Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Small ; 20(8): e2307928, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37824280

RESUMO

Bulk hydrogel scaffolds are common in reconstructive surgery. They allow for the staged repair of soft tissue loss by providing a base for revascularization. Unfortunately, they are limited by both slow and random vascularization, which may manifest as treatment failure or suboptimal repair. Rapidly inducing patterned vascularization within biomaterials has profound translational implications for current clinical treatment paradigms and the scaleup of regenerative engineering platforms. To address this long-standing challenge, a novel microsurgical approach and granular hydrogel scaffold (GHS) technology are co-developed to hasten and pattern microvascular network formation. In surgical micropuncture (MP), targeted recipient blood vessels are perforated using a microneedle to accelerate cell extravasation and angiogenic outgrowth. By combining MP with an adjacent GHS with precisely tailored void space architecture, microvascular pattern formation as assessed by density, diameter, length, and intercapillary distance is rapidly guided. This work opens new translational opportunities for microvascular engineering, advancing reconstructive surgery, and regenerative medicine.


Assuntos
Engenharia Tecidual , Alicerces Teciduais , Humanos , Hidrogéis/farmacologia , Neovascularização Patológica , Punções , Neovascularização Fisiológica
2.
FASEB J ; 37(12): e23307, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37983646

RESUMO

Glioblastoma is one of the deadliest malignancies facing modern oncology today. The ability of glioblastoma cells to diffusely spread into neighboring healthy brain makes complete surgical resection nearly impossible and contributes to the recurrent disease faced by most patients. Although research into the impact of iron on glioblastoma has addressed proliferation, there has been little investigation into how cellular iron impacts the ability of glioblastoma cells to migrate-a key question, especially in the context of the diffuse spread observed in these tumors. Herein, we show that increasing cellular iron content results in decreased migratory capacity of human glioblastoma cells. The decrease in migratory capacity was accompanied by a decrease in cellular polarization in the direction of movement. Expression of CDC42, a Rho GTPase that is essential for both cellular migration and establishment of polarity in the direction of cell movement, was reduced upon iron treatment. We then analyzed a single-cell RNA-seq dataset of human glioblastoma samples and found that cells at the tumor periphery had a gene signature that is consistent with having lower levels of cellular iron. Altogether, our results suggest that cellular iron content is impacting glioblastoma cell migratory capacity and that cells with higher iron levels exhibit reduced motility.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Glioblastoma/metabolismo , Movimento Celular/genética , Encéfalo/metabolismo , Linhagem Celular Tumoral , Neoplasias Encefálicas/metabolismo , Proliferação de Células
3.
Small ; : e2309599, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38054634

RESUMO

Injectable hydrogels find extensive application in the treatment of diabetic wound healing. However, traditional bulk hydrogels are significantly limited due to their nano-porous structure, which obstructs cell migration and tissue infiltration. Moreover, regulating inflammation and matrix metalloproteinase -9 (MMP-9) expression in diabetic wounds is crucial for enhancing wound healing. This study marks the first instance of introducing an efficient, scalable, and simple method for producing microfiber-gel granules encapsulating bioceramics powders. Utilizing this method, an injectable microporous granular microgel-fiber hydrogel (MFgel) is successfully developed by assembling microgel-fibers made from hyaluronic acid (HA) and sodium alginate (SA) loaded with small interfering RNA (siRNA) and bioglass (BG) particles. Compared to traditional hydrogels (Tgel), MFgel possesses a highly interconnected network with micron-sized pores, demonstrating favorable properties for cell adhesion and penetration in in vitro experiments. Additionally, MFgel exhibits a higher compressive modulus and superior mechanical stability. When implanted subcutaneously in mice, MFgel promotes cellular and tissue infiltration, facilitating cell proliferation. Furthermore, when applied to skin defects in diabetic rats, MFgel not only effectively regulates inflammation and suppresses MMP-9 expression but also enhances angiogenesis and collagen deposition, thereby significantly accelerating diabetic wound healing. Taken together, this hydrogel possesses great potential in diabetic wound healing applications.

4.
Macromol Rapid Commun ; 41(18): e2000191, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32783361

RESUMO

The replacement of diseased and damaged organs remains an challenge in modern medicine. However, through the use of tissue engineering techniques, it may soon be possible to (re)generate tissues and organs using artificial scaffolds. For example, hydrogel networks made from hydrophilic precursor solutions can replicate many properties found in the natural extracellular matrix (ECM) but often lack the dynamic nature of the ECM, as many covalently crosslinked hydrogels possess elastic and static networks with nanoscale pores hindering cell migration without being degradable. To overcome this, macroporous colloidal hydrogels can be prepared to facilitate cell infiltration. Here, an easy method is presented to fabricate granular cellulose nanofibril hydrogel (CNF) scaffolds as porous networks for 3D cell cultivation. CNF is an abundant natural and highly biocompatible material that supports cell adhesion. Granular CNF scaffolds are generated by pre-crosslinking CNF using calcium and subsequently pressing the gel through micrometer-sized nylon meshes. The granular solution is mixed with fibroblasts and crosslinked with cell culture medium. The obtained granular CNF scaffold is significantly softer and enables well-distributed fibroblast growth. This cost-effective material combined with this efficient and facile fabrication technique allows for 3D cell cultivation in an upscalable manner.


Assuntos
Celulose , Hidrogéis , Materiais Biocompatíveis , Porosidade , Engenharia Tecidual , Alicerces Teciduais
5.
Regen Biomater ; 11: rbad104, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38235061

RESUMO

Platelet-rich plasma (PRP) that has various growth factors has been used clinically in cartilage repair. However, the short residence time and release time at the injury site limit its therapeutic effect. The present study fabricated a granular hydrogel that was assembled from gelatin microspheres and tannic acid through their abundant hydrogen bonding. Gelatin microspheres with the gelatin concentration of 10 wt% and the diameter distribution of 1-10 µm were used to assemble by tannic acid to form the granular hydrogel, which exhibited elasticity under low shear strain, but flowability under higher shear strain. The viscosity decreased with the increase in shear rate. Meanwhile, the granular hydrogel exhibited self-healing feature during rheology test. Thus, granular hydrogel carrying PRP not only exhibited well-performed injectability but also performed like a 'plasticine' that possessed good plasticity. The granular hydrogel showed tissue adhesion ability and reactive oxygen species scavenging ability. Granular hydrogel carrying PRP transplanted to full-thickness articular cartilage defects could integrate well with native cartilage, resulting in newly formed cartilage articular fully filled in defects and well-integrated with the native cartilage and subchondral bone. The unique features of the present granular hydrogel, including injectability, plasticity, porous structure, tissue adhesion and reactive oxygen species scavenging provided an ideal PRP carrier toward cartilage tissue engineering.

6.
Adv Mater ; 36(14): e2312226, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38178647

RESUMO

Many cell types require direct cell-cell interactions for differentiation and function; yet, this can be challenging to incorporate into 3-dimensional (3D) structures for the engineering of tissues. Here, a new approach is introduced that combines aggregates of cells (spheroids) with similarly-sized hydrogel particles (microgels) to form granular composites that are injectable, undergo interparticle crosslinking via light for initial stabilization, permit cell-cell contacts for cell signaling, and allow spheroid fusion and growth. One area where this is important is in cartilage tissue engineering, as cell-cell contacts are crucial to chondrogenesis and are missing in many tissue engineering approaches. To address this, granular composites are developed from adult porcine mesenchymal stromal cell (MSC) spheroids and hyaluronic acid microgels and simulations and experimental analyses are used to establish the importance of initial MSC spheroid to microgel volume ratios to balance mechanical support with tissue growth. Long-term chondrogenic cultures of granular composites produce engineered cartilage tissue with extensive matrix deposition and mechanical properties within the range of cartilage, as well as integration with native tissue. Altogether, a new strategy of injectable granular composites is developed that leverages the benefits of cell-cell interactions through spheroids with the mechanical stabilization afforded with engineered hydrogels.


Assuntos
Microgéis , Engenharia Tecidual , Animais , Suínos , Engenharia Tecidual/métodos , Esferoides Celulares , Cartilagem , Hidrogéis/química , Condrogênese
7.
Int J Biol Macromol ; 273(Pt 2): 132878, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38844277

RESUMO

Granular hydrogels have emerged as a new class of materials for 3D printing, tissue engineering, and food applications due to their extrudability, porosity, and modularity. This work introduces a convenient method to prepare granular hydrogel with tunable properties by modulating the interaction between gum Arabic (GA) and whey protein isolate (WPI) microgels. As the concentration of GA increased, the appearance of the hydrogel changed from fluid liquid to moldable solid, and the microstructure changed from a macro-porous structure with thin walls to a dense structure formed by the accumulation of spherical particles. At a GA concentration of 0.5 %, the hydrogels remained fluid. Granular hydrogels containing 1.0 % GA showed mechanical properties similar to those of tofu (compressive strength: 10.8 ± 0.5 kPa, Young's modulus: 16.7 ± 0.4 kPa), while granular hydrogels containing 1.5 % GA showed mechanical properties similar to those of hawthorn sticks and sausages (compressive strength: 300.4 ± 5.8 kPa; Young's modulus: 200.5 ± 3.4 kPa). The hydrogel with 2.0 % GA was similar to hawthorn sticks, with satisfactory bite resistance and elasticity. Such tunability has led to various application potentials in the food industry to meet consumer demand for healthy, nutritious, and diverse textures.


Assuntos
Goma Arábica , Hidrogéis , Microgéis , Proteínas do Soro do Leite , Goma Arábica/química , Hidrogéis/química , Proteínas do Soro do Leite/química , Microgéis/química , Módulo de Elasticidade , Reologia , Porosidade , Força Compressiva
8.
Adv Healthc Mater ; : e2402489, 2024 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-39152936

RESUMO

Granular hydrogel scaffolds (GHS) are fabricated via placing hydrogel microparticles (HMP) in close contact (packing), followed by physical and/or chemical interparticle bond formation. Gelatin methacryloyl (GelMA) GHS have recently emerged as a promising platform for biomedical applications; however, little is known about how the packing of building blocks, physically crosslinked soft GelMA HMP, affects the physical (pore microarchitecture and mechanical/rheological properties) and biological (in vitro and in vivo) attributes of GHS. Here, the GHS pore microarchitecture is engineered via the external (centrifugal) force-induced packing and deformation of GelMA HMP to regulate GHS mechanical and rheological properties, as well as biological responses in vitro and in vivo. Increasing the magnitude and duration of centrifugal force increases the HMP deformation/packing, decreases GHS void fraction and median pore diameter, and increases GHS compressive and storage moduli. MDA-MB-231 human triple negative breast adenocarcinoma cells spread and flatten on the GelMA HMP surface in loosely packed GHS, whereas they adopt an elongated morphology in highly packed GHS as a result of spatial confinement. Via culturing untreated or blebbistatin-treated cells in GHS, the effect of non-muscle myosin II-driven contractility on cell morphology is shown. In vivo subcutaneous implantation in mice confirms a significantly higher endothelial, fibroblast, and macrophage cell infiltration within the GHS with a lower packing density, which is in accordance with the in vitro cell migration outcome. These results indicate that the packing state of GelMA GHS may enable the engineering of cell response in vitro and tissue response in vivo. This research is a fundamental step forward in standardizing and engineering GelMA GHS microarchitecture for tissue engineering and regeneration.

9.
Adv Sci (Weinh) ; 11(15): e2303128, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38348560

RESUMO

Nonalcoholic fatty liver disease affects 30% of the United States population and its progression can lead to nonalcoholic steatohepatitis (NASH), and increased risks for cirrhosis and hepatocellular carcinoma. NASH is characterized by a highly heterogeneous liver microenvironment created by the fibrotic activity of hepatic stellate cells (HSCs). While HSCs have been widely studied in 2D, further advancements in physiologically relevant 3D culture platforms for the in vitro modeling of these heterogeneous environments are needed. In this study, the use of stiffness-variable, extracellular matrix (ECM) protein-conjugated polyethylene glycol microgels as 3D cell culture scaffolds to modulate HSC activation is demonstrated. These microgels as a high throughput ECM screening system to identify HSC matrix remodeling and metabolic activities in distinct heterogeneous microenvironmental conditions are further employed. The 6 kPa fibronectin microgels are shown to significantly increase HSC matrix remodeling and metabolic activities in single or multiple-component microenvironments. Overall, heterogeneous microenvironments consisting of multiple distinct ECM microgels promoted a decrease in HSC matrix remodeling and metabolic activities compared to homogeneous microenvironments. The study envisions this ECM screening platform being adapted to a broad number of cell types to aid the identification of ECM microenvironments that best recapitulate the desired phenotype, differentiation, or drug efficacy.


Assuntos
Neoplasias Hepáticas , Microgéis , Hepatopatia Gordurosa não Alcoólica , Humanos , Células Estreladas do Fígado/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Fibrose , Neoplasias Hepáticas/metabolismo , Microambiente Tumoral
10.
Adv Healthc Mater ; : e2303912, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38470994

RESUMO

Spinal cord injury (SCI) is a serious condition with limited treatment options. Neural progenitor cell (NPC) transplantation is a promising treatment option, and the identification of novel biomaterial scaffolds that support NPC engraftment and therapeutic activity is a top research priority. The objective of this study is to evaluate in situ assembled poly (ethylene glycol) (PEG)-based granular hydrogels for NPC delivery in a murine model of SCI. Microgel precursors are synthesized by using thiol-norbornene click chemistry to react four-armed PEG-amide-norbornene with enzymatically degradable and cell adhesive peptides. Unreacted norbornene groups are utilized for in situ assembly into scaffolds using a PEG-di-tetrazine linker. The granular hydrogel scaffolds exhibit good biocompatibility and do not adversely affect the inflammatory response after SCI. Moreover, when used to deliver NPCs, the granular hydrogel scaffolds supported NPC engraftment, do not adversely affect the immune response to the NPC grafts, and successfully support graft differentiation toward neuronal or astrocytic lineages as well as axonal extension into the host tissue. Collectively, these data establish PEG-based granular hydrogel scaffolds as a suitable biomaterial platform for NPC delivery and justify further testing, particularly in the context of more severe SCI.

11.
Bioeng Transl Med ; 8(3): e10475, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37206234

RESUMO

In patients with mild osteoarthritis (OA), two to four monthly injections are required for 6 months due to the degradation of hyaluronic acid (HA) by peroxidative cleavage and hyaluronidase. However, frequent injections may lead to local infection and also cause inconvenience to patients during the COVID-19 pandemic. Herein, we developed a novel HA granular hydrogel (n-HA) with improved degradation resistance. The chemical structure, injectable capability, morphology, rheological properties, biodegradability, and cytocompatibility of the n-HA were investigated. In addition, the effects of the n-HA on the senescence-associated inflammatory responses were studied via flow cytometry, cytochemical staining, Real time quantitative polymerase chain reaction (RT-qPCR), and western blot analysis. Importantly, the treatment outcome of the n-HA with one single injection relative to the commercial HA product with four consecutive injections within one treatment course in an OA mouse model underwent anterior cruciate ligament transection (ACLT) was systematically evaluated. Our developed n-HA exhibited a perfect unification of high crosslink density, good injectability, excellent resistance to enzymatic hydrolysis, satisfactory biocompatibility, and anti-inflammatory responses through a series of in vitro studies. Compared to the commercial HA product with four consecutive injections, a single injection of n-HA contributed to equivalent treatment outcomes in an OA mouse model in terms of histological analysis, radiographic, immunohistological, and molecular analysis results. Furthermore, the amelioration effect of the n-HA on OA development was partially ascribed to the attenuation of chondrocyte senescence, thereby leading to inhibition of TLR-2 expression and then blockade of NF-κB activation. Collectively, the n-HA may be a promising therapeutic alternative to current commercial HA products for OA treatment.

12.
Adv Healthc Mater ; : e2302500, 2023 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-38069833

RESUMO

Conductive biomaterials may capture native or exogenous bioelectric signaling, but incorporation of conductive moieties is limited by cytotoxicity, poor injectability, or insufficient stimulation. Microgel annealed scaffolds are promising as hydrogel-based materials due to their inherent void space that facilitates cell migration and proliferation better than nanoporous bulk hydrogels. Conductive microgels are generated from poly(ethylene) glycol (PEG and poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT: PSS) to explore the interplay of void volume and conductivity on myogenic differentiation. PEDOT: PSS increases microgel conductivity two-fold while maintaining stiffness, annealing strength, and viability of associated myoblastic cells. C2C12 myoblasts exhibit increases in the late-stage differentiation marker myosin heavy chain as a function of both porosity and conductivity. Myogenin, an earlier marker, is influenced only by porosity. Human skeletal muscle-derived cells exhibit increased Myod1, insulin like growth factor-1, and insulin-like growth factor binding protein 2 at earlier time points on conductive microgel scaffolds compared to non-conductive scaffolds. They also secrete more vascular endothelial growth factor at early time points and express factors that led to macrophage polarization patterns observe during muscle repair. These data indicate that conductivity aids myogenic differentiation of myogenic cell lines and primary cells, motivating the need for future translational studies to promote muscle repair.

13.
ACS Appl Mater Interfaces ; 15(38): 44676-44688, 2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37721504

RESUMO

Postoperative intrauterine adhesion (IUA), caused by endometrial basal layer injury, is one of the main causes of female infertility. The excessive deposition of fibrin as well as fibroblast is considered the root cause of IUA. However, few clinical strategies are effective in preventing extracellular matrix (ECM) deposition at endometrial wounds that include protein and cell deposits. Herein, the injectable granular poly(N-(2-hydroxyethyl) acrylamide) (PHEAA) hydrogel (granular PHEAA gel), which presents excellent antifouling properties and remarkably prevents protein and cell adhesions, is used to prevent postoperative IUA. The granular PHEAA gel with a jammed network structure exhibits outstanding injectability and superior stability. Compared with the IUA group, the granular PHEAA gel can promote regeneration of the endometrium while reducing the area of endometrial fibrosis. Immunohistochemical staining experiments indicate that the granular PHEAA gel can improve the proliferation of the endometrium, promote vascularization, and enhance anti-inflammatory effect in IUA rats. And the granular PHEAA gel can effectively slow down the fibrosis of uterine tissue. Importantly, the number of embryos is significantly increased after injecting granular PHEAA gel, inferring that there is an obvious reproductive function recovery of injured endometrium.


Assuntos
Incrustação Biológica , Hidrogéis , Feminino , Animais , Ratos , Hidrogéis/farmacologia , Incrustação Biológica/prevenção & controle , Aderências Teciduais/prevenção & controle , Acrilamida , Adesão Celular
14.
Adv Sci (Weinh) ; 10(31): e2302229, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37726225

RESUMO

The principal cause of death in cancer patients is metastasis, which remains an unresolved problem. Conventionally, metastatic dissemination is linked to actomyosin-driven cell locomotion. However, the locomotion of cancer cells often does not strictly line up with the measured actomyosin forces. Here, a complementary mechanism of metastatic locomotion powered by dynein-generated forces is identified. These forces arise within a non-stretchable microtubule network and drive persistent contact guidance of migrating cancer cells along the biomimetic collagen fibers. It is also shown that the dynein-powered locomotion becomes indispensable during invasive 3D migration within a tissue-like luminal network formed by spatially confining granular hydrogel scaffolds (GHS) made up of microscale hydrogel particles (microgels). These results indicate that the complementary motricity mediated by dynein is always necessary and, in certain instances, sufficient for disseminating metastatic breast cancer cells. These findings advance the fundamental understanding of cell locomotion mechanisms and expand the spectrum of clinical targets against metastasis.


Assuntos
Neoplasias da Mama , Dineínas , Humanos , Feminino , Dineínas/metabolismo , Actomiosina/metabolismo , Movimento Celular , Hidrogéis
15.
Bioeng Transl Med ; 8(6): e10576, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38023716

RESUMO

Developing effective therapy to inhibit postoperative recurrence and metastasis of colorectal cancer (CRC) is challenging and significant to reduce mortality and morbidity. Here, a granular hydrogel, assembled from gelatin microgels by dialdehyde starch and interpenetrated with in situ polymerized poly(sulfobetaine methacrylate-co-N-isopropylacrylamide) (P(SBMA-co-NIPAM)), is prepared to load and lock Food and Drug Administration (FDA)-approved indocyanine green (ICG) with definite photothermal function and biosafety for photothermal therapy (PTT) combining with checkpoint inhibitor. The presence of P(SBMA-co-NIPAM) endows granular hydrogel with high retention to water-soluble ICG, preventing easy diffusion and rapid scavenging of ICG. The ICG-locking granular hydrogel can be spread and adhered onto the surgery site at wet state in vivo, exerting a persistent and stable PTT effect. Combined with αPD-L1 treatment, ICG-locking granular hydrogel-mediated PTT can eradicate postsurgery residual and metastatic tumors, and prevent long-term tumor recurrence. Further mechanistic studies indicate that combination treatment effectively promotes dendritic cells maturation in lymph nodes, enhances the number and infiltration of CD8+ T and CD4+ T cells in tumor tissue, and improves memory T cell number in spleen, thus activating the antitumor immune response. Overall, ICG-locking gel-mediated PTT is expected to exhibit broad clinical applications in postoperative treatment of cancers, like CRC.

16.
bioRxiv ; 2023 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-37214995

RESUMO

Non-alcoholic fatty liver disease affects 30% of the United States population and its progression can lead to non-alcoholic steatohepatitis (NASH), which can result in cirrhosis and hepatocellular carcinoma. NASH is characterized by a highly heterogeneous liver microenvironment created by the fibrotic activity of hepatic stellate cells (HSCs). While HSCs have been widely studied in 2D, further advancements in physiologically-relevant 3D culture platforms for the in vitro modeling of these heterogeneous environments are needed. In this study, we have demonstrated the use of stiffness-variable, ECM protein-conjugated polyethylene glycol microgels as 3D cell culture scaffolds to modulate HSC activation. We further employed these microgels as a high throughput ECM screening system to identify HSC matrix remodeling and metabolic activities in distinct heterogeneous microenvironmental conditions. In particular, 6 kPa fibronectin microgels were shown to significantly increase HSC matrix remodeling and metabolic activities in single or multiple component microenvironments. Overall, heterogeneous microenvironments consisting of multiple distinct ECM microgels promoted a decrease in HSC matrix remodeling and metabolic activities compared to homogeneous microenvironments. We envision this ECM screening platform being adapted to a broad number of cell types to aid the identification of ECM microenvironments that best recapitulate the desired phenotype, differentiation, or drug efficacy.

17.
Bioeng Transl Med ; 8(1): e10355, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36684085

RESUMO

A crucial component of the musculoskeletal system, the tendon is one of the most commonly injured tissues in the body. In severe cases, the ruptured tendon leads to permanent dysfunction. Although many efforts have been devoted to seeking a safe and efficient treatment for enhancing tendon healing, currently existing treatments have not yet achieved a major clinical improvement. Here, an injectable granular hyaluronic acid (gHA)-hydrogel is engineered to deliver fibromodulin (FMOD)-a bioactive extracellular matrix (ECM) that enhances tenocyte mobility and optimizes the surrounding ECM assembly for tendon healing. The FMOD-releasing granular HA (FMOD/gHA)-hydrogel exhibits unique characteristics that are desired for both patients and health providers, such as permitting a microinvasive application and displaying a burst-to-sustained two-phase release of FMOD, which leads to a prompt FMOD delivery followed by a constant dose-maintaining period. Importantly, the generated FMOD-releasing granular HA hydrogel significantly augmented tendon-healing in a fully-ruptured rat's Achilles tendon model histologically, mechanically, and functionally. Particularly, the breaking strength of the wounded tendon and the gait performance of treated rats returns to the same normal level as the healthy controls. In summary, a novel effective FMOD/gHA-hydrogel is developed in response to the urgent demand for promoting tendon healing.

18.
Gels ; 9(2)2023 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-36826337

RESUMO

Conductive hydrogels are promising materials in bioelectronics that ensure a tissue-like soft modulus and re-enact the electrophysiological function of damaged tissues. However, recent approaches to fabricating conductive hydrogels have proved difficult: fixing of the conductive hydrogels on the target tissues hydrogels requires the aids from other medical glues because of their weak tissue-adhesiveness. In this study, an intrinsically conductive and tissue-adhesive granular hydrogel consisting of a PEDOT:PSS conducting polymer and an adhesive catechol-conjugated alginate polymer was fabricated via an electrohydrodynamic spraying method. Because alginate-based polymers can be crosslinked by calcium ions, alginate-catechol polymers mixed with PEDOT:PSS granular hydrogels (ACP) were easily fabricated. The fabricated ACP exhibited not only adhesive and shear-thinning properties but also conductivity similar to that of muscle tissue. Additionally, the granular structure makes the hydrogel injectable through a syringe, enabling on-tissue printing. This multifunctional granular hydrogel can be applied to soft and flexible electronics to connect humans and machines.

19.
Neural Regen Res ; 18(3): 657-663, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36018191

RESUMO

A hyaluronic acid granular hydrogel can promote neuronal and astrocyte colony formation and axonal extension in vitro, suggesting that the hydrogel can simulate an extracellular matrix structure to promote neural regeneration. However, in vivo experiments have not been conducted. In this study, we transplanted a hyaluronic acid granular hydrogel nerve guidance conduit to repair a 10-mm long sciatic nerve gap. The Basso, Beattie, and Bresnahan locomotor rating scale, sciatic nerve compound muscle action potential recording, Fluoro-Gold retrograde tracing, growth related protein 43/S100 immunofluorescence staining, transmission electron microscopy, gastrocnemius muscle dry/wet weight ratio, and Masson's trichrome staining results showed that the nerve guidance conduit exhibited similar regeneration of sciatic nerve axons and myelin sheath, and recovery of the electrophysiological function and motor function as autologous nerve transplantation. The conduit results were superior to those of a bulk hydrogel or silicone tube transplant. These findings suggest that tissue-engineered nerve conduits containing hyaluronic acid granular hydrogels effectively promote the morphological and functional recovery of the injured sciatic nerve. The nerve conduits have the potential as a material for repairing peripheral nerve defects.

20.
Biofabrication ; 14(3)2022 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-35378518

RESUMO

Stem cell spheroids are advanced building blocks to produce chondroid. However, the multi-step operations including spheroids preparation, collection and transfer, the following 3D printing and shaping limit their application in 3D printing. The present study fabricates an 'ALL-IN-ONE' bioink based on granular hydrogel to not only produce adipose derived stem cell (ASC) spheroids, but also realize the further combination of chondrocytes and the subsequent 3D printing. Microgels (6-10µm) grafted with ß-cyclodextrin (ß-CD) (MGß-CD) were assembled and crosslinked byin-situpolymerized poly (N-isopropylacrylamide) (PNIPAm) to form bulk granular hydrogel. The host-guest action between ß-CD of microgels and PNIPAm endows the hydrogel with stable, shear-thinning and self-healing properties. After creating caves, ASCs aggregate spontaneously to form numerous spheroids with diameter of 100-200µm inside the hydrogel. The thermosensitive porous granular hydrogel exhibits volume change under different temperature, realizing further adsorbing chondrocytes. Then, the granular hydrogel carrying ASC spheroids and chondrocytes is extruded by 3D printer at room temperature to form a tube, which can shrink at cell culture temperature to enhance the resolution. The subsequent ASC spheroids/chondrocytes co-culture forms cartilage-like tissue at 21 din vitro, which further matures subcutaneouslyin vivo, indicating the application potential of the fully synthetic granular hydrogel ink toward organoid culture.


Assuntos
Condrócitos , Microgéis , Tecido Adiposo , Hidrogéis , Esferoides Celulares , Células-Tronco , Engenharia Tecidual
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa