Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 26(20)2021 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-34684682

RESUMO

The calculation of the heats of combustion ΔH°c and formation ΔH°f of organic molecules at standard conditions is presented using a commonly applicable computer algorithm based on the group-additivity method. This work is a continuation and extension of an earlier publication. The method rests on the complete breakdown of the molecules into their constituting atoms, these being further characterized by their immediate neighbor atoms. The group contributions are calculated by means of a fast Gauss-Seidel fitting calculus using the experimental data of 5030 molecules from literature. The applicability of this method has been tested by a subsequent ten-fold cross-validation procedure, which confirmed the extraordinary accuracy of the prediction of ΔH°c with a correlation coefficient R2 and a cross-validated correlation coefficient Q2 of 1, a standard deviation σ of 18.12 kJ/mol, a cross-validated standard deviation S of 19.16 kJ/mol, and a mean absolute deviation of 0.4%. The heat of formation ΔH°f has been calculated from ΔH°c using the standard enthalpies of combustion for the elements, yielding a correlation coefficient R2 for ΔH°f of 0.9979 and a corresponding standard deviation σ of 18.14 kJ/mol.

2.
J Comput Chem ; 40(13): 1360-1373, 2019 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-30786057

RESUMO

Based on our modified classification of elemental species, a framework for automatic generation of multilevel Homodesmotic fragment-separation (mHDFS) reactions for chemical species was proposed. Combined the mHDFS framework with a database of heat of formation (HoF) and the calculated electronic structure data for the elemental mHD species, the mHDFS-HoF program was constructed in C/C++ language to calculate heat of formation for a species of interest on-the-fly. Using the electronic structure data calculated at CBS-QB3 level of theory for the elemental mHD species, applications and robustness of the code were discussed with several acyclic hydrocarbon systems including neutral and radical species. On-going work and extension to other systems were also discussed. The program and the supporting files can be freely downloaded at https://sites.google.com/view/mhdfs/. © 2019 Wiley Periodicals, Inc.

3.
Angew Chem Int Ed Engl ; 57(8): 2081-2084, 2018 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-29316117

RESUMO

The synthesis and characterization of the metal-free polyazido compounds 3,6-bis-(2-(4,6-diazido-1,3,5-triazin-2-yl)-hydrazinyl)-1,2,4,5-tetrazine (2) and 3,6-bis-(2-(4,6-diazido-1,3,5-triazin-2-yl)-diazenyl)-1,2,4,5-tetrazine (4) are presented. Two compounds were characterized by NMR spectra, IR spectroscopy, mass spectrometry, and differential scanning calorimetry (DSC). Additionally, the structure of 2 was confirmed by single-crystal X-ray diffraction. Compounds 2 and 4 exhibit measured densities (1.755 g cm-3 and 1.763 g cm-3 ), good thermal stabilities (194 °C and 189 °C), high heat of formation (2114 kJ mol-1 and 2820 kJ mol-1 ), and excellent detonation performance (D, 8365 m s-1 and 8602 m s-1 ; P, 26.8 GPa and 29.4 GPa). Furthermore, compounds 2 and 4 have been tested for their priming ability to detonate RDX. The results indicate that the title compound 2 is a potential environmentally friendly alternative candidate to lead-based primary explosives.

4.
Molecules ; 20(10): 18279-351, 2015 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-26457702

RESUMO

A generally applicable computer algorithm for the calculation of the seven molecular descriptors heat of combustion, logPoctanol/water, logS (water solubility), molar refractivity, molecular polarizability, aqueous toxicity (protozoan growth inhibition) and logBB (log (cblood/cbrain)) is presented. The method, an extendable form of the group-additivity method, is based on the complete break-down of the molecules into their constituting atoms and their immediate neighbourhood. The contribution of the resulting atom groups to the descriptor values is calculated using the Gauss-Seidel fitting method, based on experimental data gathered from literature. The plausibility of the method was tested for each descriptor by means of a k-fold cross-validation procedure demonstrating good to excellent predictive power for the former six descriptors and low reliability of logBB predictions. The goodness of fit (Q²) and the standard deviation of the 10-fold cross-validation calculation was >0.9999 and 25.2 kJ/mol, respectively, (based on N = 1965 test compounds) for the heat of combustion, 0.9451 and 0.51 (N = 2640) for logP, 0.8838 and 0.74 (N = 1419) for logS, 0.9987 and 0.74 (N = 4045) for the molar refractivity, 0.9897 and 0.77 (N = 308) for the molecular polarizability, 0.8404 and 0.42 (N = 810) for the toxicity and 0.4709 and 0.53 (N = 383) for logBB. The latter descriptor revealing a very low Q² for the test molecules (R² was 0.7068 and standard deviation 0.38 for N = 413 training molecules) is included as an example to show the limits of the group-additivity method. An eighth molecular descriptor, the heat of formation, was indirectly calculated from the heat of combustion data and correlated with published experimental heat of formation data with a correlation coefficient R² of 0.9974 (N = 2031).


Assuntos
Compostos Orgânicos/química , Compostos Orgânicos/farmacologia , Tetrahymena pyriformis/efeitos dos fármacos , Algoritmos , Antiprotozoários/química , Antiprotozoários/farmacologia , Temperatura Alta , Modelos Químicos , Relação Quantitativa Estrutura-Atividade , Solubilidade
5.
J Mol Model ; 30(4): 98, 2024 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-38461222

RESUMO

CONTEXT: Various 7H,7'H-[6,6'-bi[1,2,4]triazolo[4,3-b][1,2,4]triazole]-3,3',7,7'-tetramine (A) based nitrogen-rich energetic salts were designed and their properties explored. All energetic salts possess relatively high nitrogen content (> 48%), positive heats of formation (> 429 kJ/mol) and stability owing to a significant contribution from fused backbone. The cationic component shows a very high heat of formation (2516 kJ/mol); therefore, it is highly suitable for enthalpy enhancement in new energetic salts. The cation was paired with the energetic anions nitrate (NO3-), perchlorate (ClO4-), dinitromethanide (CH(NO2)2-), trinitromethanide (C(NO2)3-), nitroamide (NHNO2-), and dinitroamide (N(NO2)2-) to improve oxygen balance and detonation performance. Designed salts show moderate detonation velocities (7.9-8.7 km/s) and pressures (23.8 - 33.1 GPa). The distribution of frontier molecular orbitals, molecular electrostatic surface potentials, QTAIM topological properties, and noncovalent interactions of designed salts were simulated to understand the electronic structures, charge distribution in molecules, hydrogen bonding, and other nonbond interactions. The predicted safety factor (SF) and impact sensitivity (H50) of designed salts suggest their insensitivity to mechanical stimuli. This work explored the 7H,7'H-[6,6'-bi[1,2,4]triazolo[4,3-b][1,2,4]triazole]-3,3',7,7'-tetramine as a suitable cationic component which could be promising and serve exemplarily in energetic materials. METHODS: The optimization and energy calculations of all the designed compounds were carried out at the B3LYP/6-311 + + G(d,p) and M06-2X/def2-TZVPP levels, utilizing the Gaussian software package. The molecular surface electrostatic potential, quantum theory of atoms in molecules (QTAIM), reduced density gradient (RDG), and noncovalent interaction (NCI) analysis were performed by employing Multiwfn software. The EXPLO5 (v 7.01) thermochemical code and PILEM web application were used to predict the detonation properties.

6.
Sci Rep ; 14(1): 18611, 2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-39127814

RESUMO

A new area of applied chemistry called chemical graph theory uses combinatorial techniques to explain the complex interactions between atoms and bonds in chemical systems. This work investigates the use of edge partitions to decipher molecular connection patterns. The main goal is to use topological indices that capture important topological features to create a connection between the thermodynamic properties and structural characteristics of chemical molecules. We specifically examine the complex web of atoms and links that make up the Fe phthalocyanine chemical graph. Moreover, our study demonstrates a relationship between the calculated topological indices and the thermodynamic properties of Fe phthalocyanine (Phthalocyanine Iron (II)). This work offers insight into the thermodynamic consequences of molecule structures. It advances the subject of chemical graph theory, providing a useful perspective for future applications in catalysis and materials science.

7.
Sci Rep ; 14(1): 15526, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38969712

RESUMO

The study explores the intricate relationship between topological indices and the heat of formation in the benzyl sulfamoyl network. Topological indices of benzyl sulfamoyl networks are studied and also emphasize their properties statistically. The benzyl sulfamoyl has unique properties due to its crystalline structure and it is used in the form of artificial substance. We analyze the distributions and correlations of the benzyl sulfamoyl network with others by using statistical methods and also build a computational analysis for topological indices. The findings show a strong association between the variables, indicating that topological indices may be used to accurately predict thermodynamic characteristics and improve the effectiveness of molecular modelling and simulation procedures.

8.
J Mol Model ; 30(8): 272, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39023756

RESUMO

CONTEXT: We have computationally elucidated the mechanism for formation of H2O, N2O and CO3 from the reactions of CH2OO with H2, N2 and CO2, respectively, by the direct attack of the terminal O atom of CH2OO. This unique mechanism, which is characteristically "bee-sting-like" in nature, was found to be closely parallel to their reactions with the O(1D) atom. Reactions with H2 and CO2 take place by side-on attack, while the N2 reaction occurs by end-on attack with predicted barriers, 19.4, 13.1 and 25.3 kcal.mol-1, respectively. The CO2 reaction with CH2OO was found to occur by producing the C2v CO3, O = C < (O)O, instead of its D3h conformer, essentially similar to the O(1D) + CO2 reaction. The rate constants for the three reactions have been computed by the transition state theory (TST) based on the predicted potential energy profiles. We have also utilized the isodesmic nature of the dative bond exchange in the N2 reaction, CH2O → O + N2 = CH2O + N2 → O, to estimate the heat of the formation of CH2OO. Based on the heat of reaction computed at the highest level of theory employed, we obtained ΔfHo0 (CH2OO) = 27.5 kcal.mol-1; the value agrees with the recent results within ± 1 kcal.mol-1. METHODS: All calculations were performed using Gaussian 16 software. Geometry, frequency, and IRC analysis calculations were conducted at the M06-2X/aug-cc-pVTZ level of theory. The heats of reaction have been evaluated at the highest level, CCSD(T)/CBS(T,Q,5)//M06-2x/aug-cc-pvTz.

9.
J Mol Model ; 29(8): 228, 2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37405580

RESUMO

CONTEXT: High-energy density materials (HEDMs) have emerged as a research focus due to their advantageous ultra-high detonation performance and better sensitivity. The primary aim of this study revolves around crafting HEDMs that strike a delicate balance between exceptional performance and minimal sensitivity. Density functional theory (DFT) was utilized to evaluate the geometric structures, energies, densities, energy properties, and sensitivities of 39 designed derivatives. The theoretical density (ρ) and heat of formation (HOF) were used to estimate the detonation velocity (D) and pressure (P) of the title compounds. Our study shows that the introduction of fluorine-containing substituents or fluorine-free substituents into the CHOFN backbone or the CHON backbone can significantly enhance the detonation performance of derivatives. Derivative B1 exhibits the better overall performance, including superior density, detonation performance, and sensitivity (P = 58.89 GPa, D = 8.02 km/s, ρ = 1.93 g/cm3, and characteristic height H50 = 34.6 cm). Our molecular design strategy contributes to the development of more novel HEDMs with excellent detonation performance and stability. It also marks a significant step towards a material engineering era guided by theory-based rational design. METHODS: GaussView 6.0 was used for construction of molecular system coordinates, and Gaussian 16 was used to obtain optimal structures, energies, and volumes of all compounds at the B3LYP/6-31+G(d,p) level of theory. It was characterized to be the local energy minimum on the potential energy surface without imaginary frequencies at the same theory level. Molecular weight, isosurface area, and overall variance were obtained using the Multiwfn 3.3. The detonation properties of the materials were analyzed using the C-J thermodynamic detonation theory. Our broad analysis facilitated an extensive assessment of these properties.

10.
J Biomol Struct Dyn ; 41(20): 10591-10603, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-36519240

RESUMO

Titanium dioxide is the most common and valuable oxide among four types of oxides of titanium. Its physicochemical properties make it a very valuable compound. The main objective of this article is to initially detect the modules based on highly connected links of the network of the degree-based topological indices. This information is lately integrated with different physical properties of the chemical compound of titanium dioxide to develop different mathematical frameworks based on master regulatory indices of the modules. This connection can be helpful in studying the physical measures at a deeper level in the form of different degree based topological indices.Communicated by Ramaswamy H. Sarma.


Assuntos
Óxidos , Titânio , Titânio/química
11.
Comb Chem High Throughput Screen ; 25(3): 441-450, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-33023441

RESUMO

BACKGROUND: Cerium oxide nanoparticles (CeO2 NPs) have gained their importance as engineered nanomaterials (ENMs) that have wide applications as catalysts in industry, which direct to their prominent occurrence in natural and engineered water systems. Cerium oxide nanoparticles (CeO2 NPs) have gained their importance as engineered nanomaterials (ENMs) that have wide applications as catalysts in industry, which direct to their prominent occurrence in natural and engineered water systems. In wastewater treatment plants, CeO2 NPs can stay colloidally stable and be unconstrained in the secondary effluents. As they entered into tertiary treatment, such as advanced oxidation processes (AOPs), it is noteworthy that how the generated reactive oxygen species will change the colloidal stability, aggregation, and the surface chemistry of CeO2 NPs. AIM AND OBJECTIVE: The study was aimed to analyze the chemical graph of the crystal structure of Ceria Oxide(cuprite) CeO2. Also, our main objective is to compute the Heat of Formation and Entropy using degree based topological indices. MATERIALS AND METHODS: Chemical graph theory plays an important role in modeling and designing any chemical structure. The topological indices are the numerical invariants of a molecular graph and are very useful for predicting their physical properties. For calculation, we have utilized the combinatorial processing strategy, edge partition technique, vertex partition strategy, analytic procedures, graph hypothetical tools, degree counting technique and entirety of degrees of neighbor technique. Moreover, Matlab programming has been utilized for numerical computations and checks. We likewise utilized the maple for plotting these numerical outcomes. RESULTS: We have computed Heat of Formation and Entropy using degree based topological indices. Our main results are based on some degree based topological indices, namely, the atom bond connectivity index ABC, geometric arithmetic index GA, general Randi index, Forgotten index, Augmented zagreb index and Balban index for the chemical graph of the crystal structure of cuprite CeO2[p, q, t] We also provide a detailed application of the computed results. CONCLUSION: We discuss these indices exhibited difference with the reported heat of formation and entropy of cuprite CeO2[p, q, t] In almost all the cases, an exponential increase of aforementioned indices is observed with the increase in the number of cells or other words size of cuprite CeO2[p, q, t] nanocrystal. On the other hand, a linear relationship of indices with respect to the number of formula units suggests a slight modification of these indices for an appropriate explanation of the physical properties of cuprite CeO2[p, q, t] nanocrystal of varying size and hence its prospective application in nanoceria engineering.


Assuntos
Nanopartículas , Óxidos , Catálise , Entropia , Temperatura Alta , Nanopartículas/química
12.
J Phys Condens Matter ; 34(22)2022 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-35134788

RESUMO

A new Fe-Cr interatomic potential is constructed under the framework of the embedded-atom method and has better performances in predicting heats of formation and stress-strain relationship of Fe-Cr solid solutions than the Fe-Cr potentials already published in the literature. Based on the constructed Fe-Cr potential, molecular dynamics simulation reveals that the heats of formation of BCC Fe-Cr solid solutions at 1600 K are positive within the entire composition range, and the calculated values are in good agreement with corresponding experimental measurements in the literature. In addition, it is also found that the tensile strengths of BCC Fe-Cr solid solutions increase with the increase of the Cr composition, and that BCC Fe-Cr solid solutions are less ductile with smaller critical strains than both Fe and Cr. The simulated results are discussed and compared with the corresponding experimental and calculated evidence in the literature to validate the relevance of the newly constructed Fe-Cr potential.

13.
J Mol Model ; 27(10): 308, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34596789

RESUMO

Density functional theory (DFT) methods were employed to design a new family of wing-like and propeller-like multi-tetrazole molecules based on the combination of N-center multi-tetrazole and various energetic groups. The optimized geometry, electronic properties, and thermodynamics were calculated for investigating the molecular stability and chemical reactivity. Their energetic parameters including density, heats of formation, detonation properties, and impact sensitivity were extensively evaluated, and the effects of energetic groups were investigated as well. These newly designed wing-like and propeller-like multi-tetrazole molecules exhibit acceptable oxygen balance, moderate impact sensitivities, high density, excellent heats of formation, and good detonation performance. Especially, B3, B4, B5, and B6 are very helpful for enhancing their detonation performance (D ≥ 9500 m·s-1, P ≥ 41 GPa) are promising candidates for new environmentally friendly HEDMs.

14.
Front Chem ; 9: 726357, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34354982

RESUMO

The reliable determination of gas-phase and solid-state heats of formation are important considerations in energetic materials research. Herein, the ability of PM7 to calculate the gas-phase heats of formation for CNHO-only and inorganic compounds has been critically evaluated, and for the former, comparisons drawn with isodesmic equations and atom equivalence methods. Routes to obtain solid-state heats of formation for a range of single-component molecular solids, salts, and co-crystals were also evaluated. Finally, local vibrational mode analysis has been used to calculate bond length/force constant curves for seven different chemical bonds occurring in CHNO-containing molecules, which allow for rapid identification of the weakest bond, opening up great potential to rationalise decomposition pathways. Both metrics are important tools in rationalising the design of new energetic materials through computational screening processes.

15.
ACS Appl Mater Interfaces ; 13(48): 57317-57325, 2021 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-34817991

RESUMO

Cycle stability improvement of a high-capacity Si anode is a challenge for its wide application in high-energy-density lithium-ion batteries. Active amorphous/nanosized Si embedded in an inactive matrix is a strategy to improve the cycle stability of Si anodes. Ternary Si100-x-yTixBy (5 ≤ y ≤ x ≤ 20) alloys are designed and prepared by ball milling using elemental Si, Ti, and B as starting materials. The formation sequence of inactive phases during mechanical alloying is predicted by an effective heat-of-formation model and verified by microstructural characterization. The local-fine distribution of free amorphous and nanocrystalline Si in the Si100-x-yTixBy is analyzed by confocal µ-Raman spectroscopy. When used as lithium-ion anodes, the capacity and voltage affected by Si and inactive compounds in the Si100-x-yTixBy are concerned to assess their high energy density. Furthermore, the impact of free active Si, the inactive phase, and amorphous Si on the cyclability of Si100-x-yTixBy is studied. The results show that the Si100-x-yTixBy material is a potential anode for high-energy-density Li-ion batteries and could be used to guide the design of multi-component Si-alloy anodes.

16.
J Mol Model ; 26(7): 184, 2020 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-32594252

RESUMO

A series of energetic compounds were derived from [1,2,4]triazolo[1,5-a][1,3,5]triazine and azo-bridged fused backbone by introducing the -NO2, -NHNO2, -ONO2, -N3, and -NH2 explosophoric groups. The influence of explosophoric groups on energetic properties has been explored. All the compounds exhibit positive energy content (34.4-1955.4 kJ/mol) and densities (1.71-1.99 g/cm3) subject to fused triazole and triazine framework and various functional groups. The designed compounds with -NHNO2, -ONO2, and -NO2 functional groups possess high detonation velocities (8.23-9.00 km/s), pressures (30.94-37.68 GPa), Gurney velocities (2.70-2.88 km/s), and power index (109-131%) superior to TNT (6.94 m/s, 22.0 GPa, 2.37 km/s, and 118%) and comparable with RDX (8.60 km/s, 33.92 GPa, 2.93 km/s, and 169%) and HMX (8.90 km/s, 38.39 GPa, 2.97 km/s, and 169%). Based on high nitrogen and energy content, performance parameters, and sensitivity data, the designed compounds show high potential to be used as energetic materials. Graphical abstract.

17.
J Mol Model ; 25(10): 315, 2019 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-31522270

RESUMO

Density functional theory (DFT) has been applied to understand the influence of various linkages on the energetic properties and stability of the polynitro-biphenyl compounds. Structures were optimized using the B3PW91/6-31G(d,p) level, and the heats of formation (HOFs) were computed by employing the selected isodesmic reactions. The results reveal that the -N=N- linkage helps to gain high HOF while the -O-, -NH-C(O)NH-, and -NH-C(O)-C(O)-NH- show a negative impact on energy content. Kamlet-Jacobs (K-J) equations were used to determine detonation properties based on the computed densities and HOFs, while stability and sensitivity were investigated by correlating with the bond dissociation energy (BDE), charge on the nitro group, and the balance parameter on surface potentials. Comparing the effect of different linkages on performance and stability of selected polynitro-biphenyl derivatives reveals that -NH-NH- and -N=N- are suitable for a connection between energetic moieties and these results are expected to demonstrate primary information for designing new energetic materials. Graphical abstract.

18.
ChemistryOpen ; 8(6): 692-700, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31172006

RESUMO

A new family of asymmetric oxadiazole based energetic compounds were designed. Their electronic structures, heats of formation, detonation properties and stabilities were investigated by density functional theory. The results show that all the designed compounds have high positive heats of formation ranging from 115.4 to 2122.2 kJ mol-1. -N- bridge/-N3 groups played an important role in improving heats of formation while -O- bridge/-NF2 group made more contributions to the densities of the designed compounds. Detonation properties show that some compounds have equal or higher detonation velocities than RDX, while some other have higher detonation pressures than RDX. All the designed compounds have better impact sensitivities than those of RDX and HMX and meet the criterion of thermal stability. Finally, some of the compounds were screened as the candidates of high energy density compounds with superior detonation properties and stabilities to that of HMX and their electronic properties were investigated.

19.
J Mol Model ; 25(2): 51, 2019 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-30707307

RESUMO

Theoretical studies on the structures, densities, and heats of formation of conformational isomers of 3,4-bis(1H-5-tetrazolyl)furoxan (H2BTF) were performed based on density functional theory (DFT) calculations. Two stable planar conformational isomers, the face-to-back and the back-to-face conformers, and one stable slightly twisted conformer, the back-to-back conformer, were predicted for H2BTF at the M06-2X/6-311 + G(d,p) level of theory. The face-to-back conformer was calculated to be the most stable conformational isomer on the potential energy surface. No stable face-to-face conformer, whether planar or tilted, was identified in the calculations. The Vienna Ab Initio Simulation Package (VASP) was used in combination with molecular dynamics simulation to explore the stable crystal forms and the densities of the stable conformational isomers. Two of them exhibited high densities: the face-to-back conformer with P21 symmetry (2.01 g/cm3) and the back-to-back conformer with Pna21 symmetry (2.05 g/cm3). Their heats of formation were also predicted to be high when calculated at the same DFT level. The detonation pressures and velocities of these polymorphs, as calculated using the EXPLO5 program, are well above those of many advanced high energy density materials, pointing to the potential use of these conformers as novel explosives with good detonation performance. Also, IR spectra are shown to be able to distinguish these denser polymorphs of H2BTF. This study suggests that it could be worth investigating whether denser polymorphs of H2BTF can be grown.

20.
Artigo em Inglês | MEDLINE | ID: mdl-26974474

RESUMO

The aim of this investigation was to determine the molecular properties and provide an interpretation of the vibrational mode couplings of these two paracetamol analogues: 2-bromo-2-methyl-N-(4-nitrophenyl)-propanamide and 2-bromo-2-methyl-N-p-tolyl-propanamide. E/Z isomers, keto/enol unimolecular rearrangement and prediction of the transition state structures in each mechanism were also assessed using the Density Functional Theory (DFT). The DFT estimates a high energy gap between E and Z isomers (9-11 kcal·mol(-1)), with barrier heights ranging from 16 to 19 kcal·mol(-1). In contrast, the barrier energies on the keto/enol isomerization are almost 10 kcal·mol(-1) higher than those estimated for the E/Z rearrangement. The kinetic rate constant was also determined for each reaction mechanism. Natural bond orbital analysis and the quantum theory of atoms in molecules were used to interpret the intramolecular hydrogen bonds and to understand the most important interactions that govern the stabilization of each isomer. Furthermore, an analysis of the atomic charge distribution using different population methodologies was also performed.


Assuntos
Acetaminofen/análogos & derivados , Acetaminofen/química , Simulação por Computador , Modelos Moleculares , Ligação de Hidrogênio , Estereoisomerismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa