Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
BMC Vet Res ; 14(1): 255, 2018 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-30157854

RESUMO

BACKGROUND: Duck Enteritis Virus (DEV), belonging to the α-herpesvirus subfamily, is a linear double-stranded DNA virus. Glycoprotein H and L (gH and gL), encoded by UL22 and UL1, are conserved in the family of herpesviruses. They play important roles as gH/gL dimers during viral entry into host cells through cell-cell fusion. The interaction between gH and gL has been confirmed in several human herpesviruses, such as Herpes Simplex Virus (HSV), Epstein-Barr virus (EBV) and Human Cytomegalovirus (HCMV). In this paper, we studied the interaction between DEV gH and gL. RESULTS: Recombinant plasmids pEGFP-N-gH and pDsRED-N-gL were constructed successfully. Expressions of both DEV gH and gL were observed after incubation of COS-7 cells transfected with pEGFP-N-gH and pDsRED-N-gL plasmids after 12 h, respectively. Also, the co-localization of a proportion of the gH and gL was detected in the cytoplasm of COS-7 cells after co-transfection for 24 h. Then, pCMV-Flag-gL and pCMV-Myc-gH recombinant plasmids were constructed and co-transfected into COS-7 cells. It was showed that both gH and gL were tested with positive results through co-immunoprecipitation and Western-blotting. CONCLUSIONS: Our results demonstrated not only the co-localization of DEV gH and gL in COS-7 cells, but also the interaction between them. It will provide an insight for the further studies in terms of protein-protein interaction in DEV.


Assuntos
Mardivirus/fisiologia , Glicoproteínas de Membrana/química , Proteínas do Envelope Viral/química , Animais , Células COS , Chlorocebus aethiops , Patos , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/metabolismo
2.
Viruses ; 13(10)2021 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-34696402

RESUMO

Cell-cell fusion is a fundamental and complex process that occurs during reproduction, organ and tissue growth, cancer metastasis, immune response, and infection. All enveloped viruses express one or more proteins that drive the fusion of the viral envelope with cellular membranes. The same proteins can mediate the fusion of the plasma membranes of adjacent cells, leading to the formation of multinucleated syncytia. While cell-cell fusion triggered by alpha- and gammaherpesviruses is well-studied, much less is known about the fusogenic potential of betaherpesviruses such as human cytomegalovirus (HCMV) and human herpesviruses 6 and 7 (HHV-6 and HHV-7). These are slow-growing viruses that are highly prevalent in the human population and associated with several diseases, particularly in individuals with an immature or impaired immune system such as fetuses and transplant recipients. While HHV-6 and HHV-7 are strictly lymphotropic, HCMV infects a very broad range of cell types including epithelial, endothelial, mesenchymal, and myeloid cells. Syncytia have been observed occasionally for all three betaherpesviruses, both during in vitro and in vivo infection. Since cell-cell fusion may allow efficient spread to neighboring cells without exposure to neutralizing antibodies and other host immune factors, viral-induced syncytia may be important for viral dissemination, long-term persistence, and pathogenicity. In this review, we provide an overview of the viral and cellular factors and mechanisms identified so far in the process of cell-cell fusion induced by betaherpesviruses and discuss the possible consequences for cellular dysfunction and pathogenesis.


Assuntos
Células Gigantes/fisiologia , Infecções por Herpesviridae/metabolismo , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Betaherpesvirinae/metabolismo , Betaherpesvirinae/patogenicidade , Fusão Celular , Citomegalovirus/fisiologia , Células Gigantes/virologia , Herpesviridae/fisiologia , Infecções por Herpesviridae/virologia , Herpesvirus Humano 6/imunologia , Herpesvirus Humano 7/imunologia , Humanos , Proteínas do Envelope Viral/metabolismo , Internalização do Vírus
3.
Vopr Virusol ; 64(4): 178-184, 2019.
Artigo em Russo | MEDLINE | ID: mdl-32163684

RESUMO

INTRODUCTION: BoHV-4 is poorly understood. Data on the circulation of the virus among animals and its role in infectious diseases insufficient. Aimes and goals. Development of real-time PCR for detecting the BoHV-4 and studying the frequency of its presence in samples from sick animals. MATERIAL AND METHODS: The nucleotide sequences of the glycoprotein L gene served as a target for amplification. The sequences of reference strains published in GenBank were used to analyze and design the primers. Studies were conducted in 3 regions of Western Siberia on 5 large dairy farms. RESULTS: 27.7% of samples contained the virus. The virus was present as a monoagent in nasal cavity of calves (80.0%), lungs (46.2%) and bronchial lymph nodes (38.5%) in pneumonia. In the cases of diarrhea the virus was detected in 20%, and in cows with gynecological pathology in 10.0%. In respiratory diseases of calves the virus was detected in association with BoHV-1 (21.6%) and BoCV (20.3%), and in gynecological pathology of cows with BVDV1 (6%). DISCUSSION: According to the phylogenetic analysis of 5 identified virus isolates, four belonged to the American branch and one to the European branch. The circulation of American strains occurred in the territory of the Republic of Kazakhstan (1), Tyumen (1) and Novosibirsk (2) regions, and the European - in the Novosibirsk region. CONCLUSION: The search for viruses involved to the infectious pathology, as well as studying the genetic diversity of viruses circulating on a particular farm including imported from other countries, is relevant.


Assuntos
Doenças dos Bovinos/genética , Infecções por Herpesviridae/genética , Herpesvirus Bovino 4/genética , Proteínas do Envelope Viral/isolamento & purificação , Animais , Bovinos , Doenças dos Bovinos/virologia , DNA Viral/genética , Feminino , Infecções por Herpesviridae/veterinária , Infecções por Herpesviridae/virologia , Herpesvirus Bovino 4/isolamento & purificação , Herpesvirus Bovino 4/patogenicidade , Pulmão/virologia , Linfonodos/virologia , Cavidade Nasal/virologia , Filogenia , Proteínas do Envelope Viral/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa