Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 568
Filtrar
1.
Exp Cell Res ; 435(1): 113912, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38176464

RESUMO

Ferroptosis, a form of regulated cell death process, play an important role in myocardial ischemia‒reperfusion (I/R) injury. Glycyrrhizin (GL), a natural glycoconjugate triterpene, has the property to improve growth rate, immune regulation, antioxidant, anti-inflammatory. However, whether GL can attenuate myocardial I/R injury by modulating ferroptosis or other mechanisms are still unclear. In this study, SD rats underwent in vivo myocardial ischemia/reperfusion (I/R) surgery, while H9C2 cells were subjected to the hypoxia/reoxygenation (H/R) model for in vitro experiments. In addition, TAK-242, a TLR4-specific antagonist, and GL were also used to evaluate the effect and mechanisms of GL on the cardiac function and expression of ferroptosis-related gene and protein in vivo and vitro. The results show that GL decreased not only the expression of the inflammation-related factors (HMGB1, TNF-α, IL-6, IL-18 and IL-1ß), but also reduced the number of TUNEL-positive cardiomyocytes, and mitigated pathological alterations in I/R injury. In addition, GL decreased the levels of MDA, promoted antioxidant capacity such as GSH, CAT, Cu/Zn-SOD, Mn-SOD, and SOD in vivo and vitro. More importantly, GL and TAK-242 regulate ferroptosis-related protein and gene expression in I/R and H/R model. Surprisingly, GL may ameliorate cardiomyocyte ferroptosis and ultimately improves cardiac function induced by H/R via the HMGB1-TLR4-GPX4 axis. Therefore, we have highlighted a novel mechanism by which GL regulates inflammation, oxidative stress, and ferroptosis via the HMGB1-TLR4-GPX4 pathway to prevent myocardial I/R injury. GL appears to be a potentially applicable drug for the treatment of myocardial I/R injury.


Assuntos
Ferroptose , Proteína HMGB1 , Traumatismo por Reperfusão Miocárdica , Traumatismo por Reperfusão , Sulfonamidas , Ratos , Animais , Traumatismo por Reperfusão Miocárdica/metabolismo , Ácido Glicirrízico/farmacologia , Receptor 4 Toll-Like/metabolismo , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Proteína HMGB1/metabolismo , Ratos Sprague-Dawley , Apoptose , Estresse Oxidativo , Traumatismo por Reperfusão/patologia , Inflamação/tratamento farmacológico , Inflamação/patologia , Superóxido Dismutase/metabolismo
2.
Plant Cell Physiol ; 65(2): 185-198, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38153756

RESUMO

Glycyrrhizin, a type of the triterpenoid saponin, is a major active ingredient contained in the roots of the medicinal plant licorice (Glycyrrhiza uralensis, G. glabra and G. inflata), and is used worldwide in diverse applications, such as herbal medicines and sweeteners. The growing demand for licorice threatens wild resources and therefore a sustainable method of supplying glycyrrhizin is required. With the goal of establishing an alternative glycyrrhizin supply method not dependent on wild plants, we attempted to produce glycyrrhizin using hairy root culture. We tried to promote glycyrrhizin production by blocking competing pathways using CRISPR/Cas9-based gene editing. CYP93E3 CYP72A566 double-knockout (KO) and CYP93E3 CYP72A566 CYP716A179 LUS1 quadruple-KO variants were generated, and a substantial amount of glycyrrhizin accumulation was confirmed in both types of hairy root. Furthermore, we evaluated the potential for promoting further glycyrrhizin production by simultaneous CYP93E3 CYP72A566 double-KO and CYP88D6-overexpression. This strategy resulted in a 3-fold increase (∼1.4 mg/g) in glycyrrhizin accumulation in double-KO/CYP88D6-overexpression hairy roots, on average, compared with that of double-KO hairy roots. These findings demonstrate that the combination of blocking competing pathways and overexpression of the biosynthetic gene is important for enhancing glycyrrhizin production in G. uralensis hairy roots. Our findings provide the foundation for sustainable glycyrrhizin production using hairy root culture. Given the widespread use of genome editing technology in hairy roots, this combined with gene knockout and overexpression could be widely applied to the production of valuable substances contained in various plant roots.


Assuntos
Glycyrrhiza , Triterpenos , Edição de Genes , Vias Biossintéticas/genética , Ácido Glicirrízico/metabolismo , Triterpenos/metabolismo , Glycyrrhiza/genética , Glycyrrhiza/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/metabolismo
3.
J Biochem Mol Toxicol ; 38(1): e23549, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37794747

RESUMO

Diosbulbin B (DIOB), isolated from herbal medicine Dioscorea bulbifera L. (DB), could induce severe liver injury, and its toxicology was closely associated with CYP3A4-mediated metabolic oxidation of furan moiety to the corresponding cis-enedial reactive metabolite. Glycyrrhizin (GL), the major bioactive ingredient in licorice, can inhibit the activity of CYP3A4. Thus, GL may ameliorate hepatotoxicity of DIOB when GL and DIOB are co-administrated. The study aimed to investigate the protective effect of GL on DIOB-induced hepatotoxicity and the underlying mechanism. Biochemical and histopathological analysis demonstrated that GL alleviated DIOB-induced hepatotoxicity in a dose-dependent manner. In vitro study with mouse liver microsomes (MLMs) demonstrated that GL reduced the formation of metabolic activation-derived pyrrole-glutathione (GSH) conjugates from DIOB. Toxicokinetic studies showed that the pretreatment with GL caused the increase of AUCs and Cmax of DIOB in blood of mice, resulting in accelerating the accumulation of DIOB in the circulation. In addition, the pretreatment with GL alleviated DIOB-induced hepatic GSH depletion. In summary, GL ameliorated DIOB-induced hepatotoxicity, possibly related to the inhibition of the metabolic activation of DIOB. Thus, development of a standardized combination of DIOB with GL may protect patients from DIOB-induced liver injury.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Ácido Glicirrízico , Compostos Heterocíclicos de 4 ou mais Anéis , Humanos , Camundongos , Animais , Ácido Glicirrízico/farmacologia , Ativação Metabólica , Citocromo P-450 CYP3A/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle
4.
J Appl Microbiol ; 135(8)2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39182158

RESUMO

AIMS: To identify promising fungal endophytes that are able to produce glycyrrhizin and enhance it in licorice and the mechanisms involved. METHODS AND RESULTS: Fifteen fungal endophytes were isolated from Glycyrrhiza glabra L. rhizomes among which SGGF14 and SGGF21 isolates were found to produce glycyrrhizin by 4.29 and 2.58 µg g-1 dry weight in the first generation of their culture. These isolates were identified as Fusarium solani and Alternaria tenuissima, respectively, based on morphological characteristics and sequence analysis of internal transcribed spacer, TEF1, ATPase, and CAL regions. Subsequently, G. glabra plants were inoculated with these fungal isolates to examine their effect on glycyrrhizin production, plant growth parameters and the expression of key genes involved in glycyrrhizin pathway: SQS1, SQS2, bAS, CAS, LUS, CYP88D6, and CYP72A154. Endophytes were able to enhance glycyrrhizin content by 133%-171% in the plants. Natural control (NC) plants, harboring all natural endophytes, had better growth compared to SGGF14- and SGGF21-inoculated and endophyte-free (EF) plants. Expression of SQS1, SQS2, CYP88D6, and CYP72A154 was upregulated by inoculation with endophytes. LUS and CAS were downregulated after endophyte inoculation. Expression of bAS was higher in SGGF21-inoculated plants when compared with NC, EF, and SGGF14-inoculated plants. CONCLUSIONS: Two selected fungal endophytes of G. glabra can produce glycyrrhizin and enhance glycyrrhizin content in planta by modulating the expression of key genes in glycyrrhizin biosynthetic pathway.


Assuntos
Alternaria , Endófitos , Fusarium , Glycyrrhiza , Ácido Glicirrízico , Ácido Glicirrízico/metabolismo , Fusarium/genética , Fusarium/metabolismo , Endófitos/metabolismo , Endófitos/genética , Alternaria/metabolismo , Alternaria/genética , Glycyrrhiza/microbiologia , Glycyrrhiza/metabolismo , Rizoma/microbiologia
5.
Dig Dis Sci ; 69(7): 2477-2487, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38753240

RESUMO

BACKGROUND: Severe acute pancreatitis (SAP) is a potential fatal gastrointestinal disease that is usually complicated by myocardial injury and dysfunction. Due to the lack of understanding of the mechanism of SAP-associated cardiac injury (SACI), there is still no complete treatment. AIMS: To explore the alleviative effect and anti-ferroptosis mechanism against SACI of glycyrrhizin (GL), an inhibitor of oxidative stress. METHODS: The SAP model was established by perfusing 5% sodium taurocholate into biliopancreatic duct in rats. H&E staining and serum assays were used to assess the injury changes of pancreas and heart. Echocardiography was used to evaluate the cardiac function. Transmission electron microscopy (TEM) and oxidative stress assays were used to investigate the ferroptosis-related morphological and biochemical changes. Western blot and immunofluorescence were performed to analyzed the expression of ferroptosis-related proteins. RESULTS: Significant myocardial impairment was found in SAP rats according to increased histopathological scores, serum creatine kinase-MB (CK-MB) and cardiac troponin-I (cTnI) levels, and a decreased fractional shortening and ejection fraction. The decreased mitochondrial cristae and significant expression changes of ferroptosis-related proteins confirmed the presence of ferroptosis in SACI. GL treatment attenuated above-mentioned cardiac tissues damage by inhibiting ferroptosis via restoring the expression of Nrf2 and HO-1 in vivo and in vitro. Treating with ML385 (a Nrf2 inhibitor) or transfecting with siRNA-Nrf2 reversed the protective effect of GL. CONCLUSIONS: Our findings demonstrate the involvement of ferroptosis in SACI and suggest a potential role for GL in the treatment of SACI by supressing ferroptosis via Keap1/Nrf2/HO-1 pathway.


Assuntos
Ferroptose , Ácido Glicirrízico , Proteína 1 Associada a ECH Semelhante a Kelch , Fator 2 Relacionado a NF-E2 , Pancreatite , Animais , Fator 2 Relacionado a NF-E2/metabolismo , Ferroptose/efeitos dos fármacos , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Ratos , Masculino , Ácido Glicirrízico/farmacologia , Ácido Glicirrízico/uso terapêutico , Pancreatite/metabolismo , Pancreatite/tratamento farmacológico , Pancreatite/patologia , Heme Oxigenase (Desciclizante)/metabolismo , Transdução de Sinais/efeitos dos fármacos , Ratos Sprague-Dawley , Modelos Animais de Doenças , Estresse Oxidativo/efeitos dos fármacos , Traumatismos Cardíacos/metabolismo , Traumatismos Cardíacos/tratamento farmacológico
6.
Cell Mol Biol Lett ; 29(1): 39, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38504159

RESUMO

BACKGROUND: IGF2BP3 functions as an RNA-binding protein (RBP) and plays a role in the posttranscriptional control of mRNA localization, stability, and translation. Its dysregulation is frequently associated with tumorigenesis across various cancer types. Nonetheless, our understanding of how the expression of the IGF2BP3 gene is regulated remains limited. The specific functions and underlying mechanisms of IGF2BP3, as well as the potential benefits of targeting it for therapeutic purposes in bladder cancer, are not yet well comprehended. METHODS: The mRNA and protein expression were examined by RT-qPCR and western blotting, respectively. The methylation level of CpG sites was detected by Bisulfite sequencing PCR (BSP). The regulation of IGF2BP3 expression by miR-320a-3p was analyzed by luciferase reporter assay. The functional role of IGF2BP3 was determined through proliferation, colony formation, wound healing, invasion assays, and xenograft mouse model. The regulation of HMGB1 by IGF2BP3 was investigated by RNA immunoprecipitation (RIP) and mRNA stability assays. RESULTS: We observed a significant elevation in IGF2BP3 levels within bladder cancer samples, correlating with more advanced stages and grades, as well as an unfavorable prognosis. Subsequent investigations revealed that the upregulation of IGF2BP3 expression is triggered by copy number gain/amplification and promoter hypomethylation in various tumor types, including bladder cancer. Furthermore, miR-320a-3p was identified as another negative regulator in bladder cancer. Functionally, the upregulation of IGF2BP3 expression exacerbated bladder cancer progression, including the proliferation, migration, and invasion of bladder cancer. Conversely, IGF2BP3 silencing produced the opposite effects. Moreover, IGF2BP3 expression positively correlated with inflammation and immune infiltration in bladder cancer. Mechanistically, IGF2BP3 enhanced mRNA stability and promoted the expression of HMGB1 by binding to its mRNA, which is a factor that promotes inflammation and orchestrates tumorigenesis in many cancers. Importantly, pharmacological inhibition of HMGB1 with glycyrrhizin, a specific HMGB1 inhibitor, effectively reversed the cancer-promoting effects of IGF2BP3 overexpression in bladder cancer. Furthermore, the relationship between HMGB1 mRNA and IGF2PB3 is also observed in mammalian embryonic development, with the expression of both genes gradually decreasing as embryonic development progresses. CONCLUSIONS: Our present study sheds light on the genetic and epigenetic mechanisms governing IGF2BP3 expression, underscoring the critical involvement of the IGF2BP3-HMGB1 axis in driving bladder cancer progression. Additionally, it advocates for the investigation of inhibiting IGF2BP3-HMGB1 as a viable therapeutic approach for treating bladder cancer.


Assuntos
Proteína HMGB1 , MicroRNAs , Neoplasias da Bexiga Urinária , Humanos , Animais , Camundongos , MicroRNAs/genética , Proteína HMGB1/genética , Proteína HMGB1/metabolismo , Linhagem Celular Tumoral , Carcinogênese/genética , Metilação de DNA , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Estabilidade de RNA , Inflamação/genética , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Mamíferos/genética
7.
Ren Fail ; 46(1): 2356023, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38785317

RESUMO

Glycyrrhizin (GL) has immunoregulatory effects on various inflammatory diseases including hepatitis and nephritis. However, the mechanisms underlying the anti-inflammatory effect of GL on renal inflammation are not fully understood. Hepatorenal syndrome (HRS) is a functional acute renal impairment that occurs in severe liver disease, and we found that kidney injury also occurs in Con A-induced experimental hepatitis in mice. We previously found that GL can alleviate Con A-induced hepatitis by regulating the expression of IL-25 in the liver. We wanted to investigate whether GL can alleviate Con A-induced nephritis by regulating IL-25. IL-25 regulates inflammation by modulating type 2 immune responses, but the mechanism by which IL-25 affects kidney disease remains unclear. In this study, we found that the administration of GL enhanced the expression of IL-25 in renal tissues; the latter promoted the generation of type 2 macrophages (M2), which inhibited inflammation in the kidney caused by Con A challenge. IL-25 promoted the secretion of the inhibitory cytokine IL-10 by macrophages but inhibited the expression of the inflammatory cytokine IL-1ß by macrophages. Moreover, IL-25 downregulated the Con A-mediated expression of Toll-like receptor (TLR) 4 on macrophages. By comparing the roles of TLR2 and TLR4, we found that TLR4 is required for the immunoregulatory effect of IL-25 on macrophages. Our data revealed that GL has anti-inflammatory effects on Con A-induced kidney injury and that the GL/IL-25/M2 axis participates in the anti-inflammatory process. This study suggested that GL is a potential therapeutic for protecting against acute kidney injury.


Assuntos
Modelos Animais de Doenças , Ácido Glicirrízico , Rim , Macrófagos , Animais , Ácido Glicirrízico/farmacologia , Ácido Glicirrízico/uso terapêutico , Camundongos , Macrófagos/metabolismo , Macrófagos/efeitos dos fármacos , Masculino , Rim/patologia , Rim/metabolismo , Receptor 2 Toll-Like/metabolismo , Interleucinas/metabolismo , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Inflamação/metabolismo , Interleucina-10/metabolismo , Receptor 4 Toll-Like/metabolismo , Transdução de Sinais/efeitos dos fármacos , Interleucina-1beta/metabolismo , Síndrome Hepatorrenal/etiologia , Síndrome Hepatorrenal/tratamento farmacológico , Síndrome Hepatorrenal/metabolismo , Camundongos Endogâmicos C57BL , Nefrite/tratamento farmacológico , Nefrite/metabolismo , Nefrite/etiologia , Nefrite/prevenção & controle
8.
Phytochem Anal ; 35(4): 678-689, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38219281

RESUMO

INTRODUCTION: Glycyrrhizin (GLY) and sennoside A (SA) are characteristic bioactive marker compounds of the Kampo medicine Daiokanzoto. Their accurate detection in blends of Rhei rhizoma and Glycyrrhizae radix of several species (4:1 or 4:2) is essential for quality control and to ensure therapeutic efficacy. A rapid, efficient assay can significantly facilitate their detection. OBJECTIVE: To establish a rapid qualitative assay for GLY and SA detection, a lateral flow immunoassay (LFA) was developed using specific monoclonal antibody (mAb) nanoparticles. METHODOLOGY: This assay harnesses the competitive binding of mAb nanoparticles to the immobilized analytes on test strips and free analytes in the samples. Two conjugates for detecting GLY and SA, GLY-bovine serum albumin and SA-human serum albumin, were separately immobilized on the test zones of LFA strips. The detection mechanism is reliant on the visual detection of color changes in the test zones. RESULTS: When GLY and SA were present in samples, they contended with the immobilized conjugates on the strip to bind with the mAb nanoparticles and produced distinct color patterns in the test zones. The limits of detection of the assay for GLY and SA were both 3.13 µg/mL. The capability of the LFA was substantiated using plant samples and Daiokanzoto, and its alignment with indirect competitive ELISA results was confirmed. CONCLUSION: The introduced LFA is a groundbreaking procedure that offers a rapid, straightforward, and sensitive method for simultaneously detecting GLY and SA in Daiokanzoto samples. It is instrumental in ensuring product quality.


Assuntos
Ácido Glicirrízico , Senosídeos , Ácido Glicirrízico/análise , Imunoensaio/métodos , Anticorpos Monoclonais , Humanos , Nanopartículas/química , Soroalbumina Bovina/química , Limite de Detecção , Animais , Albumina Sérica Humana/análise , Medicamentos de Ervas Chinesas/química
9.
J Oral Rehabil ; 51(3): 611-622, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37962287

RESUMO

BACKGROUND: Regulation of redox homeostasis could reduce osteoarthritis severity and limit disease progression, while glycyrrhizin (GL) shows great antioxidant and anti-inflammatory capacity. OBJECTIVE: The aim of this study was to investigate the role of GL on oxidative stress and the potential regulatory mechanism in rat temporomandibular joint (TMJ) chondrocytes under oxidative stress, and investigate the effect of GL in the rat temporomandibular joint osteoarthritis (TMJOA) model. METHODS: Rat TMJ chondrocytes were cultured in oxidative stress with different doses of GL. The effect of glycyrrhizin on the nuclear factor-erythroid 2-related factor 2 (Nrf2) in oxidative stress was evaluated by western blot and immunofluorescence staining. A rat model of TMJOA was treated with GL. Micro-computed tomography, histological and immunohistochemical analysis were used to assess the pathological change of TMJOA. RESULTS: The expression of superoxide dismutase 1 (SOD1), heme oxygenase-1 (HO-1), and peroxiredoxin 6 (PRDX6) were decreased, and intracellular Nrf2 signaling pathway was activated in chondrocytes in oxidative stress. GL upregulates the expression of antioxidants, especially PRDX6, as well as increases Nrf2 expression and nuclear translocation in rat condylar chondrocytes. Administration of GL attenuates condylar bone destruction, cartilage degeneration, and synovitis in rats TMJOA. Meanwhile, GL alleviated oxidative stress and enhanced the antioxidant capacity of TMJOA cartilage. CONCLUSION: This study suggested that GL alleviates rat TMJOA by regulating oxidative stress in condylar cartilage.


Assuntos
Cartilagem Articular , Osteoartrite , Animais , Ratos , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Cartilagem Articular/patologia , Condrócitos/metabolismo , Ácido Glicirrízico/metabolismo , Ácido Glicirrízico/farmacologia , Fator 2 Relacionado a NF-E2/metabolismo , Osteoartrite/tratamento farmacológico , Transdução de Sinais , Articulação Temporomandibular/patologia , Microtomografia por Raio-X
10.
Int J Mol Sci ; 25(6)2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38542168

RESUMO

Crocin is a unique water-soluble carotenoid found in crocus and gardenia flowers. Crocin has been shown to have a variety of pharmacological activities, such as antioxidant, anti-cancer, memory improvement, antidepressant, anti-ischemia, blood pressure lowering and aphrodisiac, gene protection and detoxification activities. Due to their amphiphilicity, crocin molecules form concentration-dependent self-associates (micelles) in a water solution. In the present study, using various NMR techniques (T2 relaxation and selective gradient NOESY), we have demonstrated that crocin forms mixed micelles with water-soluble drug delivery system glycyrrhizin and linoleic acid molecules. Note, that the spin-spin T2 relaxation time and NOESY spectroscopy are very sensitive to intermolecular interactions and molecular diffusion mobility. The second purpose of this work was the elucidation of the interaction of crocin with a model lipid membrane using NMR techniques and a molecular dynamics simulation and its effects on lipid oxidation. It was shown that the crocin molecule is located near the surface of the lipid bilayer and effectively protects lipids from oxidation by peroxyl radicals. The role of glycyrrhizin and vitamin C in metal-induced lipid oxidation was also elucidated. The results of this study may be useful for expanding the field of application of crocin in medicine and in the food industry.


Assuntos
Antioxidantes , Crocus , Antioxidantes/farmacologia , Antioxidantes/química , Micelas , Água , Ácido Glicirrízico/farmacologia , Carotenoides/farmacologia , Carotenoides/química , Lipídeos , Crocus/química
11.
J Contemp Dent Pract ; 25(3): 267-275, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38690701

RESUMO

AIM: To study the effect of glycyrrhizin (GA) on the viability and proliferation of dental pulp stem cells (DPSCs) compared with intracanal medicaments. MATERIALS AND METHODS: Third molars of an adult donor were used to obtain the DPSCs. Flow cytometry was utilized to conduct phenotypic analysis for DPSCs. The methyl-thiazol tetrazolium (MTT) test was used to detect the cell viability. Cell proliferation assay was conducted at distinct time intervals: 3, 5, and 7 days. RESULTS: The flow cytometry analysis verified the positive expression of mesenchymal cell surface antigen molecules (CD73, CD90, and CD105) and the absence of hematological markers (CD14, CD34, and CD45) in the DPSCs. The cells that treated with concentrations more than 0.5 mg/mL of Ca(OH2) and triple antibiotic paste (TAP) gave significant decrease in viability in comparison to the untreated cells (p < 0.05). Also, the cells treated with concentrations 50 and 25 µM of GA showed no significant difference compared with the untreated cells (p > 0.05), while concentrations 12.5 and 6.25 µM expressed a significant increase in viability compared with the untreated cells (p < 0.05). At 7 days, cells treated with the three different concentrations of GA (12.5, 25, and 50 µM) demonstrated a significant increase in cell density compared with Ca(OH)2 and TAP-treated cells (p < 0.05). CONCLUSION: Based upon the potential of GA on DPSCs proliferation compared with Ca(OH)2 and TAP, It is conceivable to acknowledge that GA could be used as an intracanal medicaments for revascularization process of necrotic immature teeth. CLINICAL SIGNIFICANCE: This study emphasizes the significance of assessing alternative root canal medicaments and their impact on the proliferation and viability of DPSCs. The results regarding GA, specifically its impact on the viability and growth of DPSCs, provide essential understanding for its potential application as an intracanal medicine. This study adds to the continuous endeavors in identifying safer and more efficient intracanal therapies, which are essential for improving patient outcomes in endodontic operations. How to cite this article: Alrashidi MA, Badawi MF, Elbeltagy MG, et al. The Effect of Glycyrrhizin on the Viability and Proliferation of Dental Pulp Stem Cells Compared to Intracanal Medicaments. J Contemp Dent Pract 2024;25(3):267-275.


Assuntos
Proliferação de Células , Sobrevivência Celular , Polpa Dentária , Ácido Glicirrízico , Irrigantes do Canal Radicular , Células-Tronco , Humanos , Polpa Dentária/citologia , Polpa Dentária/efeitos dos fármacos , Ácido Glicirrízico/farmacologia , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Irrigantes do Canal Radicular/farmacologia , Células-Tronco/efeitos dos fármacos , Citometria de Fluxo , Hidróxido de Cálcio/farmacologia , Células Cultivadas , Adulto
12.
Saudi Pharm J ; 32(5): 102038, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38525266

RESUMO

Erectile dysfunction (ED) is a growing health condition that needs safe and effective therapy. One of the main common treatments is sildenafil which is used in clinics for managing erectile dysfunction by enhancing the blood supply to the penis. In the current study, sildenafil was formulated as nanofibers and mixed with the root extract of Glycyrrhiza glabra (glycyrrhizin) as a natural sweetener to be administrated in the buccal cavity for enhanced drug bioavailability, rapid drug absorption and improved patient compliance. The formulated dual-loaded nanofibers were evaluated by measuring diameter, disintegration, drug loading efficiency, drug release profile, and in vitro cell viability assessment. The results showed that the sildenafil/glycyrrhizin-loaded fibers had a diameter of 0.719 ± 0.177 µm and lacked any beads and pores formation on their surfaces. The drug loading and encapsulation efficiency for sildenafil were measured as 52 ± 7 µg/mg and 67 ± 9 %, respectively, while they were 290 ± 32 µg/mg and 94 ± 10 %, respectively, for glycyrrhizin. The release rate of sildenafil and glycyrrhizin demonstrated a burst release in the first minute, followed by a gradual increment until a complete release after 120 min. The in vitro cell viability evaluation exhibited that the application of sildenafil and glycyrrhizin is safe upon 24-hour treatment on human skin fibroblast cells at all used concentrations (i.e., ≤ 1,000 and 4,000 µg/mL, respectively). However, the application of sildenafil-glycyrrhizin combination (in a ratio of 1:4) demonstrated more than 80 % cell viability at concentrations of ≤ 250 and 1000 µg/mL, respectively, following 24-hour cell exposure. Therefore, sildenafil/glycyrrhizin dual-loaded PVP nanofibers showed a potential buccal therapeutic approach for erectile dysfunction management.

13.
Mol Med ; 29(1): 51, 2023 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-37038107

RESUMO

BACKGROUND: Helicobacter pylori is a key agent for causing gastric complications linked with gastric disorders. In response to infection, host cells stimulate autophagy to maintain cellular homeostasis. However, H. pylori have evolved the ability to usurp the host's autophagic machinery. High mobility group box1 (HMGB1), an alarmin molecule is a regulator of autophagy and its expression is augmented during infection and gastric cancer. Therefore, this study aims to explore the role of glycyrrhizin (a known inhibitor of HMGB1) in autophagy during H. pylori infection. MAIN METHODS: Human gastric cancer (AGS) cells were infected with the H. pylori SS1 strain and further treatment was done with glycyrrhizin. Western blot was used to examine the expression of autophagy proteins. Autophagy and lysosomal activity were monitored by fluorescence assays. A knockdown of HMGB1 was performed to verify the effect of glycyrrhizin. H. pylori infection in in vivo mice model was established and the effect of glycyrrhizin treatment was studied. RESULTS: The autophagy-lysosomal pathway was impaired due to an increase in lysosomal membrane permeabilization during H. pylori infection in AGS cells. Subsequently, glycyrrhizin treatment restored the lysosomal membrane integrity. The recovered lysosomal function enhanced autolysosome formation and concomitantly attenuated the intracellular H. pylori growth by eliminating the pathogenic niche. Additionally, glycyrrhizin treatment inhibited inflammation and improved gastric tissue damage in mice. CONCLUSION: This study showed that inhibiting HMGB1 restored lysosomal activity to ameliorate H. pylori infection. It also demonstrated the potential of glycyrrhizin as an antibacterial agent to address the problem of antimicrobial resistance.


Assuntos
Proteína HMGB1 , Infecções por Helicobacter , Helicobacter pylori , Neoplasias Gástricas , Humanos , Camundongos , Animais , Ácido Glicirrízico/farmacologia , Ácido Glicirrízico/uso terapêutico , Ácido Glicirrízico/metabolismo , Helicobacter pylori/metabolismo , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/metabolismo , Proteína HMGB1/metabolismo , Infecções por Helicobacter/tratamento farmacológico , Infecções por Helicobacter/metabolismo , Infecções por Helicobacter/microbiologia , Autofagia
14.
Biol Reprod ; 109(1): 83-96, 2023 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-37115805

RESUMO

The aim of this study was to determine the impact of glycyrrhizin, an inhibitor of high mobility group box 1, on glucose metabolic disorders and ovarian dysfunction in mice with polycystic ovary syndrome. We generated a polycystic ovary syndrome mouse model by using dehydroepiandrosterone plus high-fat diet. Glycyrrhizin (100 mg/kg) was intraperitoneally injected into the polycystic ovary syndrome mice and the effects on body weight, glucose tolerance, insulin sensitivity, estrous cycle, hormone profiles, ovarian pathology, glucolipid metabolism, and some molecular mechanisms were investigated. Increased number of cystic follicles, hormonal disorders, impaired glucose tolerance, and decreased insulin sensitivity in the polycystic ovary syndrome mice were reverted by glycyrrhizin. The increased high mobility group box 1 levels in the serum and ovarian tissues of the polycystic ovary syndrome mice were also reduced by glycyrrhizin. Furthermore, increased expressions of toll-like receptor 9, myeloid differentiation factor 88, and nuclear factor kappa B as well as reduced expressions of insulin receptor, phosphorylated protein kinase B, and glucose transporter type 4 were restored by glycyrrhizin in the polycystic ovary syndrome mice. Glycyrrhizin could suppress the polycystic ovary syndrome-induced upregulation of high mobility group box 1, several inflammatory marker genes, and the toll-like receptor 9/myeloid differentiation factor 88/nuclear factor kappa B pathways, while inhibiting the insulin receptor/phosphorylated protein kinase B/glucose transporter type 4 pathways. Hence, glycyrrhizin is a promising therapeutic agent against polycystic ovary syndrome.


Assuntos
Resistência à Insulina , Síndrome do Ovário Policístico , Feminino , Humanos , Camundongos , Animais , Síndrome do Ovário Policístico/tratamento farmacológico , Síndrome do Ovário Policístico/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptor de Insulina/metabolismo , Ácido Glicirrízico/efeitos adversos , Receptor Toll-Like 9/metabolismo , Receptor Toll-Like 9/uso terapêutico , NF-kappa B/metabolismo , Transportador de Glucose Tipo 4 , Fator 88 de Diferenciação Mieloide/metabolismo , Insulina/metabolismo , Glucose/efeitos adversos
15.
Exp Eye Res ; 234: 109608, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37517540

RESUMO

A simple and novel phytochemical-based nano-ophthalmic solution was developed for the treatment of eye diseases. This nanoformulation was produced from the mixture of the phytochemicals glycyrrhizin and alpha-glycosyl hesperidin, which serve as the phytonanomaterials that solubilize bisdemethoxycurcumin (BDMC), a promising phytochemical with strong pharmacological activities but with poor water solubility. This novel nanoformulation is a clear solution named as BDMC@phytomicelle ophthalmic solution, which was formulated using a simple preparation process. The BDMC@phytomicelles were characterized by a BDMC encapsulation efficiency of 98.37% ± 2.26%, a small phytomicelle size of 4.06 ± 0.22 nm, and a small polydispersity index of 0.25 ± 0.04. With the optimization of the BDMC@phytomicelles, the apparent solubility of BDMC (i.e., the loading of BDMC in the phytomicelles) in the simulated lacrimal fluid was 3.19 ± 0.02 mg/ml. The BDMC@phytomicelle ophthalmic solution demonstrated a good storage stability. Moreover, it did not cause irritations in rabbit eyes, and it facilitated the excellent corneal permeation of BDMC in mice. The BDMC@phytomicelles demonstrated a marked effect on the in vivo induction of corneal wound healing both in healthy and denervated corneas, as seen in the induction of corneal epithelial wound healing, recovery of corneal sensitivity, and increase in corneal subbasal nerve fiber density. These strong pharmacological activities involve the inhibition of hmgb1 signaling and the induction of VIP signaling. Overall, the BDMC@phytomicelle ophthalmic solution is a novel and promising simple ocular nano-formulation of BDMC with significantly improved in vivo profiles.


Assuntos
Córnea , Diarileptanoides , Camundongos , Animais , Coelhos , Diarileptanoides/farmacologia , Cicatrização , Soluções Oftálmicas/farmacologia
16.
Biotechnol Bioeng ; 120(12): 3570-3584, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37707439

RESUMO

In this study, eight nonconserved residues with exposed surfaces and flexible conformations of the homotetrameric PGUS (ß-glucuronidase from Aspergillus oryzae Li-3) were identified. Single-point mutation into cysteine enabled the thiol-maleimide reaction and site-specific protein assembly using a two-arm polyethylene glycol (PEG)-maleimide crosslinker (Mal2 ). The Mal2 (1k) (with 1 kDa PEG spacer)-crosslinked PGUS assemblies showed low crosslinking efficiency and unimproved thermostability except for G194C-Mal2 (1k). To improve the crosslinking efficiency, a lengthened crosslinker Mal2 (2k) (with 2 kDa PEG spacer) was used to produce PGUS assembly and a highly improved thermostability was achieved with a half-life of 47.2-169.2 min at 70°C, which is 1.04-3.74 times that of wild type PGUS. It is found that the thermostability of PGUS assembly was closely associated with the formation of inter-tetramer assembly and intratetramer crosslinking, rather than the PEGylation of the enzyme. Therefore, the four-arm PEG-maleimide crosslinker Mal4 (2k) (with 2 kDa PEG spacer) was employed to simultaneously increase the inter-tetramer assembly and intratetramer crosslinking, and the resulting PGUS assemblies showed further improved thermostabilities compared with Mal2 (2k)-crosslinked assemblies. Finally, the application of PGUS assemblies with significantly improved thermostability to the bioconversion of GL proved that the PGUS assembly is a strong catalyst for glycyrrhizin (GL) hydrolysis in industrial applications.


Assuntos
Glucuronidase , Ácido Glicirrízico , Glucuronidase/química , Ácido Glicirrízico/metabolismo , Hidrólise , Catálise , Maleimidas , Polietilenoglicóis
17.
Skin Res Technol ; 29(5): e13328, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37231926

RESUMO

OBJECTIVES: This study aims to introduce compound glycyrrhizin injection for the treatment of rosacea by mesoderm therapy, and further analyze the therapeutic and aesthetic effects of this treatment method and its impact on the dermatological quality of life index, which provides new ideas and methods for cosmetic dermatology treatment of rosacea. METHODS: The recruited rosacea patients were divided into Control group (n = 58) and observation group (n = 58) according to the random number table. The control group was treated with topical metronidazole clindamycin liniment, and the study group was additionally used mesoderm introduction of compound glycyrrhizin injection. The transepidermal water loss (TEWL), water content in corneum, and dermatology life quality index (DLQI) in rosacea patients were evaluated. RESULTS: Our results showed that the scores of erythema, flushing, telangiectasia, and papulopustule were significantly reduced in the observation group. In addition, the observation group significantly decreased TEWL and increased the water content of the stratum corneum. Furthermore, the observation group significantly reduced the DLQI of rosacea patients compared to the control group. CONCLUSION: The use of mesoderm therapy combined with compound glycyrrhizic acid has a therapeutic effect on facial rosacea and improves patient satisfaction.


Assuntos
Ácido Glicirrízico , Rosácea , Humanos , Ácido Glicirrízico/uso terapêutico , Qualidade de Vida , Rosácea/tratamento farmacológico , Eritema/tratamento farmacológico , Metronidazol/uso terapêutico
18.
J Mol Struct ; 1275: 134642, 2023 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-36467615

RESUMO

COVID-19 is the most devastating disease in recent times affecting most people globally. The higher rate of transmissibility and mutations of SARS-CoV-2 along with the lack of potential therapeutics has made it a global crisis. Potential molecules from natural sources could be a fruitful remedy to combat COVID-19. This systematic review highlights the detailed therapeutic implication of naturally occurring glycyrrhizin and its related derivatives against COVID-19. Glycyrrhizin has already been established for blocking different biomolecular targets related to the SARS-CoV-2 replication cycle. In this article, several experimental and theoretical evidences of glycyrrhizin and related derivatives have been discussed in detail to evaluate their potential as a promising therapeutic strategy against COVID-19. Moreover, the implication of glycyrrhizin in traditional Chinese medicines for alleviating the symptoms of COVID-19 has been reviewed. The potential role of glycyrrhizin and related compounds in affecting various stages of the SARS-CoV-2 life cycle has also been discussed in detail. Derivatization of glycyrrhizin for designing potential lead compounds along with combination therapy with other anti-SARS-CoV-2 agents followed by extensive evaluation may assist in the formulation of novel anti-coronaviral therapy for better treatment to combat COVID-19.

19.
Inflammopharmacology ; 31(6): 3037-3045, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37847472

RESUMO

Licorice extract (glycyrrhizin), a potent antiviral, anti-inflammatory, and antioxidant remedy, is a potential therapeutic option for COVID-19. We evaluated the efficacy and safety of licorice in patients with moderate COVID-19. In this study, 60 patients with confirmed COVID-19 were randomly assigned in a 1:1 ratio to receive licorice (at a dose of 760 mg three times a day for seven days) or control groups. The primary outcomes were SPO2, body temperature, and respiratory rate (RR) after the end of the intervention. The findings indicated that SPO2, body temperature, and RR had no significant difference between the groups at the end of the intervention. However, CRP and ALT improved in the licorice group toward the baseline. The number of patients with worse prognoses, LOS, mortality, and the incidence of adverse events were not different between the groups at the end of the study. Licorice had no beneficial effect on the clinical symptoms of COVID-19. Moreover, this intervention demonstrated a safe profile of adverse events. The confirmation of the results of this preparatory trial requires more detailed multiple-center trials with a larger sample size.


Assuntos
COVID-19 , Glycyrrhiza , Humanos , Extratos Vegetais/efeitos adversos , Extratos Vegetais/uso terapêutico , SARS-CoV-2
20.
Molecules ; 28(16)2023 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-37630394

RESUMO

In Central Eurasia, the availability of drugs that are inhibitors of the SARS-CoV-2 virus and have proven clinical efficacy is still limited. The aim of this study was to evaluate the activity of drugs that were available in Kazakhstan during the acute phase of the epidemic against SARS-CoV-2. Antiviral activity is reported for Favipiravir, Tilorone, and Cridanimod, which are registered drugs used for the treatment of respiratory viral infections in Kazakhstan. A licorice (Glycyrrhiza glabra) extract was also incorporated into this study because it offered an opportunity to develop plant-derived antivirals. The Favipiravir drug, which had been advertised in local markets as an anti-COVID cure, showed no activity against SARS-CoV-2 in cell cultures. On the contrary, Cridanimod showed impressive high activity (median inhibitory concentration 66 µg/mL) against SARS-CoV-2, justifying further studies of Cridanimod in clinical trials. Tilorone, despite being in the same pharmacological group as Cridanimod, stimulated SARS-CoV-2 replication in cultures. The licorice extract inhibited SARS-CoV-2 replication in cultures, with a high median effective concentration of 16.86 mg/mL. Conclusions: The synthetic, low-molecular-weight compound Cridanimod suppresses SARS-CoV-2 replication at notably low concentrations, and this drug is not toxic to cells at therapeutic concentrations. In contrast to its role as an inducer of interferons, Cridanimod is active in cells that have a genetic defect in interferon production, suggesting a different mechanism of action. Cridanimod is an attractive drug for inclusion in clinical trials against SARS-CoV-2 and, presumably, other coronaviruses. The extract from licorice shows low activity against SARS-CoV-2. At the same time, high doses of 2 g/kg of this plant extract show little or no acute toxicity in animal studies; for this reason, licorice products can still be considered for further development as a safe, orally administered adjunctive therapy.


Assuntos
COVID-19 , Glycyrrhiza , Animais , SARS-CoV-2 , Tilorona , Extratos Vegetais/farmacologia , Antivirais/farmacologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa