Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.409
Filtrar
Mais filtros

Eixos temáticos
Intervalo de ano de publicação
1.
BMC Plant Biol ; 24(1): 82, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38302892

RESUMO

BACKGROUND: Wolfberry is well-known for its high nutritional value and medicinal benefits. Due to the continuous ripening nature of Goji berries and the fact that they can be commercially harvested within a few weeks, their phytochemical composition may change during the harvesting process at different periods. RESULT: The involved molecular mechanisms of difference in fruit quality of ripe Lycium barbarum L. harvested at four different periods were investigated by transcriptomic and metabolomics analyses for the first time. According to the results we obtained, it was found that the appearance quality of L. barbarum fruits picked at the beginning of the harvesting season was superior, while the accumulation of sugar substances in L. barbarum fruits picked at the end of the harvesting season was better. At the same time the vitamin C and carotenoids content of wolfberry fruits picked during the summer harvesting season were richer. Ascorbic acid, succinic acid, glutamic acid, and phenolic acids have significant changes in transcription and metabolism levels. Through the network metabolic map, we found that ascorbic acid, glutamic acid, glutamine and related enzyme genes were differentially accumulated and expressed in wolfberry fruits at different harvesting periods. Nevertheless, these metabolites played important roles in the ascorbate-glutathione recycling system. Ascorbic acid, phenolic substances and the ascorbate-glutathione recycling system have antioxidant effects, which makes the L. barbarum fruits harvested in the summer more in line with market demand and health care concepts. CONCLUSION: This study laid the foundation for understanding the molecular regulatory mechanisms of quality differences of ripe wolfberry fruits harvested at different periods, and provides a theoretical basis for enhancing the quality of L. barbarum fruits.


Assuntos
Lycium , Lycium/genética , Lycium/metabolismo , Frutas/metabolismo , Perfilação da Expressão Gênica , Metaboloma , Ácido Ascórbico/metabolismo , Glutationa/metabolismo , Glutamatos/metabolismo
2.
Appl Environ Microbiol ; 90(1): e0190523, 2024 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-38112419

RESUMO

A moderately halophilic eubacterium, Halomonas elongata, has been used as cell factory to produce fine chemical 1,4,5,6-tetrahydro-2-methyl-4-pyrimidinecarboxylic acid (ectoine), which functions as a major osmolyte protecting the cells from high-salinity stress. To explore the possibility of using H. elongata to biosynthesize other valuable osmolytes, an ectoine-deficient salt-sensitive H. elongata deletion mutant strain KA1 (ΔectABC), which only grows well in minimal medium containing up to 3% NaCl, was subjected to an adaptive mutagenesis screening in search of mutants with restored salt tolerance. Consequently, we obtained a mutant, which tolerates 6% NaCl in minimal medium by overproducing L-glutamic acid (Glu). However, this Glu-overproducing (GOP) strain has a lower tolerance level than the wild-type H. elongata, possibly because the acidity of Glu interferes with the pH homeostasis of the cell and hinders its own cellular accumulation. Enzymatic decarboxylation of Glu to γ-aminobutyric acid (GABA) by a Glu decarboxylase (GAD) could restore cellular pH homeostasis; therefore, we introduced an engineered salt-inducible HopgadBmut gene, which encodes a wide pH-range GAD mutant, into the genome of the H. elongata GOP strain. We found that the resulting H. elongata GOP-Gad strain exhibits higher salt tolerance than the GOP strain by accumulating high concentration of GABA as an osmolyte in the cell (176.94 µmol/g cell dry weight in minimal medium containing 7% NaCl). With H. elongata OUT30018 genetic background, H. elongata GOP-Gad strain can utilize biomass-derived carbon and nitrogen compounds as its sole carbon and nitrogen sources, making it a good candidate for the development of GABA-producing cell factories.IMPORTANCEWhile the wild-type moderately halophilic H. elongata can synthesize ectoine as a high-value osmolyte via the aspartic acid metabolic pathway, a mutant H. elongata GOP strain identified in this work opens doors for the biosynthesis of alternative valuable osmolytes via glutamic acid metabolic pathway. Further metabolic engineering to install a GAD system into the H. elongata GOP strain successfully created a H. elongata GOP-Gad strain, which acquired higher tolerance to salt stress by accumulating GABA as a major osmolyte. With the ability to assimilate biomass-derived carbon and nitrogen sources and thrive in high-salinity environment, the H. elongata GOP-Gad strain can be used in the development of sustainable GABA-producing cell factories.


Assuntos
Diamino Aminoácidos , Halomonas , Tolerância ao Sal , Ácido Glutâmico/metabolismo , Halomonas/genética , Engenharia Metabólica , Salinidade , Cloreto de Sódio/metabolismo , Carbono/metabolismo , Nitrogênio/metabolismo , Ácido gama-Aminobutírico/metabolismo
3.
BMC Microbiol ; 24(1): 125, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622505

RESUMO

γ- poly glutamic acid (γ-PGA), a high molecular weight polymer, is synthesized by microorganisms and secreted into the extracellular space. Due to its excellent performance, γ-PGA has been widely used in various fields, including food, biomedical and environmental fields. In this study, we screened natto samples for two strains of Bacillus subtilis N3378-2at and N3378-3At that produce γ-PGA. We then identified the γ-PGA synthetase gene cluster (PgsB, PgsC, PgsA, YwtC and PgdS), glutamate racemase RacE, phage-derived γ-PGA hydrolase (PghB and PghC) and exo-γ-glutamyl peptidase (GGT) from the genome of these strains. Based on these γ-PGA-related protein sequences from isolated Bacillus subtilis and 181 B. subtilis obtained from GenBank, we carried out genotyping analysis and classified them into types 1-5. Since we found B. amyloliquefaciens LL3 can produce γ-PGA, we obtained the B. velezensis and B. amyloliquefaciens strains from GenBank and classified them into types 6 and 7 based on LL3. Finally, we constructed evolutionary trees for these protein sequences. This study analyzed the distribution of γ-PGA-related protein sequences in the genomes of B. subtilis, B. velezensis and B. amyloliquefaciens strains, then the evolutionary diversity of these protein sequences was analyzed, which provided novel information for the development and utilization of γ-PGA-producing strains.


Assuntos
Bacillus subtilis , Ácido Glutâmico , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Ácido Glutâmico/metabolismo , Sequência de Aminoácidos , Hidrolases/metabolismo , Ácido Poliglutâmico/genética , Genômica
4.
Pharmacol Res ; 202: 107136, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38460778

RESUMO

CREB-regulated transcription coactivator 1 (CRTC1), a pivotal synaptonuclear messenger, regulates synaptic plasticity and transmission to prevent depression. Despite exhaustive investigations into CRTC1 mRNA reductions in the depressed mice, the regulatory mechanisms governing its transcription remain elusive. Consequently, exploring rapid but non-toxic CRTC1 inducers at the transcriptional level is important for resisting depression. Here, we demonstrate the potential of D-arabinose, a unique monosaccharide prevalent in edible-medicinal plants, to rapidly enter the brain and induce CRTC1 expression, thereby eliciting rapid-acting and persistent antidepressant responses in chronic restrain stress (CRS)-induced depressed mice. Mechanistically, D-arabinose induces the expressions of peroxisome proliferator-activated receptor gamma (PPARγ) and transcription factor EB (TFEB), thereby activating CRTC1 transcription. Notably, we elucidate the pivotal role of the acetyl-CoA synthetase short-chain family member 2 (ACSS2) as an obligatory mediator for PPARγ and TFEB to potentiate CRTC1 transcription. Furthermore, D-arabinose augments ACSS2-dependent CRTC1 transcription by activating AMPK through lysosomal AXIN-LKB1 pathway. Correspondingly, the hippocampal down-regulations of ACSS2, PPARγ or TFEB alone failed to reverse CRTC1 reductions in CRS-exposure mice, ultimately abolishing the anti-depressant efficacy of D-arabinose. In summary, our study unveils a previously unexplored role of D-arabinose in activating the ACSS2-PPARγ/TFEB-CRTC1 axis, presenting it as a promising avenue for the prevention and treatment of depression.


Assuntos
Arabinose , PPAR gama , Camundongos , Animais , PPAR gama/genética , PPAR gama/metabolismo , Arabinose/farmacologia , Arabinose/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , Encéfalo/metabolismo
5.
Pharmacol Res ; 206: 107292, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39002867

RESUMO

Nutrient bioavailability in the tumor microenvironment plays a pivotal role in tumor proliferation and metastasis. Among these nutrients, glutamine is a key substance that promotes tumor growth and proliferation, and its downstream metabolite asparagine is also crucial in tumors. Studies have shown that when glutamine is exhausted, tumor cells can rely on asparagine to sustain their growth. Given the reliance of tumor cell proliferation on asparagine, restricting its bioavailability has emerged as promising strategy in cancer treatment. For instance, the use of asparaginase, an enzyme that depletes asparagine, has been one of the key chemotherapies for acute lymphoblastic leukemia (ALL). However, tumor cells can adapt to asparagine restriction, leading to reduced chemotherapy efficacy, and the mechanisms by which different genetically altered tumors are sensitized or adapted to asparagine restriction vary. We review the sources of asparagine and explore how limiting its bioavailability impacts the progression of specific genetically altered tumors. It is hoped that by targeting the signaling pathways involved in tumor adaptation to asparagine restriction and certain factors within these pathways, the issue of drug resistance can be addressed. Importantly, these strategies offer precise therapeutic approaches for genetically altered cancers.


Assuntos
Asparagina , Neoplasias , Humanos , Asparagina/metabolismo , Animais , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Antineoplásicos/uso terapêutico , Antineoplásicos/farmacologia , Microambiente Tumoral/efeitos dos fármacos , Terapia de Alvo Molecular
6.
Int Microbiol ; 27(2): 505-512, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37498437

RESUMO

As a consequence of alcoholic fermentation (AF) in wine, several compounds are released by yeasts, and some of them are linked to the general quality and mouthfeel perceptions in wine. However, others, such as succinic acid, act as inhibitors, mainly of malolactic fermentation. Succinic acid is produced by non-Saccharomyces and Saccharomyces yeasts during the initial stages of AF, and the presence of some amino acids such as γ-aminobutyric acid (GABA) and glutamic acid can increase the concentration of succinic acid. However, the influence of these amino acids on succinic acid production has been studied very little to date. In this work, we studied the production of succinic acid by different strains of non-Saccharomyces and Saccharomyces yeasts during AF in synthetic must, and the influence of the addition of GABA or glutamic acid or a combination of both. The results showed that succinic acid can be produced by non-Saccharomyces yeasts with values in the range of 0.2-0.4 g/L. Moreover, the addition of GABA or glutamic acid can increase the concentration of succinic acid produced by some strains to almost 100 mg/L more than the control, while other strains produce less. Consequently, higher succinic acid production by non-Saccharomyces yeast in coinoculated fermentations with S. cerevisiae strains could represent a risk of inhibiting Oenococcus oeni and therefore the MLF.


Assuntos
Oenococcus , Vinho , Vinho/análise , Vinho/microbiologia , Saccharomyces cerevisiae/metabolismo , Ácido Glutâmico/metabolismo , Ácido Succínico/metabolismo , Leveduras/metabolismo , Aminoácidos , Ácido gama-Aminobutírico/metabolismo , Oenococcus/metabolismo , Fermentação
7.
Brain ; 146(3): 977-990, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35348614

RESUMO

Autoimmune neurological syndromes (AINS) with autoantibodies against the 65 kDa isoform of the glutamic acid decarboxylase (GAD65) present with limbic encephalitis, including temporal lobe seizures or epilepsy, cerebellitis with ataxia, and stiff-person-syndrome or overlap forms. Anti-GAD65 autoantibodies are also detected in autoimmune diabetes mellitus, which has a strong genetic susceptibility conferred by human leukocyte antigen (HLA) and non-HLA genomic regions. We investigated the genetic predisposition in patients with anti-GAD65 AINS. We performed a genome-wide association study (GWAS) and an association analysis of the HLA region in a large German cohort of 1214 individuals. These included 167 patients with anti-GAD65 AINS, recruited by the German Network for Research on Autoimmune Encephalitis (GENERATE), and 1047 individuals without neurological or endocrine disease as population-based controls. Predictions of protein expression changes based on GWAS findings were further explored and validated in the CSF proteome of a virtually independent cohort of 10 patients with GAD65-AINS and 10 controls. Our GWAS identified 16 genome-wide significant (P < 5 × 10-8) loci for the susceptibility to anti-GAD65 AINS. The top variant, rs2535288 [P = 4.42 × 10-16, odds ratio (OR) = 0.26, 95% confidence interval (CI) = 0.187-0.358], localized to an intergenic segment in the middle of the HLA class I region. The great majority of variants in these loci (>90%) mapped to non-coding regions of the genome. Over 40% of the variants have known regulatory functions on the expression of 48 genes in disease relevant cells and tissues, mainly CD4+ T cells and the cerebral cortex. The annotation of epigenomic marks suggested specificity for neural and immune cells. A network analysis of the implicated protein-coding genes highlighted the role of protein kinase C beta (PRKCB) and identified an enrichment of numerous biological pathways participating in immunity and neural function. Analysis of the classical HLA alleles and haplotypes showed no genome-wide significant associations. The strongest associations were found for the DQA1*03:01-DQB1*03:02-DRB1*04:01HLA haplotype (P = 4.39 × 10-4, OR = 2.5, 95%CI = 1.499-4.157) and DRB1*04:01 allele (P = 8.3 × 10-5, OR = 2.4, 95%CI = 1.548-3.682) identified in our cohort. As predicted, the CSF proteome showed differential levels of five proteins (HLA-A/B, C4A, ATG4D and NEO1) of expression quantitative trait loci genes from our GWAS in the CSF proteome of anti-GAD65 AINS. These findings suggest a strong genetic predisposition with direct functional implications for immunity and neural function in anti-GAD65 AINS, mainly conferred by genomic regions outside the classical HLA alleles.


Assuntos
Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Predisposição Genética para Doença/genética , Proteoma/genética , Antígenos de Histocompatibilidade Classe II , Antígenos HLA , Haplótipos , Alelos , Autoanticorpos , Cadeias HLA-DRB1/genética
8.
Brain ; 146(4): 1436-1452, 2023 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-36314080

RESUMO

Temporal lobe epilepsy (TLE) is one of the syndromes linked to antibodies against glutamic acid decarboxylase (GAD). It has been questioned whether 'limbic encephalitis with GAD antibodies' is a meaningful diagnostic entity. The immunopathogenesis of GAD-TLE has remained enigmatic. Improvement of immunological treatability is an urgent clinical concern. We retrospectively assessed the clinical, MRI and CSF course as well as brain tissue of 15 adult patients with GAD-TLE who underwent temporal lobe surgery. Brain tissue was studied by means of immunohistochemistry, multiplex fluorescent microscopy and transcriptomic analysis for inflammatory mediators and neuronal degeneration. In 10 patients, there was a period of mediotemporal swelling and T2 signal increase; in nine cases this occurred within the first 6 years after symptom onset. This resulted in unilateral or bilateral hippocampal sclerosis; three cases developed hippocampal sclerosis within the first 2 years. All CSF studies done within the first year (n = 6) revealed intrathecal synthesis of immunoglobulin G. Temporal lobe surgeries were done after a median disease duration of 9 years (range 3 weeks to 60 years). Only two patients became seizure-free. Brain parenchyma collected during surgery in the first 6 years revealed high numbers of plasma cells but no signs of antibody-mediated tissue damage. Even more dense was the infiltration by CD8+ cytotoxic T lymphocytes (CTLs) that were seen to locally proliferate. Further, a portion of these cells revealed an antigen-specific resident memory T cell phenotype. Finally, CTLs with cytotoxic granzyme B+ granules were also seen in microglial nodules and attached to neurons, suggesting a CTL-mediated destruction of these cells. With longer disease duration, the density of all lymphocytes decreased. Whole transcriptome analysis in early/active cases (but not in late/inactive stages) revealed 'T cell immunity' and 'Regulation of immune processes' as the largest overrepresented clusters. To a lesser extent, pathways associated with B cells and neuronal degeneration also showed increased representation. Surgically treated patients with GAD-TLE go through an early active inflammatory, 'encephalitic' stage (≤6 years) with CTL-mediated, antigen-driven neuronal loss and antibody-producing plasma cells but without signs of complement-mediated cell death. Subsequently, patients enter an apparently immunologically inactive or low-active stage with ongoing seizures, probably caused by the structural damage to the temporal lobe. 'Limbic encephalitis' with GAD antibodies should be subsumed under GAD-TLE. The early tissue damage explains why immunotherapy does not usually lead to freedom from seizures.


Assuntos
Encefalite , Epilepsia do Lobo Temporal , Encefalite Límbica , Humanos , Epilepsia do Lobo Temporal/complicações , Complexo de Ataque à Membrana do Sistema Complemento , Estudos Retrospectivos , Convulsões/complicações , Glutamato Descarboxilase , Imunoglobulina G , Encefalite/complicações , Encefalite Límbica/complicações , Neurônios/metabolismo , Imageamento por Ressonância Magnética/métodos
9.
Environ Res ; 244: 117921, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38101721

RESUMO

The novel glutamic acid crosslinked chitosan membrane (CsG) was fabricated and tested for its adsorption capabilities for the removal of multiple pollutants like Cr (VI), cyanide, fluoride and diclofenac sodium from wastewater. This fabricated CsG membrane was characterized by various techniques like FT-IR, SEM, EDX and XRD, BET to assess its structural, compositional and morphological properties. The working parameters studied by batch experiments were solution pH, CsG dose, contact time, pollutant concentration and solution temperature. The CsG membrane exhibited maximum adsorption capacity of 410.7 mg/g, 310.2 mg/g, 14.3 mg/g, 132.7 mg/g for Cr (VI), cyanide, fluoride and diclofenac respectively. The validation of the operational parameters was performed by Response Surface Methodology (RSM). The experimental data fitted well with Langmuir isotherm model and followed pseudo second order kinetics for all the four targeted contaminants. The spontaneity of the process was checked by thermodynamics studies. The high partition coefficients of 7669 L/kg Cr(VI), 23,309 L/kg (CN-), 649 L/kg (F-) and 2613 L/kg (DFC) are the indicators of excellent attractive interaction between CsG membrane and target toxicants. The CsG membrane showed efficient regenerative adsorption properties up to 5 adsorption-desorption cycles. Overall, the developed novel CsG membrane promised as an effective material for the removal of multiple number of pollutants from water.


Assuntos
Quitosana , Poluentes Ambientais , Poluentes Químicos da Água , Purificação da Água , Quitosana/química , Ácido Glutâmico , Espectroscopia de Infravermelho com Transformada de Fourier , Fluoretos , Cromo/química , Poluentes Químicos da Água/química , Purificação da Água/métodos , Concentração de Íons de Hidrogênio , Termodinâmica , Adsorção , Cinética , Cianetos
10.
Biotechnol Appl Biochem ; 71(3): 565-583, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38246886

RESUMO

The commercial production of multifunctional, biocompatible, and biodegradable biopolymers such as poly-γ-glutamic acid via microbial fermentation requires the development of simple and cheap methods for mass production. This study optimized the poly-γ-glutamic acid production of Bacillus licheniformis ATCC 9945a in several steps. At first, the most critical components of the culture medium, including l-glutamic acid, citric acid, and glycerol, were selected by screening nine factors through the Plackett-Burman experimental design and then were optimized using the response surface method and the central composite design algorithm. Under optimal conditions, the production of poly-γ-glutamic acid increased by more than 4.2 times from 11.2 to 47.2 g/L. This is one of the highest production rates of this strain in submerged batch fermentation reported so far using the optimized medium compared to the conventional base medium. A novel and efficient sudden pulse feeding strategy (achieved by a novel one-factorial statistical technique) of l-glutamic acid to the optimized medium increased biopolymer production from 47.2 to 66.1 g/L, the highest value reported in published literature with this strain. This simple, reproducible, and cheap fermentation process can considerably enhance the commercial applications of the poly-γ-glutamic acid synthesized by B. licheniformis ATCC 9945a.


Assuntos
Bacillus licheniformis , Meios de Cultura , Ácido Glutâmico , Ácido Poliglutâmico , Ácido Poliglutâmico/biossíntese , Ácido Poliglutâmico/análogos & derivados , Ácido Poliglutâmico/metabolismo , Ácido Poliglutâmico/química , Bacillus licheniformis/metabolismo , Bacillus licheniformis/crescimento & desenvolvimento , Meios de Cultura/química , Meios de Cultura/metabolismo , Ácido Glutâmico/metabolismo , Fermentação , Projetos de Pesquisa
11.
Neurol Sci ; 2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38795270

RESUMO

Parkinson's disease (PD) is a chronic neurological disorder that is identified by a characteristic combination of symptoms such as bradykinesia, resting tremor, rigidity, and postural instability. It is the second most common neurodegenerative disease after Alzheimer's disease and is characterized by the progressive loss of dopamine-producing neurons in the brain. Currently, available treatments for PD are symptomatic and do not prevent the disease pathology. There is growing interest in developing disease-modifying therapy that can reduce disease progression and improve patients' quality of life. One of the promising therapeutic approaches under evaluation is gene therapy utilizing a viral vector, adeno-associated virus (AAV), to deliver transgene of interest into the central nervous system (CNS). Preclinical studies in small animals and nonhuman primates model of PD have shown promising results utilizing the gene therapy that express glial cell line-derived neurotrophic factor (GDNF), cerebral dopamine neurotrophic factor (CDNF), aromatic L-amino acid decarboxylase (AADC), and glutamic acid decarboxylase (GAD). This study provides a comprehensive review of the current state of the above-mentioned gene therapies in various phases of clinical trials for PD treatment. We have highlighted the rationale for the gene-therapy approach and the findings from the preclinical and nonhuman primates studies, evaluating the therapeutic effect, dose safety, and tolerability. The challenges associated with gene therapy for heterogeneous neurodegenerative diseases, such as PD, have also been described. In conclusion, the review identifies the ongoing promising gene therapy approaches in clinical trials and provides hope for patients with PD.

12.
Artigo em Inglês | MEDLINE | ID: mdl-39003245

RESUMO

L-Proline (Pro) is an essential amino acid additive in livestock and aquaculture feeds. Previously, we created a Pro overproducing Halomonas elongata HN6 by introducing an engineered salt-inducible Pro biosynthetic mCherry-proBm1AC operon and deleting a putA gene that encoded a Pro catabolic enzyme in the genome of H. elongata OUT30018. Here, we report a generation of a novel Pro overproducing H. elongata HN10 strain with improved salt tolerance and higher Pro yield by expressing the mCherry-proBm1AC operon and deleting the putA gene in the genome of a spontaneous mutant H. elongata GOP, which overproduces glutamic acid (Glu) that is a precursor for Pro biosynthesis. The optimal salt concentration for growth of H. elongata HN10 was found to be 7% to 8% w/v NaCl, and the average Pro yield of 166 mg/L was achieved when H. elongata HN10 was cultivated in M63 minimal medium containing 4% w/v glucose and 8% w/v NaCl.

13.
Artigo em Inglês | MEDLINE | ID: mdl-38955395

RESUMO

Poly-γ-glutamic acid (PGA) has been of interest as a sustainable biopolymer in industrial applications. PGA biosynthesis in Bacillus subtilis is catalyzed by a transmembrane protein complex comprising PgsB, PgsC, and PgsA. To determine the Pgs component responsible for PGA overproduction, we constructed recombinants in which the promoter of the host-derived pgs gene was replaced with another host-derived gene promoter. These recombinants were then transformed using high-copy-number plasmids with various pgs-gene combinations to enhance Pgs component in different ratios. Subsequently, PGA production was investigated in batch cultures with l-glutamate supplemented medium. The recombinant strain enhanced with pgsB alone significantly overproduced PGA (maximum production 35.8 gL-1) than either the pgsC- or pgsA-enhanced strain. The molecular weight of the PGA produced with pgsB-enhanced strain was also greater than the pgsC- or pgsA-enhanced strain (approximately 10-fold). Hence, PgsB enhancement alone contributes to PGA overproduction with increased molecular weight.

14.
Skin Res Technol ; 30(1): e13548, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38174788

RESUMO

BACKGROUND: Excessive inflammation may cause tissue damage and disrupt the function of the skin barrier. Hyaluronic acid (HA), an endogenous component, was found to regulate multiple inflammatory factors for skin health. This work aims to further enhance its efficacy by grafting amino acid onto its molecule. METHODS: Glutamic acid (Glu) was selected as the ligand to react with low-molecular-weight HA. Fibroblast tests and a 3D skin model were used to investigate the anti-inflammation efficacy of HA-Glu. RESULTS: For IL-1α, IL-6 and TNF-α, the grafted compound presents stronger inhibition ability versus native HA. Moreover, HA-Glu could promote the repair of damaged skin by improving the compactness of the stratum corneum and increasing the thickness of the living cell layer. CONCLUSION: The application of HA-Glu compound in skin care formulas would be effective to alleviate inflammation-induced skin symptoms and skin aging.


Assuntos
Ácido Glutâmico , Ácido Hialurônico , Humanos , Ácido Hialurônico/farmacologia , Ácido Hialurônico/uso terapêutico , Ácido Hialurônico/química , Ácido Glutâmico/metabolismo , Pele/metabolismo , Inflamação/tratamento farmacológico , Fibroblastos/metabolismo
15.
J Korean Med Sci ; 39(7): e79, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38412613

RESUMO

BACKGROUND: This study evaluated the difference in brain metabolite profiles between normothermia and hypothermia reaching 25°C in humans in vivo. METHODS: Thirteen patients who underwent thoracic aorta surgery under moderate hypothermia were prospectively enrolled. Plasma samples were collected simultaneously from the arteries and veins to estimate metabolite uptake or release. Targeted metabolomics based on liquid chromatographic mass spectrometry and direct flow injection were performed, and changes in the profiles of respective metabolites from normothermia to hypothermia were compared. The ratios of metabolite concentrations in venous blood samples to those in arterial blood samples (V/A ratios) were calculated, and log2 transformation of the ratios [log2(V/A)] was performed for comparison between the temperature groups. RESULTS: Targeted metabolomics were performed for 140 metabolites, including 20 amino acids, 13 biogenic amines, 10 acylcarnitines, 82 glycerophospholipids, 14 sphingomyelins, and 1 hexose. Of the 140 metabolites analyzed, 137 metabolites were released from the brain in normothermia, and the release of 132 of these 137 metabolites was decreased in hypothermia. Two metabolites (dopamine and hexose) showed constant release from the brain in hypothermia, and 3 metabolites (2 glycophospholipids and 1 sphingomyelin) showed conversion from release to uptake in hypothermia. Glutamic acid demonstrated a distinct brain metabolism in that it was taken up by the brain in normothermia, and the uptake was increased in hypothermia. CONCLUSION: Targeted metabolomics demonstrated various degrees of changes in the release of metabolites by the hypothermic brain. The release of most metabolites was decreased in hypothermia, whereas glutamic acid showed a distinct brain metabolism.


Assuntos
Hipotermia Induzida , Hipotermia , Humanos , Hipotermia/metabolismo , Encéfalo/metabolismo , Aminoácidos , Hipotermia Induzida/métodos , Hexoses/metabolismo , Glutamatos/metabolismo
16.
J Environ Manage ; 366: 121825, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38996604

RESUMO

Chelator-assisted phytoremediation is an efficacious method for promoting the removal efficiency of heavy metals (HMs). The effects of N, N-bis(carboxymethyl)-L-glutamic acid (GLDA) and polyaspartic acid (PASP) on Cd uptake and pyrene removal by Solanum nigrum L. (S. nigrum) were compared in this study. Using GLDA or PASP, the removal efficiency of pyrene was over 98%. And PASP observably raised the accumulation and transport of Cd by S. nigrum compared with GLDA. Meanwhile, both GLDA and PASP markedly increased soil dehydrogenase activities (DHA) and microbial activities. DHA and microbial activities in the PASP treatment group were 1.05 and 1.06 folds of those in the GLDA treatment group, respectively. Transcriptome analysis revealed that 1206 and 1684 differentially expressed genes (DEGs) were recognized in the GLDA treatment group and PASP treatment group, respectively. Most of the DEGs found in the PASP treatment group were involved in the metabolism of carbohydrates, the biosynthesis of brassinosteroid and flavonoid, and they were up-regulated. The DEGs related to Cd transport were screened, and ABCG3, ABCC4, ABCG9 and Nramp5 were found to be relevant with the reduction of Cd stress in S. nigrum by PASP. Furthermore, with PASP treated, transcription factors (TFs) related to HMs such as WRKY, bHLH, AP2/ERF, MYB were down-regulated, while more MYB and bZIP TFs were up-regulated. These TFs associated with plant stress resistance would work together to induce oxidative stress. The above results indicated that PASP was more conducive for phytoremediation of Cd-pyrene co-contaminated soil than GLDA.

17.
Molecules ; 29(5)2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38474566

RESUMO

In light of industrial developments, water pollution by heavy metals as hazardous chemicals has garnered attention. Addressing the urgent need for efficient heavy metal removal from aqueous environments, this study delves into using poly-γ-glutamic acid (γ-PGA) for the bioflocculation of heavy metals. Utilizing γ-PGA variants from Bacillus subtilis with different molecular weights and salt forms (Na-bonded and Ca-bonded), the research evaluates their adsorption capacities for copper (Cu), lead (Pb), and cadmium (Cd) ions. It was found that Na-bonded γ-PGA with a high molecular weight showed the highest heavy metal adsorption (92.2-98.3%), particularly at a 0.5% concentration which exhibited the highest adsorption efficiency. Additionally, the study investigated the interaction of γ-PGA in mixed heavy metal environments, and it was discovered that Na-γ-PGA-HM at a 0.5% concentration showed a superior adsorption efficiency for Pb ions (85.4%), highlighting its selectivity as a potential effective biosorbent for wastewater treatment. This research not only enlightens the understanding of γ-PGA's role in heavy metal remediation but also underscores its potential as a biodegradable and non-toxic alternative for environmental cleanup. The findings pave the way for further exploration into the mechanisms and kinetics of γ-PGA's adsorption properties.


Assuntos
Metais Pesados , Ácido Poliglutâmico/análogos & derivados , Poluentes Químicos da Água , Cádmio/química , Ácido Glutâmico , Chumbo , Peso Molecular , Metais Pesados/química , Água , Íons , Cloreto de Sódio , Adsorção , Concentração de Íons de Hidrogênio , Cinética
18.
J Clin Biochem Nutr ; 74(1): 47-56, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38292115

RESUMO

Several beneficial effects of poly-γ-glutamic acid (γ-PGA) have been reported. To test whether natto, a fermented soy food rich in γ-PGA, can improve intestinal microbiota content and lipid metabolism in a high-fat diet, we compared the intestinal microbiota content, plasma, liver, and fecal contents, and changes in gene expression in the livers and large intestines of a group of mice fed a high-fat diet supplemented with cooked soybeans (SC group) and a group fed a high-fat diet supplemented with natto (NA group) for 42 days; high-fat diet-fed mice were used as a control (Con group). Hepatic lipid levels were significantly lower, the fecal bile acid and lipid levels were significantly greater, and the Bacteroidetes/Firmicutes ratio was significantly higher in the SC and NA groups as compared to Con group. Additionally, plasma glucose and triglyceride levels, the expression of liver fatty acid synthase, and the relative abundance of Lactobacillaceae was significantly higher in the NA group than in the Con group. Although both natto and cooked soybeans impacted the metabolic response to a high-fat diet, the addition of natto had a greater effect on glucose and lipid metabolism. γ-PGA may play an important role in natto functionality.

19.
Biochem Biophys Res Commun ; 665: 71-77, 2023 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-37149985

RESUMO

People of all ages could suffer from sleep disorders, which are increasingly recognized as common manifestations of neurologic disease. Acorus tatarinowii is a herb that has been used in traditional medicine to promote sleep. ß-asarone, as the main component of volatile oil obtained from Acorus tatarinowii, may be the main contributor to the sleeping-promoting efficacy of Acorus tatarinowii. In the study, adult male C57BL/6 mice were administered ß-asarone at 12.5 mg/kg, 25 mg/kg, and 50 mg/kg. Behavioral experiments showed that ß-asarone at 25 mg/kg could significantly improve sleep duration. It was also observed that the proportion of NREM (Non-Rapid Eye Movement) sleep increased considerably after administration of ß-asarone. In the PVN (paraventricular nucleus of hypothalamus) region of the hypothalamus, it was observed that the glutamate content decreased after ß-asarone treatment. At the same time, the expression of VGLUT2 (vesicular glutamate transporters 2) decreased while the expression of GAD65 (glutamic acid decarboxylase 65) and GABARAP (GABA Type A Receptor-Associated Protein) increased in the hypothalamus, suggesting that ß-asarone may suppress arousal by reducing glutamate and promoting transformation of glutamate to the inhibitory neurotransmitter GABA (γ-aminobutyric acid). This study is the first to focus on the association between ß-asarone and sleep, shedding perspectives for pharmacological applications of ß-asarone and providing a new direction for future research.


Assuntos
Ácido Glutâmico , Núcleo Hipotalâmico Paraventricular , Masculino , Camundongos , Animais , Camundongos Endogâmicos C57BL , Sono , Anisóis/farmacologia , Ácido gama-Aminobutírico
20.
J Neuroinflammation ; 20(1): 292, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38057869

RESUMO

Neuroinflammation appears to involve some degree of excitotoxicity promulgated by microglia, which release glutamate via the system xC- (SxC-) cystine-glutamate antiporter. With the aim of mitigating this source of neuronal stress and toxicity, we have developed a panel of inhibitors of the SxC- antiporter. The compounds were based on L-tyrosine, as elements of its structure align with those of glutamate, a primary physiological substrate of the SxC- antiporter. In addition to 3,5-dibromotyrosine, ten compounds were synthesized via amidation of that parent molecule with a selection of acyl halides. These agents were tested for the ability to inhibit release of glutamate from microglia activated with lipopolysaccharide (LPS), an activity exhibited by eight of the compounds. To confirm that the compounds were inhibitors of SxC-, two of them were further tested for the ability to inhibit cystine uptake. Finally, these agents were shown to protect primary cortical neurons from the toxicity exhibited by activated microglia. These agents may hold promise in reducing the neurodegenerative effects of neuroinflammation in conditions, such as encephalitis, traumatic brain injury, stroke, or neurodegenerative diseases.


Assuntos
Ácido Glutâmico , Microglia , Humanos , Ácido Glutâmico/toxicidade , Microglia/metabolismo , Cistina/metabolismo , Doenças Neuroinflamatórias , Antiporters
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa