosomas, aumentando así su actividad. Resultados: los estudios de fase III Facets y Attract demostraron seguridad y eficacia en comparación con las terapias de reemplazo enzimático disponibles, alcanzando estabilización de la función renal, reducción de la masa ventricular izquierda y estabilización del biomarcador plasmático Lyso-Gb3. Conclusiones: migalastat fue generalmente bien tolerado en ambos estudios. Publicaciones posteriores de extensión evidenciaron resultados similares, confirmando la seguridad y la eficacia, tanto en pacientes que previamente se encontraban con terapia de reemplazo enzimático y han sido rotados a migalastat, como también en pacientes que han iniciado migalastat como primer tratamiento.


Background: Fabry disease is a rare lysosomal storage disorder, linked to the X chromosome, and caused by the deficiency or absence of the enzyme α-galactosidase-A. Nephropathy together with heart disease and neurological involvement lead to premature death. Purpose: This review describes oral migalastat monotherapy in patients with Fabry disease and "amenable" mutations. Methodology: An oral pharmacological chaperone called Migalastat (Galafold®), stabilizes and facilitates the trafficking of "amenable" mutated forms of the enzyme to the lysosomes, thus increasing its activity. Results: The phase III FACETS and ATTRACT studies have demonstrated safety and efficacy compared to available enzyme replacement therapies; achieving renal function stabilization, reduction of left ventricular mass and maintenance of plasmatic Lyso-Gb3 levels. Conclusions: Migalastat was generally well tolerated in both trials. Subsequent extension publications showed similar results, confirming the safety and efficacy both in patients who were previously on enzyme replacement therapy and have been switched to migalastat, as well as in patients who have started migalastat as their first treatment.

13.
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1090918

RESUMO

Abstract Fabry disease is a rare cause of end-stage renal disease. Renal pathology is notable for diffuse deposition of glycosphingolipid in the renal glomeruli, tubules, and vasculature. Classical patients with mutations in the α-galactosidase A gene accumulate globotriaosylceramide and become symptomatic in childhood with pain, gastrointestinal disturbances, angiokeratoma, and hypohidrosis. Classical patients experience progressive loss of renal function and hypertrophic cardiomyopathy, with severe clinical events including end-stage renal disease, stroke, arrhythmias, and premature death. The pathophysiological mechanisms by which endothelial cells, podocytes, smooth muscle cells, and tubular dysfunction occur in Fabry disease are poorly characterized and understood. This review evaluates the new evidence in pathophysiology of Fabry nephropathy, highlighting the necessity of early identification of individuals with Fabry disease.

14.
Acta bioquím. clín. latinoam ; 50(1): 17-25, mar. 2016. ilus, graf, tab
Artigo em Espanhol | LILACS | ID: biblio-837587

RESUMO

La enfermedad de Fabry es una patología genética debida a la deficiencia de la enzima α-galactosidasa A. En la Facultad de Ciencias Exactas de la Universidad Nacional de La Plata se implementaron estudios de diagnóstico de enfermedades lisosomales y se comenzó por la Enfermedad de Fabry. Se llevó a cabo un estudio dirigido a la detección de pacientes Fabry no diagnosticados mediante un enfoque biomédico multidisciplinario. Se realizó una evaluación nefrológica de los pacientes argentinos detectados y un análisis de sus manifestaciones clínicas durante el tratamiento de reemplazo enzimático. Los pacientes tratados con agalsidasa alfa recibieron sus primeras infusiones en centros médicos y luego la infusión fue domiciliaria. Los datos de los pacientes argentinos fueron registrados en la base de datos FOS, un registro internacional multicéntrico. Los estudios de investigación básica realizados mostraron la existencia de un estado proinflamatorio en células de pacientes Fabry, lo cual podría explicar parte de su fisiopatología. El abordaje de las enfermedades poco frecuentes no es sencillo, sobre todo ante la falta de políticas sanitarias de parte del Estado. Este trabajo permitió lograr múltiples objetivos: la difusión de la Enfermedad de Fabry en Argentina, mayor sospecha clínica en la comunidad médica y mejor accesibilidad al diagnóstico, seguimiento y tratamiento para los pacientes.


A Fabry disease is an X-linked lysosomal disorder that results from a deficiency of the lysosomal enzyme alpha-galactosidase A. The implementation of biochemical and genetic tests for lysosomal diseases was carried out in our institution, the School of Exact Sciences, Universidad Nacional de La Plata. A successful approach for the detection of Fabry patients in Argentina was developed by constitutingan interdisciplinary group of professionals. A nephrological assessment of the Argentine patients detected was made andthe clinical manifestations of Fabry patients were analysed and recorded in a FOS international registry. Patients received their enzyme replacement therapy, and the infusion was offered at home. Research studies carried out by our group showed the existence of a proinflammatory state in cells from Fabry patients, which could be related to the pathophysiology. Approaching rare diseases is not easy, especially when there is a lack of State health care policies. This work led us to achieve objectives such as disseminate knowledge about the disease in our country, enhance clinical suspicion and improve accessibility to diagnosis and treatment for patients.


Doença de Fabry é uma doença genética que resulta da deficiência da enzima α-galactosidase A. Na Faculdade de Ciências Exatas da Universidade Nacional de La Plata foram implementados estudos de diagnóstico de doenças lisossomais e a primeira foi a Doença de Fabry. Realizou-se um estudo orientado à detecção de pacientes Fabry não diagnosticados mediante uma abordagem biomédica multidisciplinar. Foi feita uma avaliação nefrológica dos pacientes argentinos detectados e uma análise de suas manifestações clínicas durante o tratamento de reposição enzimática. Os pacientes tratados com agalsidase alfa receberam suas primeiras infusões em centros médicos, e depois a infusão foi domiciliar. Os dados dos pacientes argentinos se registraram na base de dados FOS, um registro internacional multicêntrico. Estudos de pesquisa básica realizados mostraram a existência de um estado pró-inflamatório em células de pacientes Fabry, o que poderia explicar parte de sua fisiopatologia. A abordagem das doenças pouco frequentes não é simples, principalmente diante da falta de políticas sanitárias de parte do Estado. Este trabalho permitiu alcançar objetivos múltiplos: a difusão da Doença de Fabry na Argentina, maior suspeita clínica na comunidade médica, e melhor acessibilidade ao diagnóstico, seguimento e tratamento para os pacientes.


Assuntos
Humanos , Masculino , Feminino , Criança , Adolescente , Adulto , Pessoa de Meia-Idade , Idoso , Doença de Fabry , Doença de Fabry/diagnóstico , Doenças Genéticas Ligadas ao Cromossomo X , Argentina , Técnicas de Laboratório Clínico , Heterozigoto , Lisossomos
15.
Artigo em Inglês | WPRIM | ID: wpr-192810

RESUMO

BACKGROUND/AIMS: Fabry disease is an X-linked recessive and progressive disease caused by alpha-galactosidase A (alpha-GaL A) deficiency. We sought to assess the prevalence of unrecognized Fabry disease in dialysis-dependent patients and the efficacy of serum globotriaosylceramide (GL3) screening. METHODS: A total of 480 patients of 1,230 patients among 17 clinics were enrolled. Serum GL3 levels were measured by tandem mass spectrometry. Additionally, we studied the association between increased GL3 levels and cardiovascular disease, cerebrovascular disease, or left ventricular hypertrophy. RESULTS: Twenty-nine patients had elevated serum GL3 levels. The alpha-GaL A activity was determined for the 26 patients with high GL3 levels. The mean alpha-GaL A activity was 64.6 nmol/hr/mg (reference range, 45 to 85), and no patient was identified with decreased alpha-GaL A activity. Among the group with high GL3 levels, 15 women had a alpha-GaL A genetics analysis. No point mutations were discovered among the women with high GL3 levels. No correlation was observed between serum GL3 levels and alpha-GaL A activity; the Pearson correlation coefficient was 0.01352 (p = 0.9478). No significant correlation was observed between increased GL3 levels and the frequency of cardiovascular disease or cerebrovascular disease. CONCLUSIONS: Fabry disease is very rare disease in patients with end-stage renal disease. Serum GL3 measurements as a screening method for Fabry disease showed a high false-positive rate. Thus, serum GL3 levels determined by tandem mass spectrometry may not be useful as a screening method for Fabry disease in patients with end stage renal disease.


Assuntos
Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Doença de Fabry/sangue , Falência Renal Crônica/sangue , Diálise Renal , Triexosilceramidas/sangue , alfa-Galactosidase/genética
16.
Artigo em Inglês | WPRIM | ID: wpr-43814

RESUMO

Fabry disease is an X-linked inborn error of glycosphingolipid catabolism that results from mutations in the gene encoding the alpha-galactosidase A (GLA) enzyme. We have identified 15 distinct mutations in the GLA gene in 13 unrelated patients with classic Fabry disease and 2 unrelated patients with atypical Fabry disease. Two of the identified mutations were novel (i.e., the D231G missense mutation and the L268delfsX1 deletion mutation). This study evaluated the effects of the chemical chaperones 1-deoxygalactonojirimycin (DGJ) on the function of GLA in vitro, in cells containing missense mutations in the GLA gene. Nine missense and a nonsense mutations, including one novel mutation were cloned into mammalian expression vectors. After transient expression in COS-7 cells, GLA enzyme activity and protein expression were analyzed using fluorescence spectrophotometry and Western blot analysis, respectively. DGJ enhanced GLA enzyme activity in the M42V, I91T, R112C and F113L mutants. Interestingly, the I91T and F113L mutations are associated with the atypical form of Fabry disease. However, DGJ treatment did not have any significant effect on the GLA enzyme activity and protein expression of other mutants, including C142W, D231G, D266N, and S297F. Of note, GLA enzyme activity was not detected in the novel mutant (i.e., D231G), although protein expression was similar to the wild type. In the absence of DGJ, the E66Q mutant had wild-type levels of GLA protein expression and approximately 40% GLA activity, indicating that E66Q is either a mild mutation or a functional single nucleotide polymorphism (SNP). Thus, the results of this study suggest that the chemical chaperone DGJ enhances GLA enzyme activity and protein expression in milder mutations associated with the atypical form of Fabry disease.


Assuntos
Adolescente , Adulto , Animais , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem , 1-Desoxinojirimicina/análogos & derivados , Povo Asiático/genética , Células COS , Chlorocebus aethiops , Doença de Fabry/enzimologia , Expressão Gênica , Mutação , alfa-Galactosidase/genética
17.
Artigo em Inglês | WPRIM | ID: wpr-113711

RESUMO

Fabrazyme has been widely used for treatment of Fabry disease since its approval by the U.S. Food and Drug Administration in 2003. This study was undertaken to assess the short-term efficacy and safety of enzyme replacement therapy (ERT) for Fabry disease in Korea. Eight male patients and three female symptomatic carriers aged 13 to 48 yr were included. Fabrazyme was administered by intravenous infusion at a dose of 1 mg/kg every 2 weeks. Plasma and urine globotriaosylceramide (GL-3) levels, serum creatinine, creatinine clearance, and 24-hr urine protein levels were measured every 3 months. Kidney biopsies, ophthalmologic exams, and pure tone audiometry were performed before and 1 yr after ERT. Kidney function, including serum creatinine, creatinine clearance, and the 24-hr urine protein level, remained stable during ERT. Plasma and urine GL-3 levels were reduced within 3 to 6 months of ERT initiation. Microvascular endothelial deposits of GL-3 were decreased from renal biopsy specimens after 1 yr of treatment. The severity of sensorineural hearing loss and tinnitus did not improve after ERT. ERT is safe and effective in stabilizing renal function and clearing microvascular endothelial GL-3 from kidney biopsy specimen in Korean patients with Fabry disease.


Assuntos
Adolescente , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Biópsia , Creatinina/sangue , Enzimas/uso terapêutico , Doença de Fabry/sangue , Heterozigoto , Coreia (Geográfico) , Microcirculação , Triexosilceramidas/sangue , alfa-Galactosidase/uso terapêutico
18.
Braz. j. med. biol. res ; 40(12): 1599-1604, Dec. 2007. tab
Artigo em Inglês | LILACS | ID: lil-466733

RESUMO

Fabry disease is an X-linked lysosomal disorder due to a-galactosidase A deficiency that causes storage of globotriaosylceramide. The gene coding for this lysosomal enzyme is located on the long arm of the X chromosome, in region Xq21.33-Xq22. Disease progression leads to vascular disease secondary to involvement of kidney, heart and the central nervous system. Detection of female carriers based solely on enzyme assays is often inconclusive. Therefore, mutation analysis is a valuable tool for diagnosis and genetic counseling. Many mutations of the a-galactosidase A gene have been reported with high genetic heterogeneity, being most mutations private found in only one family. The disease is panethnic, and estimates of incidence range from about 1 in 40,000 to 60,000 males. Our objective was to describe the analysis of 6 male and 7 female individuals belonging to 4 different Fabry disease families by automated sequencing of the seven exons of the a-galactosidase gene. Sequencing was performed using PCR fragments for each exon amplified from DNA extracted from peripheral blood. Three known mutations and one previously described in another Brazilian family were detected. Of 7 female relatives studied, 4 were carriers. Although the present study confirms the heterogeneity of mutations in Fabry disease, the finding of the same mutation previously detected in another Fabry family from our region raises the possibility of some founder effect, or genetic drift. Finally, the present study highlights the importance of molecular analysis for carrier detection and genetic counseling.


Assuntos
Adolescente , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Doença de Fabry/genética , Mutação/genética , alfa-Galactosidase/genética , DNA Complementar/genética , Éxons/genética , Doença de Fabry/enzimologia , Linhagem , Reação em Cadeia da Polimerase
19.
Artigo em Coreano | WPRIM | ID: wpr-33499

RESUMO

PURPOSE: A simple, rapid, and highly sensitive analytical method for Gb3 in plasma was developed without labor-extensive pre-treatment by electrospray ionization MS/MS (ESI-MS/MS). Measurement of globotriaosylceramide (Gb3, ceramide trihexoside) in plasma has clinical importance for monitoring after enzyme replacement therapy in Fabry disease patients. The disease is an X-linked lipid storage disorder that results from a deficiency of the enzyme ??-galactosidase A (alpha-Gal A). The lack of alpha-Gal A causes an intracellular accumulation of glycosphingolipids, mainly Gb3. METHODS: Only simple 50-fold dilution of plasma is necessary for the extraction and isolation of Gb3 in plasma. Gb3 in diluted plasma was dissolved in dioxane containing C17:0 Gb3 as an internal standard. After centrifugation it was directly injected and analyzed through guard column by in combination with multiple reaction monitoring mode of ESI-MS/MS. RESULTS: Eight isoforms of Gb3 were completely resolved from plasma matrix. C16:0 Gb3 occupied 50% of total Gb3 as a major component in plasma. Linear relationship for Gb3 isoforms was found in the range of 0.001-1.0 microgram/mL. The limit of detection (S/N=3) was 0.001 microgram/mL and limit of quantification was 0.01 microgram/mL for C16:0 Gb3 with acceptable precision and accuracy. Correlation coefficient of calibration curves for 8 Gb3 isoforms ranged from 0.9678 to 0.9982. CONCLUSION: This quantitative method developed could be useful for rapid and sensitive 1st line Fabry disease screening, monitoring and/or diagnostic tool for Fabry disease.

20.
Artigo em Inglês | WPRIM | ID: wpr-147628

RESUMO

Intestinal epithelial cells (IECs) have been known to produce galactose-alpha1,4-galactose-beta1,4-glucose ceramide (Gb3) that play an important role in the mucosal immune response. The regulation of Gb3 is important to prevent tissue damage causing shiga like toxin. Epigallocatechin-3-gallate (EGCG) has been studied as anti-carcinogenic, anti-oxidant, anti-angiogenic, and anti-viral activities, and anti-diabetic. However, little is known between the expressions of Gb3 on IECs. The aim of this study was to examine the inhibitory effect of EGCG, a major ingredient of green tea, on Gb3 production via mitogen-activated protein kinases (MAPKs) and nuclear factor-kappa B (NF-kappa B) in the TNF-alpha stimulated human colon epithelial cells, HT29. To investigate how Gb3 is regulated, ceramide glucosyltransferase (CGT), lactosylceramide synthase (GalT2), and Gb3 synthase (GalT6) were analyzed by RT-PCR in HT 29 cells exposed to TNF-alpha in the presence or absence of EGCG. EGCG dose-dependently manner, inhibits TNF-alpha induced Gb3 expression by blocking in both the MAPKs and NF-kappaB pathways in HT29 cells. TNF-alpha enhanced CGT, GalT2 and GalT6 mRNA levels and EGCG suppressed the level of these enzymes enhanced by TNF-alpha treatment.


Assuntos
Humanos , Apoptose/efeitos dos fármacos , Western Blotting , Catequina/análogos & derivados , Núcleo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Células Epiteliais/efeitos dos fármacos , Citometria de Fluxo , Galactosiltransferases/genética , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Glucosiltransferases/genética , Células HT29 , Mucosa Intestinal/efeitos dos fármacos , Proteínas Quinases Ativadas por Mitógeno/antagonistas & inibidores , NF-kappa B/antagonistas & inibidores , Fosforilação/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos , RNA Mensageiro/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Triexosilceramidas/biossíntese , Fator de Necrose Tumoral alfa/farmacologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa