Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.740
Filtrar
1.
Cell ; 184(7): 1693-1705.e17, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33770502

RESUMO

Plants protect themselves with a vast array of toxic secondary metabolites, yet most plants serve as food for insects. The evolutionary processes that allow herbivorous insects to resist plant defenses remain largely unknown. The whitefly Bemisia tabaci is a cosmopolitan, highly polyphagous agricultural pest that vectors several serious plant pathogenic viruses and is an excellent model to probe the molecular mechanisms involved in overcoming plant defenses. Here, we show that, through an exceptional horizontal gene transfer event, the whitefly has acquired the plant-derived phenolic glucoside malonyltransferase gene BtPMaT1. This gene enables whiteflies to neutralize phenolic glucosides. This was confirmed by genetically transforming tomato plants to produce small interfering RNAs that silence BtPMaT1, thus impairing the whiteflies' detoxification ability. These findings reveal an evolutionary scenario whereby herbivores harness the genetic toolkit of their host plants to develop resistance to plant defenses and how this can be exploited for crop protection.


Assuntos
Hemípteros/genética , Proteínas de Insetos/metabolismo , Solanum lycopersicum/genética , Toxinas Biológicas/metabolismo , Animais , Transferência Genética Horizontal , Genes de Plantas , Glucosídeos/química , Glucosídeos/metabolismo , Hemípteros/fisiologia , Herbivoria , Proteínas de Insetos/antagonistas & inibidores , Proteínas de Insetos/classificação , Proteínas de Insetos/genética , Mucosa Intestinal/metabolismo , Solanum lycopersicum/metabolismo , Malonil Coenzima A/metabolismo , Filogenia , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Interferência de RNA , RNA de Cadeia Dupla/metabolismo , Toxinas Biológicas/química
2.
Glycobiology ; 34(9)2024 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-38995933

RESUMO

Aloesone is a bioactive natural product and biosynthetic precursor of rare glucosides found in rhubarb and some aloe plants including Aloe vera. This study aimed to investigate biocatalytic aloesone glycosylation and more than 400 uridine diphosphate-dependent glycosyltransferase (UGT) candidates, including multifunctional and promiscuous enzymes from a variety of plant species were assayed. As a result, 137 selective aloesone UGTs were discovered, including four from the natural producer rhubarb. Rhubarb UGT72B49 was further studied and its catalytic constants (kcat = 0.00092 ± 0.00003 s-1, KM = 30 ± 2.5 µM) as well as temperature and pH optima (50 °C and pH 7, respectively) were determined. We further aimed to find an efficient aloesone glycosylating enzyme with potential application for biocatalytic production of the glucoside. We discovered UGT71C1 from Arabidopsis thaliana as an efficient aloesone UGT showing a 167-fold higher catalytic efficiency compared to that of UGT72B49. Interestingly, sequence analysis of all the 137 newly identified aloesone UGTs showed that they belong to different phylogenetic groups, with the highest representation in groups B, D, E, F and L. Finally, our study indicates that aloesone C-glycosylation is highly specific and rare, since it was not possible to achieve in an efficient manner with any of the 422 UGTs assayed, including multifunctional GTs and 28 known C-UGTs.


Assuntos
Glicosiltransferases , Glicosilação , Glicosiltransferases/metabolismo , Glicosiltransferases/química , Arabidopsis/enzimologia , Arabidopsis/metabolismo , Difosfato de Uridina/metabolismo , Difosfato de Uridina/química
3.
Biochem Biophys Res Commun ; 694: 149386, 2024 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-38134476

RESUMO

Radiation exposure poses a significant threat to cellular integrity by inducing DNA damage through the generation of free radicals and reactive oxygen species. Ascorbic acid, particularly its derivative Palmitoyl Ascorbic Acid 2-Glucoside (PA2G), has demonstrated remarkable radioprotective properties. While previous research focused on its pre-irradiation application, this study explores the post-irradiation radiomitigation potential of PA2G. Our findings reveal that post-irradiation treatment with PA2G enhances cell survival and accelerates DNA repair processes, particularly the non-homologous end-joining (NHEJ) repair pathway. Notably, PA2G treatment reduces the frequency of lethal chromosomal aberrations and micronuclei formation, indicating its ability to enhance the repair of complex DNA lesions. Furthermore, PA2G is shown to play a role in potentially lethal damage repair (PLDR). These radioprotective effects are specific to NHEJ and ATM pathways, as cells deficient in these mechanisms do not benefit from PA2G treatment. This study highlights PA2G as a versatile radioprotector, both pre- and post-irradiation, with significant potential for applications in radiation therapy and protection, offering new insights into its mechanism of action. Further research is required to elucidate the precise molecular mechanisms underlying PA2G's radiomitigation effects and its potential clinical applications.


Assuntos
Reparo do DNA , Glucosídeos , Sobrevivência Celular , Glucosídeos/farmacologia , Dano ao DNA , Ácido Ascórbico/farmacologia , Reparo do DNA por Junção de Extremidades
4.
Appl Environ Microbiol ; 90(3): e0207923, 2024 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-38349148

RESUMO

Anthocyanin cyanidin 3-O-glucoside (C3G) is a natural pigment widely used in food and nutraceutical industries. Its microbial synthesis in Escherichia coli is a promising and efficient way toward large-scale production. The current production titer is low partly due to the accumulation of C3G inside the producing microbes; thus, it is important to explore native transporters responsible for anthocyanin secretion. Currently, there has been only one native E. coli transporter identified with C3G-transporting capability, and its overexpression has a very limited effect on the promotion of extracellular C3G production. In this study, we report the identification and verification of an efficient intrinsic C3G efflux transporter MdtH in E. coli through transcriptomic analysis and genetic/biochemical studies. MdtH could bind C3G with high affinity, and its overexpression increased the extracellular C3G biosynthesis in E. coli by 110%. Our study provides a new regulation target for microbial biosynthesis of C3G and other anthocyanins. IMPORTANCE: Cyanidin 3-O-glucoside (C3G) is a natural colorant with health-promoting activities and is, hence, widely used in food, cosmetic, and nutraceutical industries. Its market supply is currently dependent on extraction from plants. As an alternative, C3G can be produced by the microbe Escherichia coli in a green and sustainable way. However, a large portion of this compound is retained inside the cell of E. coli, thus complicating the purification process and limiting the high-level production. We have identified and verified an efficient native transporter named MdtH in E. coli that can export C3G to the cultivation medium. Overexpression of MdtH could improve extracellular C3G production by 110% without modifications of the metabolic pathway genes or enzymes. This study reveals a new regulation target for C3G production in bacteria and provides guidance to the microbial biosynthesis of related compounds.


Assuntos
Antocianinas , Escherichia coli , Escherichia coli/genética , Escherichia coli/metabolismo , Antocianinas/química , Antocianinas/metabolismo , Glucosídeos/metabolismo , Transporte Biológico
5.
Appl Environ Microbiol ; : e0077924, 2024 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-39315794

RESUMO

6-Gingerol is a major phenolic compound within ginger (Zingiber officinale), often used in healthcare; however, its lower bioavailability is partly due to its poor solubility. Four bacterial glycosyltransferases (GTs) were tested to glycosylate 6-gingerol into soluble gingerol glucosides. BsUGT489 was a suitable GT to biotransform 6-gingerol into five significant products, which could be identified via nucleic magnetic resonance and mass spectrometry as 6-gingerol-4',5-O-ß-diglucoside (1), 6-gingerol-4'-O-ß-glucoside (2), 6-gingerol-5-O-ß-glucoside (3), 6-shogaol-4'-O-ß-glucoside (4), and 6-shogaol (5). The enzyme kinetics of BsUGT489 showed substrate inhibition toward 6-gingerol for producing two glucosides. The kinetic parameters were determined as KM (110 µM), kcat (862 min-1), and KI (571 µM) for the production of 6-gingerol-4'-O-ß-glucoside (2) and KM (104 µM), kcat (889 min-1), and KI (545 µM) for the production of 6-gingerol-5-O-ß-glucoside (3). The aqueous solubility of the three 6-gingerol glucosides, compound (1) to (3), was greatly improved. However, 6-shogaol-4'-O-ß-glucoside (4) was found to be a product biotransformed from 6-shogaol (5). This study first confirmed that the glucose moiety at the C-5 position of both 6-gingerol-4',5-O-ß-diglucoside (1) and 6-gingerol-5-O-ß-glucoside (3) caused spontaneous deglucosylation through ß-elimination to form 6-shogaol-4'-O-ß-glucoside (4) and 6-shogaol (5), respectively. Moreover, the GTs could glycosylate 6-shogaol to form 6-shogaol-4'-O-ß-glucoside (4). The assays showed 6-shogaol-4'-O-ß-glucoside (4) had higher anti-inflammatory activity (IC50 value of 10.3 ± 0.2 µM) than 6-gingerol. The 6-gingerol-5-O-ß-glucoside (3) possessed 346-fold higher solubility than 6-shogaol, in which the highly soluble glucoside is a potential prodrug of 6-shogaol via spontaneous deglucosylation. This unusual deglucosylation plays a vital role in influencing the anti-inflammatory activity. IMPORTANCE: Both 6-gingerols and 6-shogaol possess multiple bioactivities. However, their poor solubility limits their application. The present study used bacterial GTs to catalyze the glycosylation of 6-gingerol, and the resulting gingerol glycosides were found to be new compounds with improved solubility and anti-inflammatory activity. In addition, two of the 6-gingerol glucosides were found to undergo spontaneous deglucosylation to form 6-shogaol or 6-shogaol glucosides. The unique spontaneous deglucosylation property of the new 6-gingerol glucosides makes them a good candidate for the prodrug of 6-shogaol.

6.
Plant Cell Environ ; 47(2): 682-697, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37882446

RESUMO

Quercetin is a key flavonol in tea plants (Camellia sinensis (L.) O. Kuntze) with various health benefits, and it often occurs in the form of glucosides. The roles of quercetin and its glucosylated forms in plant defense are generally not well-studied, and remain unknown in the defense of tea. Here, we found higher contents of quercetin glucosides and a decline of the aglucone upon Ectropis grisescens (E. grisescens) infestation of tea. Nine UGTs were strongly induced, among which UGT89AC1 exhibited the highest activity toward quercetin in vitro and in vivo. The mass of E. grisescens larvae that fed on plants with repressed UGT89AC1 or varieties with lower levels of UGT89AC1 was significantly lower than that of larvae fed on controls. Artificial diet supplemented with quercetin glucoside also reduced the larval growth rate, whereas artificial diet supplemented with free quercetin had no significant effect on larval growth. UGT89AC1 was located in both the cytoplasm and nucleus, and its expression was modulated by JA, JA-ILE, and MeJA. These findings demonstrate that quercetin glucosylation serves a defensive role in tea against herbivory. Our results also provide novel insights into the ecological relevance of flavonoid glycosides under biotic stress in plants.


Assuntos
Camellia sinensis , Lepidópteros , Animais , Camellia sinensis/metabolismo , Quercetina/farmacologia , Quercetina/metabolismo , Herbivoria , Larva , Chá/metabolismo , Glucosídeos/metabolismo , Proteínas de Plantas/metabolismo
7.
Crit Rev Food Sci Nutr ; : 1-18, 2024 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-39097751

RESUMO

BACKGROUND: Cyanidin-3-O-glucoside (C3G), is an anthocyanin mainly found in berries, and can also be produced by microorganisms. It has been traditionally used as a natural coloring agent for decades. Recently, it has been investigated for its high antioxidant activity and anti-cancer attributes. C3G has low bioavailability and is sensitive to oxidation and gastric pH; therefore, it is encapsulated in nanoliposomes to enhance its bio-availability, targeted delivery- and efficacy against chronic disease. SCOPE AND APPROACH: In this review, the role of C3G nanoliposomes against major chronic diseases has been discussed. The focus was on research findings and the mechanism of action to affect the proliferation of cancer, neuro disease and cardiovascular problems. It also discussed the formulation of nanoliposomes, their role in nutraceutical delivery and enhancement in C3G bioavailability. KEY FINDINGS AND CONCLUSIONS: Data suggested that nanoliposomes safeguard C3G, enhance bioavailability, and ensure safe, adequate and targeted delivery. It can reduce the impact of cancer and inflammation by inhibiting the ß-catenin/O6-methylguanine-DNA methyltransferase (MGMT) pathway and upregulating miR-214-5p. Formation of C3G nanoliposomes significantly enhances the nutraceutical efficacy of C3G against major chronic disease therefore, C3G nanoliposomes might be a future-based nutraceutical to treat major chronic diseases, including cancer, neuro problems and CVD, but challenges remain in finding correct dose and techniques to maximize its efficacy.

8.
Anal Bioanal Chem ; 416(3): 651-661, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37578526

RESUMO

The aim of the present research was the development and validation of a selective and reliable method for the indirect and direct determination of acidic herbicide glucosides. Enzymatic deconjugation was investigated as a mild alternative to harsh alkaline hydrolysis. Various enzymatic options for deconjugation were exploited. One out of nine tested specific enzymes proved to be practical and repeatable for different matrices and concentration ranges, leading to the complete deconjugation of the glucosides. The method was validated according to the SANTE/11312/2021 guideline for cereals and oilseeds and for a rice-based infant formula. Additionally, for four acidic herbicide glucosides available on the market, a quantitative method for direct determination of the intact glucosides was optimized and validated. In both methods, the average recoveries were within 70-120%. The limits of quantification (LOQ) achieved were 10 µg kg-1 and 2.5 µg kg-1 for the intact glucosides and the free acids in cereal and oilseeds. For the rice-based infant formula, the LOQ was 1 µg kg-1 (3 µg kg-1 for dichlorprop). To confirm its applicability, the deconjugation approach was tested for fifteen samples (cereals, oilseeds, and citrus) with incurred residues. Comparisons were made between the method without deconjugation, and two methods with deconjugation, the here proposed enzymatic deconjugation and the more commonly used alkaline hydrolysis. The inclusion of enzymatic deconjugation during sample preparation led to an increase up to 2.7-fold compared to analysis without deconjugation. Enzymatic deconjugation resulted in comparable results to alkaline hydrolysis for 13 out of 15 samples.


Assuntos
Herbicidas , Humanos , Lactente , Herbicidas/análise , Cromatografia Líquida/métodos , Grão Comestível/química , Glucosídeos/análise , Espectrometria de Massas em Tandem/métodos
9.
Exp Cell Res ; 433(2): 113849, 2023 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-37926343

RESUMO

Estrogens have been demonstrated to inhibit age-related cognitive decline via binding to estrogen receptors (ERs). As a natural flavonoid component of Cuscuta Chinensis Lam., Kaempferol-3-O-glucoside (K-3-G) not only possesses anti-neuroinflammatory potential but also functions as an agonist for ERα and ERß. This study aimed to determine whether K-3-G improved cognition during the aging process, with an emphasis on its effect on microglial inflammation. In vivo, K-3-G (5 or 10 mg/kg/day) was orally given to the senescence-accelerated mouse prone 8 (SAMP8) mice from six to eight-month old. In addition to mitigating the memory and learning deficits of SAMP8 mice, K-3-G upregulated the expression of ERα and ERß in their hippocampal CA1 region, with the higher dose being more effective. Less Iba-1+ microglial cells presented in SAMP8 mice treated with K-3-G. The formation of NLR Family Pyrin Domain Containing 3 (NLRP3) complex, production of pro-inflammatory cytokines and oxidative stress-related markers, as well as expression of pro-apoptotic proteins were reduced by K-3-G. In vitro, BV2 microglial cells exposed to oligomeric amyloid beta (Aß)1-42 were treated with 100 µM K-3-G. K-3-G showed similar anti-inflammatory effects on BV2 cells as in vivo. K-3-G-induced alterations were partly diminished by fulvestrant, an ER antagonist. Moreover, dual-luciferase reporter system demonstrated that K-3-G induced ER expression by activating the transcription of estrogen-response elements (EREs). Collectively, these findings demonstrate that K-3-G may be a novel therapeutic agent for senescence-related cognitive impairment by inhibiting microglial inflammation through its action on ERs.


Assuntos
Envelhecimento , Anti-Inflamatórios não Esteroides , Disfunção Cognitiva , Receptor alfa de Estrogênio , Receptor beta de Estrogênio , Quempferóis , Monossacarídeos , Receptores de Estrogênio , Animais , Camundongos , Peptídeos beta-Amiloides/metabolismo , Cognição , Disfunção Cognitiva/tratamento farmacológico , Receptor alfa de Estrogênio/metabolismo , Receptor beta de Estrogênio/metabolismo , Estrogênios/metabolismo , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Microglia/metabolismo , Receptores de Estrogênio/metabolismo , Receptores de Estrogênio/uso terapêutico , Monossacarídeos/farmacologia , Monossacarídeos/uso terapêutico , Quempferóis/farmacologia , Quempferóis/uso terapêutico , Anti-Inflamatórios não Esteroides/farmacologia , Anti-Inflamatórios não Esteroides/uso terapêutico
10.
Plant Cell Rep ; 43(2): 56, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38319432

RESUMO

KEY MESSAGE: This is the first report showing anthocyanin accumulation in the soybean cotyledon via genetic transformation of a single gene. Soybean [Glycine max (L.) Merrill] contains valuable components, including anthocyanins. To enhance anthocyanin production in Korean soybean Kwangankong, we utilized the R2R3-type MYB gene (IbMYB1a), known for inducing anthocyanin pigmentation in Arabidopsis. This gene was incorporated into constructs using two promoters: the CaMV 35S promoter (P35S) and the ß-conglycinin promoter (Pß-con). Kwangankong was transformed using Agrobacterium, and the presence of IbMYB1a and Bar transgenes in T0 plants was confirmed through polymerase chain reaction (PCR), followed by gene expression validation. Visual inspection revealed that one P35S:IbMYB1a and three Pß-con:IbMYB1a lines displayed seed color change. Pß-con:IbMYB1a T1 seeds accumulated anthocyanins in cotyledon outer layers, whereas P35S:IbMYB1a and non-transgenic black soybean (Cheongja 5 and Seum) accumulated anthocyanins in the seed coat. During the germination and growth phase, T1 seedlings from Pß-con:IbMYB1a lines exhibited anthocyanin pigmentation in cotyledons for up to 1 month without growth aberrations. High-performance liquid chromatography confirmed cyanidin-3-O-glucoside as the major anthocyanin in the Pß-con:IbMYB1a line (#3). We analyzed the expression patterns of anthocyanin biosynthesis genes, chalcone synthase 7,8, chalcone isomerase 1A, flavanone 3-hydroxylase, flavanone 3'-hydroxylase, dihydroflavanol reductase 1, dihydroflavanol reductase 2, anthocyanidin synthase 2, anthocyanidin synthase 3, and UDP glucose flavonoid 3-O-glucosyltransferase in transgenic and control Kwangankong and black soybean (Cheongja 5 and Seum) seeds using quantitative real-time PCR. We conclude that the induction of gene expression in transgenic plants in comparison with Kwangankong was attributable to IbMYB1a transformation. Notably, flavanone 3-hydroxylase, flavanone 3'-hydroxylase, and dihydroflavanol reductase 1 were abundantly expressed in black soybean seed coat, distinguishing them from transgenic cotyledons.


Assuntos
Arabidopsis , Flavanonas , Glycine max/genética , Antocianinas , Cotilédone/genética , Pigmentação/genética , Oxigenases de Função Mista
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa