Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
J Neurosci ; 43(7): 1143-1153, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36732069

RESUMO

Cerebral creatine deficiency syndrome (CCDS) is an inborn error of metabolism characterized by intellectual delays, seizures, and autistic-like behavior. However, the role of endogenously synthesized creatine on CNS development and function remains poorly understood. Here, magnetic resonance spectroscopy of adult mouse brains from both sexes revealed creatine synthesis is dependent on the expression of the enzyme, guanidinoacetate methyltransferase (GAMT). To identify Gamt-expressed cells, and how Gamt affects postnatal CNS development, we generated a mouse line by knocking-in a GFP, which is expressed on excision of Gamt We found that Gamt is expressed in mature oligodendrocytes during active myelination in the developing postnatal CNS. Homozygous deletion of Gamt resulted in significantly reduced mature oligodendrocytes and delayed myelination in the corpus callosum. Moreover, the absence of endogenous creatine resulted in altered AMPK signaling in the brain, reduced brain creatine kinase expression in cortical neurons, and signs of axonal damage. Experimental demyelination in mice after tamoxifen-induced conditional deletion of Gamt in oligodendrocyte lineage cells resulted in delayed maturation of oligodendrocytes and myelin coverage in lesions. Moreover, creatine and cyclocreatine supplementation can enhance remyelination after demyelination. Our results suggest endogenously synthesized creatine controls the bioenergetic demand required for the timely maturation of oligodendrocytes during postnatal CNS development, and that delayed myelination and altered CNS energetics through the disruption of creatine synthesis might contribute to conditions, such as CCDS.SIGNIFICANCE STATEMENT Cerebral creatine deficiency syndrome is a rare disease of inborn errors in metabolism, which is characterized by intellectual delays, seizures, and autism-like behavior. We found that oligodendrocytes are the main source of endogenously synthesized creatine in the adult CNS, and the loss of endogenous creatine synthesis led to delayed myelination. Our study suggests impaired cerebral creatine synthesis affects the timing of myelination and may impact brain bioenergetics.


Assuntos
Doenças Desmielinizantes , Deficiência Intelectual , Masculino , Feminino , Camundongos , Animais , Creatina/metabolismo , Homozigoto , Deleção de Sequência , Oligodendroglia/metabolismo , Deficiência Intelectual/genética , Doenças Desmielinizantes/patologia , Convulsões
2.
Neurogenetics ; 24(2): 67-78, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36633690

RESUMO

Guanidinoacetate methyltransferase deficiency (GAMTD) is a treatable neurodevelopmental disorder with normal or nonspecific imaging findings. Here, we reported a 14-month-old girl with GAMTD and novel findings on brain magnetic resonance imaging (MRI).A 14-||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||month-old female patient was referred to Myelin Disorders Clinic due to onset of seizures and developmental regression following routine vaccination at 4 months of age. Brain MRI, prior to initiation of treatment, showed high signal intensity in T2-weighted imaging in bilateral thalami, globus pallidus, subthalamic nuclei, substantia nigra, dentate nuclei, central tegmental tracts in the brainstem, and posterior periventricular white matter which was masquerading for mitochondrial leukodystrophy. Basic metabolic tests were normal except for low urine creatinine; however, exome sequencing identified a homozygous frameshift deletion variant [NM_000156: c.491del; (p.Gly164AlafsTer14)] in the GAMT. Biallelic pathogenic or likely pathogenic variants cause GAMTD. We confirmed the homozygous state for this variant in the proband, as well as the heterozygote state in the parents by Sanger sequencing.MRI features in GAMTD can mimic mitochondrial leukodystrophy. Pediatric neurologists should be aware of variable MRI findings in GAMTD since they would be misleading to other diagnoses.


Assuntos
Transtornos do Desenvolvimento da Linguagem , Transtornos dos Movimentos , Criança , Humanos , Feminino , Lactente , Irã (Geográfico) , Transtornos do Desenvolvimento da Linguagem/genética , Transtornos do Desenvolvimento da Linguagem/diagnóstico , Transtornos do Desenvolvimento da Linguagem/metabolismo , Guanidinoacetato N-Metiltransferase/metabolismo , Neuroimagem
3.
J Neurochem ; 165(3): 445-454, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36726215

RESUMO

Impairment of excretion and enzymatic processing of nitrogen, for example, because of liver or kidney failure, or with urea cycle and creatine synthesis enzyme defects, surprisingly leads to primarily neurologic symptoms, yet the exact mechanisms remain largely mysterious. In guanidinoacetate N-methyltransferase (GAMT) deficiency, the guanidino compound guanidinoacetate (GAA) increases dramatically, including in the cerebrospinal fluid (CSF), and has been implicated in mediating the neurological symptoms in GAMT-deficient patients. GAA is synthesized by arginine-glycine amidinotransferase (AGAT), a promiscuous enzyme that not only transfers the amidino group from arginine to glycine, but also to primary amines in, for example, GABA and taurine to generate γ-guanidinobutyric acid (γ-GBA) and guanidinoethanesulfonic acid (GES), respectively. We show that GAA, γ-GBA, and GES share structural similarities with GABA, evoke GABAA receptor (GABAA R) mediated currents (whereas creatine [methylated GAA] and arginine failed to evoke discernible currents) in cerebellar granule cells in mouse brain slices and displace the high-affinity GABA-site radioligand [3 H]muscimol in total brain homogenate GABAA Rs. While γ-GBA and GES are GABA agonists and displace [3 H]muscimol (EC50 /IC50 between 10 and 40 µM), GAA stands out as particularly potent in both activating GABAA Rs (EC50 ~6 µM) and also displacing the GABAA R ligand [3 H]muscimol (IC50 ~3 µM) at pathophysiologically relevant concentrations. These findings stress the role of substantially elevated GAA as a primary neurotoxic agent in GAMT deficiency and we discuss the potential role of GAA in arginase (and creatine transporter) deficiency which show a much more modest increase in GAA concentrations yet share the unique hyperexcitability neuropathology with GAMT deficiency. We conclude that orthosteric activation of GABAA Rs by GAA, and potentially other GABAA R mimetic guanidino compounds (GCs) like γ-GBA and GES, interferes with normal inhibitory GABAergic neurotransmission which could mediate, and contribute to, neurotoxicity.


Assuntos
Creatina , Receptores de GABA-A , Camundongos , Animais , Creatina/farmacologia , Muscimol , Glicina/farmacologia , Ácido gama-Aminobutírico , Arginina
4.
Mol Genet Metab ; 135(3): 186-192, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35120844

RESUMO

Guanidinoacetate methyltransferase (GAMT) deficiency is an autosomal recessive disorder that results in reduced activity of guanidinoacetate methyltransferase, an accumulation of guanidinoacetate (GUAC), and a lack of cerebral creatine (CRE). Lack of CRE in the brain can cause intellectual disability, autistic-like behavior, seizures, and movement disorders. Identification at birth and immediate therapy can prevent intellectual disability and seizures. If started early in life, treatment with creatine supplements is highly effective. Because there are reliable biomarkers for GAMT deficiency, GUAC and CRE, and because the disorder is readily treatable with a significant improvement in outcomes, GAMT deficiency is an excellent candidate for newborn screening. Several programs have conducted pilot programs or started screening. An isobaric interferant of the GUAC marker has been reported which may cause false positive results. To reduce the number of false positives, a second-tier HPLC test to separate GUAC from unknown, isobaric interferants may be incorporated into the screening algorithm. New York State began screening for GAMT deficiency in October 2018 using a three-tiered screening approach. Quantification of GUAC and CRE were incorporated into routine screening for amino acids and acylcarnitines. In the first year of screening a total of 263,739 samples were tested for GAMT deficiency. Of these, 3382 required second tier testing. After second tier testing, 210 repeat specimens were requested for borderline results and 10 referrals were made to specialty care centers for confirmatory testing. In the first year of screening there were no confirmed cases of GAMT deficiency detected. To reduce the number of samples needing second tier testing and the number false positives we explored the use of a second MS transition to confirm the identity of the GUAC marker. GUAC and its internal standard are detected as butylated esters after sample preparation and derivatization. The original method used transition of the GUAC molecular ion of m/z 174.1 to a reactant ion of m/z 101.1. To confirm the identity of the GUAC marker we selected a qualifier ion of 174.1 > 73. The alternative product ion results were found to agree more closely with the second tier HPLC-MS/MS results for GUAC. It was found that the alternative transition may be used for quantification of the GUAC marker with acceptable analytical performance (linearity, accuracy, and precision). On March 5, 2020, the method of analysis for GUAC was modified to use the alternative product ion. For a comparable 6-month period, the modified method reduced the number of samples requiring second tier testing by 98%, reduced the number of borderline results requiring a repeat sample by 87.5%, and reduced the number of referrals to specialty care centers by 85%. Using the modified method, the correlation (r-squared) of the first and second tier screening results for GUAC is greater than 0.95. Since the first-tier results correlate well with the second-tier results, the second-tier screening is no longer necessary with the modified method.


Assuntos
Deficiência Intelectual , Transtornos dos Movimentos , Creatina , Guanidinoacetato N-Metiltransferase/deficiência , Guanidinoacetato N-Metiltransferase/genética , Humanos , Recém-Nascido , Transtornos do Desenvolvimento da Linguagem , Transtornos dos Movimentos/congênito , Transtornos dos Movimentos/diagnóstico , Triagem Neonatal/métodos , Convulsões , Espectrometria de Massas em Tandem/métodos
5.
Am J Physiol Renal Physiol ; 320(3): F351-F358, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33459166

RESUMO

A heterozygous mutation (c.643C.A; p.Q215X) in the creatine transporter SLC16A12 has been proposed to cause a syndrome with juvenile cataracts, microcornea, and glucosuria in humans. To further explore the role of SLC16A12 in renal physiology and decipher the mechanism underlying the phenotype of humans with the SLC16A12 mutation, we studied Slc16a12 knockout (KO) rats. Slc16a12 KO rats had lower plasma levels and increased absolute and fractional urinary excretion of creatine and its precursor guanidinoacetate (GAA). Slc16a12 KO rats displayed lower plasma and urinary creatinine levels, but the glomerular filtration rate was normal. The phenotype of heterozygous rats was indistinguishable from wild-type (WT) rats. Renal artery to vein (RAV) concentration differences in WT rats were negative for GAA and positive for creatinine. However, RAV differences for GAA were similar in Slc16a12 KO rats, indicating incomplete compensation of urinary GAA losses by renal GAA synthesis. Together, our results reveal that Slc16a12 in the basolateral membrane of the proximal tubule is critical for the reabsorption of creatine and GAA. Our data suggest a dominant-negative mechanism underlying the phenotype of humans affected by the heterozygous SLC16A12 mutation. Furthermore, in the absence of Slc16a12, urinary losses of GAA are not adequately compensated by increased tubular synthesis, likely caused by feedback inhibition of the rate-limiting enzyme l-arginine:glycine amidinotransferase by creatine in proximal tubular cells.NEW & NOTEWORTHY SLC16A12 is a recently identified creatine transporter of unknown physiological function. A heterozygous mutation in the human SLC16A12 gene causes juvenile cataracts and reduced plasma guanidinoacetate (GAA) levels with an increased fractional urinary excretion of GAA. Our study with transgenic SLC16A12-deficient rats reveals that SLC16A12 is critical for tubular reabsorption of creatine and GAA in the kidney. Our data furthermore indicate a dominant-negative mechanism underlying the phenotype of humans affected by the heterozygous SLC16A12 mutation.


Assuntos
Creatinina/urina , Glicina/análogos & derivados , Túbulos Renais Proximais/metabolismo , Transportadores de Ácidos Monocarboxílicos/metabolismo , Reabsorção Renal , Animais , Creatinina/sangue , Técnicas de Inativação de Genes , Genótipo , Glicina/sangue , Glicina/urina , Fígado/metabolismo , Transportadores de Ácidos Monocarboxílicos/genética , Fenótipo , Ratos Endogâmicos F344 , Ratos Transgênicos
6.
Mol Genet Metab ; 134(1-2): 60-64, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34389248

RESUMO

INTRODUCTION: Guanidinoacetate methyltransferase (GAMT) deficiency is an inherited metabolic disorder that impairs the synthesis of creatine (CRE). Lack of CRE in the brain can cause intellectual disability, autistic-like behavior, seizures, and movement disorders. Identification at birth and immediate therapy can prevent intellectual disability and seizures. Here we report the first two cases of GAMT deficiency identified at birth by newborn screening (NBS) in Utah and New York. METHODS: NBS dried blood spots were analyzed by tandem mass spectrometry (MS/MS) using either derivatized or non-derivatized assays to detect guanidinoacetate (GUAC) and CRE. For any positive samples, a second-tier test using a more selective method, ultra-performance liquid chromatography (UPLC) combined with MS/MS, was performed to separate GUAC from potential isobaric interferences. RESULTS: NBS for GAMT deficiency began in Utah on June 1, 2015 using a derivatized method for the detection of GUAC and CRE. In May 2019, the laboratory and method transitioned to a non-derivatized method. GAMT screening was added to the New York State NBS panel on October 1, 2018 using a derivatized method. In New York, a total of 537,408 babies were screened, 23 infants were referred and one newborn was identified with GAMT deficiency. In Utah, a total of 273,902 infants were screened (195,425 with the derivatized method, 78,477 with the non-derivatized method), three infants referred and one was identified with GAMT deficiency. Mean levels of GUAC and CRE were similar between methods (Utah derivatized: GUAC = 1.20 ± 0.43 µmol/L, CRE = 238 ± 96 µmol/L; Utah non-derivatized: GUAC = 1.23 ± 0.61 µmol/L, CRE = 344 ± 150 µmol/L, New York derivatized: GUAC = 1.34 ± 0.57 µmol/L, CRE = 569 ± 155 µmol/L). With either Utah method, similar concentrations of GUAC are observed in first (collected around 1 day of age) and the second NBS specimens (routinely collected at 7-16 days of age), while CRE concentrations decreased in the second NBS specimens. Both infants identified with GAMT deficiency started therapy by 2 weeks of age and are growing and developing normally at 7 (Utah) and 4 (New York) months of age. CONCLUSIONS: Newborn screening allows for the prospective identification of GAMT deficiency utilizing elevated GUAC concentration as a marker. First-tier screening may be incorporated into existing methods for amino acids and acylcarnitines without the need for new equipment or staff. Newborn screening performed by either derivatized or non-derivatized methods and coupled with second-tier testing, has a very low false positive rate and can prospectively identify affected children. SummaryCerebral creatine deficiency syndromes caused by defects in creatine synthesis can result in intellectual disability, and are preventable if therapy is initiated early in life. This manuscript reports the identification of two infants with GAMT deficiency (one of the cerebral creatine deficiency syndromes) by newborn screening and demonstrates NBS feasibility using a variety of methods.


Assuntos
Guanidinoacetato N-Metiltransferase/deficiência , Transtornos do Desenvolvimento da Linguagem/diagnóstico , Transtornos dos Movimentos/congênito , Triagem Neonatal/métodos , Triagem Neonatal/normas , Cromatografia Líquida , Creatina/metabolismo , Teste em Amostras de Sangue Seco/métodos , Humanos , Recém-Nascido , Transtornos do Desenvolvimento da Linguagem/complicações , Transtornos dos Movimentos/complicações , Transtornos dos Movimentos/diagnóstico , New York , Estudos Prospectivos , Utah
7.
J Neurosci ; 37(6): 1479-1492, 2017 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-28069926

RESUMO

Chronic oligodendrocyte loss, which occurs in the demyelinating disorder multiple sclerosis (MS), contributes to axonal dysfunction and neurodegeneration. Current therapies are able to reduce MS severity, but do not prevent transition into the progressive phase of the disease, which is characterized by chronic neurodegeneration. Therefore, pharmacological compounds that promote oligodendrocyte survival could be beneficial for neuroprotection in MS. Here, we investigated the role of creatine, an organic acid involved in adenosine triphosphate (ATP) buffering, in oligodendrocyte function. We found that creatine increased mitochondrial ATP production directly in oligodendrocyte lineage cell cultures and exerted robust protection on oligodendrocytes by preventing cell death in both naive and lipopolysaccharide-treated mixed glia. Moreover, lysolecithin-mediated demyelination in mice deficient in the creatine-synthesizing enzyme guanidinoacetate-methyltransferase (Gamt) did not affect oligodendrocyte precursor cell recruitment, but resulted in exacerbated apoptosis of regenerated oligodendrocytes in central nervous system (CNS) lesions. Remarkably, creatine administration into Gamt-deficient and wild-type mice with demyelinating injury reduced oligodendrocyte apoptosis, thereby increasing oligodendrocyte density and myelin basic protein staining in CNS lesions. We found that creatine did not affect the recruitment of macrophages/microglia into lesions, suggesting that creatine affects oligodendrocyte survival independently of inflammation. Together, our results demonstrate a novel function for creatine in promoting oligodendrocyte viability during CNS remyelination.SIGNIFICANCE STATEMENT We report that creatine enhances oligodendrocyte mitochondrial function and protects against caspase-dependent oligodendrocyte apoptosis during CNS remyelination. This work has important implications for the development of therapeutic targets for diseases characterized by oligodendrocyte death, including multiple sclerosis.


Assuntos
Creatina/biossíntese , Doenças Desmielinizantes/metabolismo , Mitocôndrias/fisiologia , Oligodendroglia/fisiologia , Animais , Linhagem da Célula/efeitos dos fármacos , Linhagem da Célula/fisiologia , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Células Cultivadas , Creatina/farmacologia , Doenças Desmielinizantes/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mitocôndrias/efeitos dos fármacos , Oligodendroglia/efeitos dos fármacos
8.
Int J Mol Sci ; 18(8)2017 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-28758966

RESUMO

Creatine deficiency syndrome (CDS) comprises three separate enzyme deficiencies with overlapping clinical presentations: arginine:glycine amidinotransferase (GATM gene, glycine amidinotransferase), guanidinoacetate methyltransferase (GAMT gene), and creatine transporter deficiency (SLC6A8 gene, solute carrier family 6 member 8). CDS presents with developmental delays/regression, intellectual disability, speech and language impairment, autistic behaviour, epileptic seizures, treatment-refractory epilepsy, and extrapyramidal movement disorders; symptoms that are also evident in children with autism. The objective of the study was to test the hypothesis that genetic variability in creatine metabolism genes is associated with autism. We sequenced GATM, GAMT and SLC6A8 genes in 166 patients with autism (coding sequence, introns and adjacent untranslated regions). A total of 29, 16 and 25 variants were identified in each gene, respectively. Four variants were novel in GATM, and 5 in SLC6A8 (not present in the 1000 Genomes, Exome Sequencing Project (ESP) or Exome Aggregation Consortium (ExAC) databases). A single variant in each gene was identified as non-synonymous, and computationally predicted to be potentially damaging. Nine variants in GATM were shown to have a lower minor allele frequency (MAF) in the autism population than in the 1000 Genomes database, specifically in the East Asian population (Fisher's exact test). Two variants also had lower MAFs in the European population. In summary, there were no apparent associations of variants in GAMT and SLC6A8 genes with autism. The data implying there could be a lower association of some specific GATM gene variants with autism is an observation that would need to be corroborated in a larger group of autism patients, and with sub-populations of Asian ethnicities. Overall, our findings suggest that the genetic variability of creatine synthesis/transport is unlikely to play a part in the pathogenesis of autism spectrum disorder (ASD) in children.


Assuntos
Amidinotransferases/genética , Transtorno do Espectro Autista/genética , Creatinina/metabolismo , Variação Genética , Guanidinoacetato N-Metiltransferase/genética , Proteínas do Tecido Nervoso/genética , Proteínas da Membrana Plasmática de Transporte de Neurotransmissores/genética , Amidinotransferases/metabolismo , Transtorno do Espectro Autista/metabolismo , Criança , Pré-Escolar , Feminino , Guanidinoacetato N-Metiltransferase/metabolismo , Humanos , Masculino , Proteínas do Tecido Nervoso/metabolismo , Proteínas da Membrana Plasmática de Transporte de Neurotransmissores/metabolismo , Estudos Prospectivos
9.
Mol Genet Metab ; 118(3): 173-177, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27233226

RESUMO

BACKGROUND: Guanidinoacetate methyltransferase (GAMT) deficiency is a rare disorder of creatine biosynthesis presenting with epilepsy and developmental delay in infancy. Excellent developmental outcomes have been reported for infants treated from birth due to a family history. The BC Newborn Screening Program initiated a 3year pilot screening study for GAMT deficiency to evaluate the performance of a novel three-tiered screening approach. METHODS: Over 36months all bloodspots submitted for routine newborn screening were included in the pilot study (de-identified). Initial GAA measurement was integrated into the standard acylcarnitine/amino acid first-tier assay. All samples with elevated GAA were subjected to second-tier GAA analysis by LC-MS/MS integrated into an existing branched-chain amino acid (MSUD) method. GAMT gene sequencing was completed on the original bloodspot for all specimens with elevated GAA on the second-tier test. The protocol allowed for re-identification for treatment of any specimen with one or two likely pathogenic GAMT mutations. RESULTS: Over the study period 135,372 specimens were tested with 259 (0.19%) over the first-tier GAA cut-off. The second-tier assay removed an interference falsely elevating GAA levels, and only 3 samples required genotyping. No mutations were identified in any samples, all were deemed negative screens and no follow-up was initiated. CONCLUSIONS: A three-tier algorithm for GAMT newborn screening showed excellent test performance with zero false positives. No cases were detected, supporting a low incidence for this disorder. Given the low incremental costs and evidence of positive outcomes with early intervention, GAMT deficiency remains an excellent candidate for newborn screening.


Assuntos
Guanidinoacetato N-Metiltransferase/deficiência , Transtornos do Desenvolvimento da Linguagem/diagnóstico , Transtornos dos Movimentos/congênito , Triagem Neonatal/métodos , Algoritmos , Cromatografia Líquida , Humanos , Recém-Nascido , Transtornos dos Movimentos/diagnóstico , Projetos Piloto , Sensibilidade e Especificidade , Espectrometria de Massas em Tandem
10.
Amino Acids ; 48(8): 2041-7, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-26898547

RESUMO

Deficiency of guanidinoacetate methyltransferase (GAMT) causes creatine depletion and guanidinoacetate accumulation in brain with the latter deemed to be responsible for the severe seizure disorder seen in affected patients. We studied electrical brain activity and GABAA mediated mechanisms of B6J.Cg-Gamt(tm1Isb) mice. Electrocorticographic (ECoG) monitoring of pharmacological treatments with ornithine (5 % in drinking water for 5-18 days) and/or Picrotoxin (PTX) (a GABAA receptor antagonist) (1.5 mg/kg, I.P.) in Gamt(MUT) and Gamt(WT) groups [n = 3, mean age (SEM) = 6.9 (0.2) weeks]. Mice were fitted with two frontal and two parietal epidural electrodes under ketamine/xylazine anesthesia. Baseline and test recordings were performed for determination of seizure activity over a 2 h period. The ECoG baseline of Gamt(MUT) exhibited an abnormal monotonous cortical rhythm (7-8 Hz) with little variability during awake and sleep states compared to wild type recordings. Ornithine treatment and also PTX administration led to a relative normalization of the Gamt(MUT) ECoG phenotype. Gamt(WT) on PTX exhibited electro-behavioral seizures, whereas the Gamt(MUT) did not have PTX induced seizures at the same PTX dose. Gamt(MUT) treated with both ornithine and PTX did not show electro-behavioral seizures while ornithine elevated the PTX seizure threshold of Gamt(MUT) mice even further. These data demonstrate: (1) that there is expression of electrical seizure activity in this Gamt-deficient transgenic mouse strain, and (2) that the systemic availability of guanidinoacetate affects GABAA receptor function and seizure thresholds. These findings are directly and clinically relevant for patients with a creatine-deficiency syndrome due to genetic defects in GAMT and provide a rational basis for a combined ornithine/picrotoxin therapeutic intervention.


Assuntos
Glicina/análogos & derivados , Guanidinoacetato N-Metiltransferase/deficiência , Transtornos do Desenvolvimento da Linguagem , Transtornos dos Movimentos/congênito , Receptores de GABA-A/metabolismo , Convulsões , Animais , Eletrocorticografia , Glicina/farmacocinética , Glicina/farmacologia , Guanidinoacetato N-Metiltransferase/metabolismo , Transtornos do Desenvolvimento da Linguagem/metabolismo , Transtornos do Desenvolvimento da Linguagem/patologia , Transtornos do Desenvolvimento da Linguagem/fisiopatologia , Camundongos , Camundongos Knockout , Transtornos dos Movimentos/metabolismo , Transtornos dos Movimentos/patologia , Transtornos dos Movimentos/fisiopatologia , Receptores de GABA-A/genética , Convulsões/genética , Convulsões/metabolismo , Convulsões/patologia , Convulsões/fisiopatologia
11.
Alcohol Clin Exp Res ; 38(3): 641-8, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24256608

RESUMO

BACKGROUND: We have previously shown that decreased S-adenosylmethionine (SAM):S-adenosylhomocysteine (SAH) ratio generated in livers of alcohol-fed rats can impair the activities of many SAM-dependent methyltransferases. One such methyltransferase is guanidinoacetate methyltransferase (GAMT) that catalyzes the last step of creatine synthesis. As GAMT is the major utilizer of SAM, the purpose of the study was to examine the effects of ethanol (EtOH) on liver creatine levels and GAMT activity. METHODS: Male Wistar rats were pair-fed the Lieber-DeCarli control and EtOH diet for 4 to 5 weeks. At the end of the feeding regimen, the liver, kidney, and blood were removed from these rats for subsequent biochemical analyses. RESULTS: We observed ~60% decrease in creatine levels in the livers from EtOH-fed rats as compared to controls. The reduction in creatine levels correlated with lower SAM:SAH ratio observed in the livers of the EtOH-fed rats. Further, in vitro experiments with cell-free system and hepatic cells revealed it is indeed elevated SAH and lower SAM:SAH ratio that directly impairs GAMT activity and significantly reduces creatine synthesis. EtOH intake also slightly decreases the hepatocellular uptake of the creatine precursor, guanidinoacetate (GAA), and the GAMT enzyme expression that could additionally contribute to reduced liver creatine synthesis. The consequences of impaired hepatic creatine synthesis by chronic EtOH consumption include (i) increased toxicity due to GAA accumulation in the liver; (ii) reduced protection due to lower creatine levels in the liver, and (iii) reduced circulating and cardiac creatine levels. CONCLUSIONS: Chronic EtOH consumption affects the hepatic creatine biosynthetic pathway leading to detrimental consequences not only in the liver but could also affect distal organs such as the heart that depend on a steady supply of creatine from the liver.


Assuntos
Consumo de Bebidas Alcoólicas/metabolismo , Depressores do Sistema Nervoso Central/farmacologia , Creatina/biossíntese , Etanol/farmacologia , Guanidinoacetato N-Metiltransferase/metabolismo , Fígado/efeitos dos fármacos , Animais , Antimetabólitos Antineoplásicos/farmacologia , Apoptose , Creatina/sangue , Glicina/análogos & derivados , Glicina/metabolismo , Guanidinoacetato N-Metiltransferase/genética , Hepatócitos/efeitos dos fármacos , Rim/efeitos dos fármacos , Rim/metabolismo , Fígado/metabolismo , Masculino , Miocárdio/metabolismo , Ratos , Ratos Wistar , S-Adenosil-Homocisteína/metabolismo , Tubercidina/farmacologia
12.
Eur J Paediatr Neurol ; 49: 66-72, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38394710

RESUMO

OBJECTIVE: To evaluate clinical characteristics and long-term outcomes in patients with guanidinoacetate methyltransferase (GAMT) deficiency with a special emphasis on seizures and electroencephalography (EEG) findings. METHODS: We retrospectively analyzed the clinical and molecular characteristics, seizure types, EEG findings, neuroimaging features, clinical severity scores, and treatment outcomes in six patients diagnosed with GAMT deficiency. RESULTS: Median age at presentation and diagnosis were 11.5 months (8-12 months) and 63 months (18 months -11 years), respectively. Median duration of follow-up was 14 years. Global developmental delay (6/6) and seizures (5/6) were the most common symptoms. Four patients presented with febrile seizures. The age at seizure-onset ranged between 8 months and 4 years. Most common seizure types were generalized tonic seizures (n = 4) and motor seizures resulting in drop attacks (n = 3). Slow background activity (n = 5) and generalized irregular sharp and slow waves (n = 3) were the most common EEG findings. Burst-suppression and electrical status epilepticus during slow-wave sleep (ESES) pattern was present in one patient. Three of six patients had drug-resistant epilepsy. Post-treatment clinical severity scores showed improvement regarding movement disorders and epilepsy. All patients were seizure-free in the follow-up. CONCLUSIONS: Epilepsy is one of the main symptoms in GAMT deficiency with various seizure types and non-specific EEG findings. Early diagnosis and initiation of treatment are crucial for better seizure and cognitive outcomes. This long-term follow up study highlights to include cerebral creatine deficiency syndromes in the differential diagnosis of patients with global developmental delay and epilepsy and describes the course under treatment.


Assuntos
Eletroencefalografia , Guanidinoacetato N-Metiltransferase/deficiência , Transtornos do Desenvolvimento da Linguagem , Transtornos dos Movimentos/congênito , Humanos , Masculino , Feminino , Pré-Escolar , Lactente , Criança , Estudos Retrospectivos , Convulsões/diagnóstico , Convulsões/fisiopatologia , Convulsões/etiologia , Convulsões/tratamento farmacológico , Transtornos dos Movimentos/diagnóstico , Seguimentos , Deficiências do Desenvolvimento/etiologia
13.
Am J Physiol Heart Circ Physiol ; 305(4): H506-20, 2013 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-23792673

RESUMO

Disruption of the creatine kinase (CK) system in hearts of CK-deficient mice leads to changes in the ultrastructure and regulation of mitochondrial respiration. We expected to see similar changes in creatine-deficient mice, which lack the enzyme guanidinoacetate methyltransferase (GAMT) to produce creatine. The aim of this study was to characterize the changes in cardiomyocyte mitochondrial organization, regulation of respiration, and intracellular compartmentation associated with GAMT deficiency. Three-dimensional mitochondrial organization was assessed by confocal microscopy. On populations of permeabilized cardiomyocytes, we recorded ADP and ATP kinetics of respiration, competition between mitochondria and pyruvate kinase for ADP produced by ATPases, ADP kinetics of endogenous pyruvate kinase, and ATP kinetics of ATPases. These data were analyzed by mathematical models to estimate intracellular compartmentation. Quantitative analysis of morphological and kinetic data as well as derived model fits showed no difference between GAMT-deficient and wild-type mice. We conclude that inactivation of the CK system by GAMT deficiency does not alter mitochondrial organization and intracellular compartmentation in relaxed cardiomyocytes. Thus, our results suggest that the healthy heart is able to preserve cardiac function at a basal level in the absence of CK-facilitated energy transfer without compromising intracellular organization and the regulation of mitochondrial energy homeostasis. This raises questions on the importance of the CK system as a spatial energy buffer in unstressed cardiomyocytes.


Assuntos
Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Creatina/deficiência , Metabolismo Energético , Guanidinoacetato N-Metiltransferase/deficiência , Transtornos do Desenvolvimento da Linguagem/enzimologia , Mitocôndrias Cardíacas/enzimologia , Transtornos dos Movimentos/congênito , Miócitos Cardíacos/enzimologia , Adenosina Trifosfatases/metabolismo , Animais , Creatina Quinase/metabolismo , Modelos Animais de Doenças , Feminino , Genótipo , Guanidinoacetato N-Metiltransferase/genética , Homeostase , Cinética , Transtornos do Desenvolvimento da Linguagem/genética , Transtornos do Desenvolvimento da Linguagem/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia Confocal , Microscopia de Fluorescência , Mitocôndrias Cardíacas/patologia , Modelos Cardiovasculares , Transtornos dos Movimentos/enzimologia , Transtornos dos Movimentos/genética , Transtornos dos Movimentos/patologia , Miócitos Cardíacos/patologia , Fenótipo , Piruvato Quinase/metabolismo
14.
Epileptic Disord ; 15(4): 407-16, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24165373

RESUMO

AIM: Describe the seizure-related manifestations of guanidinoacetate methyltransferase (GAMT) deficiency in two new cases and compare these to the related literature. METHODS: We reviewed the clinical and electroencephalographic manifestations of two siblings with GAMT deficiency. We also performed a thorough literature review of all cases of GAMT deficiency, using the PubMed database, and compared our findings to those previously reported. RESULTS: One sibling presented with Lennox-Gastaut syndrome while the second had manifestations of late-onset West syndrome. Based on a literature search, we found that the clinical picture of GAMT deficiency has been described in a total of 58 cases, including our two patients, 45 of whom had at least some description of EEG and/or seizure manifestation. Epilepsy was present in 81%, with age at onset usually between 10 months and 3 years. Drug resistance was observed in approximately 45%. Initial seizures were febrile, tonic, or tonic-clonic. Drop attacks and generalised seizures were the most frequent seizure type. Absence and febrile seizures also occurred. Less frequently, focal seizures and late-onset infantile spasms (one prior case) were observed. Multifocal spikes and generalised <3-Hz-spike slow waves were common while only one prior single case report of hypsarrhythmia was described. Lennox-Gastaut syndrome was common, while progressive myoclonic epilepsy was also, less frequently, reported. CONCLUSIONS: To our knowledge, this is the second report of the occurrence of West syndrome in GAMT deficiency. The majority of patients with GAMT deficiency have seizures and approximately half are drug-resistant. Late-onset of hypsarrhythmia and/or epileptic spasms could potentially prove to be a distinctive, albeit infrequent, feature of this treatable metabolic disorder.


Assuntos
Eletroencefalografia , Epilepsia/fisiopatologia , Guanidinoacetato N-Metiltransferase/deficiência , Deficiência Intelectual/fisiopatologia , Transtornos do Desenvolvimento da Linguagem/fisiopatologia , Transtornos dos Movimentos/congênito , Espasmos Infantis/fisiopatologia , Idade de Início , Eletroencefalografia/métodos , Epilepsia/diagnóstico , Feminino , Humanos , Lactente , Deficiência Intelectual/diagnóstico , Síndrome de Lennox-Gastaut , Masculino , Transtornos dos Movimentos/fisiopatologia , Espasmos Infantis/diagnóstico
15.
Child Neurol Open ; 10: 2329048X231215630, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38020815

RESUMO

Objective: Analyze the treatment modalities used in real practice by synthesizing available literature. Methods: We reviewed and evaluated 52 cases of GAMT deficiency including 4 novel cases from Saudi Arabia diagnosed using whole-exome sequencing. All data utilized graphical presentation in the form of line charts and illustrated graphs. Results: The mean current age of was 117 months (±29.03) (range 12-372 months). The mean age of disease onset was 28.32 months (±13.68) (range 8 days - 252 months). The most prevalent symptom was developmental delays, mainly speech and motor, seizures, and intellectual disability. The male-to-female ratio was 3:1. Multiple treatments were used, with 54 pharmacological interventions, valproic acid being the most common. Creatinine monohydrate was the prevalent dietary intervention, with 25 patients reporting an improvement. Conclusion: The study suggests that efficient treatment with appropriate dietary intervention can improve patients' health, stressing that personalized treatment programs are essential in managing this disorder.

16.
Expert Opin Drug Deliv ; 20(7): 921-935, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37249524

RESUMO

INTRODUCTION: We have previously described the preclinical developments in enzyme-loaded red blood cells to be used in the treatment of several rare diseases, as well as in chronic conditions. AREA COVERED: Since our previous publication we have seen further progress in the previously discussed approaches and, interestingly enough, in additional new studies that further strengthen the idea that red blood cell-based therapeutics may have unique advantages over conventional enzyme replacement therapies in terms of efficacy and safety. Here we highlight these investigations and compare, when possible, the reported results versus the current therapeutic approaches. EXPERT OPINION: The continuous increase in the number of new potential applications and the progress from the encapsulation of a single enzyme to the engineering of an entire metabolic pathway open the field to unexpected developments and confirm the role of red blood cells as cellular bioreactors that can be conveniently manipulated to acquire useful therapeutic metabolic abilities. Positioning of these new approaches versus newly approved drugs is essential for the successful transition of this technology from the preclinical to the clinical stage and hopefully to final approval.


Assuntos
Sistemas de Liberação de Medicamentos , Eritrócitos
17.
Mol Ther Methods Clin Dev ; 25: 278-296, 2022 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-35505663

RESUMO

Creatine deficiency disorders are inborn errors of creatine metabolism, an energy homeostasis molecule. One of these, guanidinoacetate N-methyltransferase (GAMT) deficiency, has clinical characteristics that include features of autism, self-mutilation, intellectual disability, and seizures, with approximately 40% having a disorder of movement; failure to thrive can also be a component. Along with low creatine levels, guanidinoacetic acid (GAA) toxicity has been implicated in the pathophysiology of the disorder. Present-day therapy with oral creatine to control GAA lacks efficacy; seizures can persist. Dietary management and pharmacological ornithine treatment are challenging. Using an AAV-based gene therapy approach to express human codon-optimized GAMT in hepatocytes, in situ hybridization, and immunostaining, we demonstrated pan-hepatic GAMT expression. Serial collection of blood demonstrated a marked early and sustained reduction of GAA with normalization of plasma creatine; urinary GAA levels also markedly declined. The terminal time point demonstrated marked improvement in cerebral and myocardial creatine levels. In conjunction with the biochemical findings, treated mice gained weight to nearly match their wild-type littermates, while behavioral studies demonstrated resolution of abnormalities; PET-CT imaging demonstrated improvement in brain metabolism. In conclusion, a gene therapy approach can result in long-term normalization of GAA with increased creatine in guanidinoacetate N-methyltransferase deficiency and at the same time resolves the behavioral phenotype in a murine model of the disorder. These findings have important implications for the development of a new therapy for this abnormality of creatine metabolism.

18.
Mol Ther Methods Clin Dev ; 25: 26-40, 2022 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-35317049

RESUMO

Here we report, for the first time, the engineering of human red blood cells (RBCs) with an entire metabolic pathway as a potential strategy to treat patients with guanidinoacetate methyltransferase (GAMT) deficiency, capable of reducing the high toxic levels of guanidinoacetate acid (GAA) and restoring proper creatine levels in blood and tissues. We first produced a recombinant form of native human GAMT without any tags to encapsulate into RBCs. Due to the poor solubility and stability features of the recombinant enzyme, both bioinformatics studies and extensive optimization work were performed to select a mutant GAMT enzyme, where only four critical residues were replaced, as a lead candidate. However, GAMT-loaded RBCs were ineffective in GAA consumption and creatine production because of the limiting intra-erythrocytic S-adenosyl methionine (SAM) content unable to support GAMT activity. Therefore, a recombinant form of human methionine adenosyl transferase (MAT) was developed. RBCs co-entrapped with both GAMT and MAT enzymes performed, in vitro, as a competent cellular bioreactor to remove GAA and produce creatine, fueled by physiological concentrations of methionine and the ATP generated by glycolysis. Our results highlight that metabolic engineering of RBCs is possible and represents proof of concept for the design of novel therapeutic approaches.

19.
Methods Mol Biol ; 2546: 129-140, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36127584

RESUMO

Cerebral creatine deficiency syndromes are caused by the dysfunctional creatine biosynthesis or transport and comprise three hereditary neurodevelopmental defects including arginine-glycine amidinotransferase (AGAT), guanidinoacetate methyltransferase (GAMT), and creatine transporter deficiencies. All conditions are characterized by seizures, intellectual disability, and behavioral abnormalities. Laboratory diagnosis of these disorders relies on the determination of creatine and guanidinoacetate concentrations in both plasma and urine. Here we describe a rapid quantitative UPLC/MS/MS method for the simultaneous determination of these analytes using a normal-phase HILIC column after analyte derivatization. The approach is suitable for neonatal screening follow-ups and monitoring of the treatment for creatine deficiency syndromes.


Assuntos
Creatina , Guanidinoacetato N-Metiltransferase , Glicina/análogos & derivados , Humanos , Recém-Nascido , Triagem Neonatal , Síndrome , Espectrometria de Massas em Tandem
20.
Mol Genet Metab Rep ; 27: 100761, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33996490

RESUMO

Guanidinoacetate methyltransferase (GAMT) deficiency is a creatine deficiency disorder and an inborn error of metabolism presenting with progressive intellectual and neurological deterioration. As most cases are identified and treated in early childhood, adult phenotypes that can help in understanding the natural history of the disorder are rare. We describe two adult cases of GAMT deficiency from a consanguineous family in Pakistan that presented with a history of global developmental delay, cognitive impairments, excessive drooling, behavioral abnormalities, contractures and apparent bone deformities initially presumed to be the reason for abnormal gait. Exome sequencing identified a homozygous nonsense variant in GAMT: NM_000156.5:c.134G>A (p.Trp45*). We also performed a literature review and compiled the genetic and clinical characteristics of all adult cases of GAMT deficiency reported to date. When compared to the adult cases previously reported, the musculoskeletal phenotype and the rapidly progressive nature of neurological and motor decline seen in our patients is striking. This study presents an opportunity to gain insights into the adult presentation of GAMT deficiency and highlights the need for in-depth evaluation and reporting of clinical features to expand our understanding of the phenotypic spectrum.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa