Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 27(11)2022 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-35684491

RESUMO

Plant antimicrobial peptides from the α-hairpinins family (hairpin-like peptides) are known to possess a wide range of biological activities. However, less is known about the structural determinants of their antimicrobial activity. Here, we suggest that spatial structure as well as surface charge and hydrophobicity level contribute to the antimicrobial properties of α-hairpinin EcAMP1 from barnyard grass (Echinochloa cruss-galli) seeds. To examine the role of the peptide spatial structure, two truncated forms of EcAMP1 restricted by inner and outer cysteine pairs were synthesized. It was shown that both truncated forms of EcAMP1 lost their antibacterial activity. In addition, their antifungal activity became weaker. To review the contribution of surface charge and hydrophobicity, another two peptides were designed. One of them carried single amino acid substitution from tryptophan to alanine residue at the 20th position. The second one represented a truncated form of the native EcAMP1 lacking six C-terminal residues. But the α-helix was kept intact. It was shown that the antifungal activity of both modified peptides weakened. Thereby we can conclude that the secondary structural integrity, hydrophobic properties, and surface charge all play roles in the antimicrobial properties of α-hairpinins. In addition, the antibacterial activity of cereal α-hairpinins against Gram-positive bacteria was described for the first time. This study expands on the knowledge of structure-function interactions in antimicrobial α-hairpinins.


Assuntos
Anti-Infecciosos , Echinochloa , Antibacterianos/química , Antibacterianos/farmacologia , Antifúngicos/química , Antifúngicos/farmacologia , Peptídeos/farmacologia
2.
Int J Mol Sci ; 19(11)2018 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-30400225

RESUMO

Herein, we describe a modified form of the antimicrobial hairpin-like peptide EcAMP1, isolated from barnyard grass (E. crusgalli) seeds, which is structurally characterized by a combination of high-pressure liquid chromatography, mass spectrometry, and automated Edman sequencing. This derivate has a single amino acid substitution (Pro19Hyp) in the second α-helical region of the molecule, which is critical for the formation of the hydrophobic core and the secondary structure elements. Comparing the antifungal activity of these two peptides, we found that the modified EcAMP1-Hyp had a significantly weaker activity towards the most-sensitive plant pathogenic fungus Fusarium solani. Molecular dynamics simulations and in vitro binding to the commercial polysaccharides allowed us to conclude that the Pro-19 residue is important for binding to carbohydrates located in the spore cell wall and it chiefly exhibits a fungistatic action representing the hyphal growth inhibition. These data are novel and significant for understanding a role of α-hairpinins in plant immunity.


Assuntos
Antifúngicos/química , Antifúngicos/farmacologia , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Catiônicos Antimicrobianos/farmacologia , Echinochloa/química , Hidroxiprolina/química , Sementes/química , Fusarium/efeitos dos fármacos , Testes de Sensibilidade Microbiana
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa