Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
FEBS J ; 291(9): 2009-2022, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38380733

RESUMO

Laminaripentaose (L5)-producing ß-1,3-glucanases can preferentially cleave the triple-helix curdlan into ß-1,3-glucooligosaccharides, especially L5. In this study, a newly identified member of the glycoside hydrolase family 64, ß-1,3-glucanase from Streptomyces pratensis (SpGlu64A), was functionally and structurally characterized. SpGlu64A shared highest identity (30%) with a ß-1,3-glucanase from Streptomyces matensis. The purified SpGlu64A showed maximal activity at pH 7.5 and 50 °C, and exhibited strict substrate specificity toward curdlan (83.1 U·mg-1). It efficiently hydrolyzed curdlan to produce L5 as the end product. The overall structure of SpGlu64A consisted of a barrel domain and a mixed (α/ß) domain, which formed an unusually wide groove with a crescent-like structure. In the two complex structures (SpGlu64A-L3 and SpGlu64A-L4), two oligosaccharide chains were captured and the triple-helical structure was relatively compatible with the wide groove, which suggested the possibility of binding to the triple-helical ß-1,3-glucan. A catalytic framework (ß6-ß9-ß10) and the steric hindrance formed by the side chains of residues Y161, N163, and H393 in the catalytic groove were predicted to complete the exotype-like cleavage manner. On the basis of the structure, a fusion protein with the CBM56 domain (SpGlu64A-CBM) and a mutant (Y161F; by site-directed mutation) were obtained, with 1.2- and 1.7-fold increases in specific activity, respectively. Moreover, the combined expression of SpGlu64A-CBM and -Y161F improved the enzyme activity by 2.63-fold. The study will not only be helpful in understanding the reaction mechanism of ß-1,3-glucanases but will also provide a basis for further enzyme engineering.


Assuntos
Oligossacarídeos , Streptomyces , beta-Glucanas , Streptomyces/enzimologia , Streptomyces/genética , Especificidade por Substrato , beta-Glucanas/metabolismo , Oligossacarídeos/metabolismo , Oligossacarídeos/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Modelos Moleculares , Glucana 1,3-beta-Glucosidase/metabolismo , Glucana 1,3-beta-Glucosidase/genética , Glucana 1,3-beta-Glucosidase/química , Sequência de Aminoácidos , Glicosídeo Hidrolases/genética , Glicosídeo Hidrolases/metabolismo , Glicosídeo Hidrolases/química , Domínio Catalítico , Cristalografia por Raios X , Hidrólise , Concentração de Íons de Hidrogênio , Cinética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa