Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Neurosci ; 39(13): 2398-2415, 2019 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-30692221

RESUMO

Primary cilia are essential for CNS development. In the mouse, they play a critical role in patterning the spinal cord and telencephalon via the regulation of Hedgehog/Gli signaling. However, despite the frequent disruption of this signaling pathway in human forebrain malformations, the role of primary cilia in forebrain morphogenesis has been little investigated outside the telencephalon. Here we studied development of the diencephalon, hypothalamus and eyes in mutant mice in which the Ftm/Rpgrip1l ciliopathy gene is disrupted. At the end of gestation, Ftm-/- fetuses displayed anophthalmia, a reduction of the ventral hypothalamus and a disorganization of diencephalic nuclei and axonal tracts. In Ftm-/- embryos, we found that the ventral forebrain structures and the rostral thalamus were missing. Optic vesicles formed but lacked the optic cups. In Ftm-/- embryos, Sonic hedgehog (Shh) expression was virtually lost in the ventral forebrain but maintained in the zona limitans intrathalamica (ZLI), the mid-diencephalic organizer. Gli activity was severely downregulated but not lost in the ventral forebrain and in regions adjacent to the Shh-expressing ZLI. Reintroduction of the repressor form of Gli3 into the Ftm-/- background restored optic cup formation. Our data thus uncover a complex role of cilia in development of the diencephalon, hypothalamus and eyes via the region-specific control of the ratio of activator and repressor forms of the Gli transcription factors. They call for a closer examination of forebrain defects in severe ciliopathies and for a search for ciliopathy genes as modifiers in other human conditions with forebrain defects.SIGNIFICANCE STATEMENT The Hedgehog (Hh) signaling pathway is essential for proper forebrain development as illustrated by a human condition called holoprosencephaly. The Hh pathway relies on primary cilia, cellular organelles that receive and transduce extracellular signals and whose dysfunctions lead to rare inherited diseases called ciliopathies. To date, the role of cilia in the forebrain has been poorly studied outside the telencephalon. In this paper we study the role of the Ftm/Rpgrip1l ciliopathy gene in mouse forebrain development. We uncover complex functions of primary cilia in forebrain morphogenesis through region-specific modulation of the Hh pathway. Our data call for further examination of forebrain defects in ciliopathies and for a search for ciliopathy genes as modifiers in human conditions affecting forebrain development.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Hedgehog/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Prosencéfalo/embriologia , Prosencéfalo/metabolismo , Proteína Gli3 com Dedos de Zinco/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Olho/embriologia , Olho/metabolismo , Hipotálamo/embriologia , Hipotálamo/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transdução de Sinais , Tálamo/embriologia , Tálamo/metabolismo
2.
Int J Mol Sci ; 21(9)2020 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-32354204

RESUMO

The Hedgehog (HH)-GLI pathway plays an important role in cell dedifferentiation and is therefore pivotally involved in the malignant transformation of cancer cells. GANT61, a selective inhibitor of GLI1 and GLI2, was reported as a promising treatment for cancer in various tissues; however, the biological impact of GANT61 in hepatocellular carcinoma (HCC), especially in undifferentiated HCC cells, remains unclear. In this study, we investigated the antitumor effect of GANT61 using two undifferentiated hepatoma cell lines: HLE and HLF. Quantitative PCR and RT-PCR analyses revealed that these cells express GLI transcripts, showing mesenchymal phenotypes characterized by the loss of epithelial and hepatic markers and specific expression of epithelial-mesenchymal transition (EMT)-related genes. GANT61 significantly reduced the proliferation and cell viability after drug treatment using 5-FU and Mitomycin C. We showed that GLI transcript levels were down-regulated by the MEK inhibitor U0126 and the Raf inhibitor sorafenib, suggesting that non-canonical signaling including the Ras-Raf-MEK-ERK pathway is involved. Sphere formation and migration were significantly decreased by GANT61 treatment, and it is suggested that the underlying molecular mechanisms are the down-regulation of stemness-related genes (Oct4, Bmi1, CD44, and ALDH) and the EMT-related gene Snail1. The data presented here showed that direct inhibition of GLI might be beneficial for the treatment of dedifferentiated HCC.


Assuntos
Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , Proteínas Nucleares/genética , Piridinas/farmacologia , Pirimidinas/farmacologia , Proteína GLI1 em Dedos de Zinco/genética , Proteína Gli2 com Dedos de Zinco/genética , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células Hep G2 , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/metabolismo , Proteínas Nucleares/metabolismo , Transdução de Sinais/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos , Proteína GLI1 em Dedos de Zinco/metabolismo , Proteína Gli2 com Dedos de Zinco/metabolismo
3.
Cell Commun Signal ; 17(1): 172, 2019 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-31878932

RESUMO

Uncontrolled activation of the Hedgehog/Glioma-associated oncogene (HH/GLI) pathway is a potent oncogenic driver signal promoting numerous cancer hallmarks such as proliferation, survival, angiogenesis, metastasis and metabolic rewiring. Several HH pathway inhibitors have already been approved for medical therapy of advanced and metastatic basal cell carcinoma and acute myeloid leukemia with partially impressive therapeutic activity. However, de novo and acquired resistance as well as severe side effects and unexplained lack of therapeutic efficacy are major challenges that urgently call for improved treatment options with more durable responses. The recent breakthroughs in cancer immunotherapy have changed our current understanding of targeted therapy and opened up promising therapeutic opportunities including combinations of selective cancer pathway and immune checkpoint inhibitors. Although HH/GLI signaling has been intensely studied with respect to the classical hallmarks of cancer, its role in the modulation of the anti-tumoral immune response has only become evident in recent studies. These have uncovered HH/GLI regulated immunosuppressive mechanisms such as enhanced regulatory T-cell formation and production of immunosuppressive cytokines. In light of these exciting novel data on oncogenic HH/GLI signaling in immune cross-talk and modulation, we summarize and connect in this review the existing knowledge from different HH-related cancers and chronic inflammatory diseases. This is to provide a basis for the investigation and evaluation of novel treatments combining immunotherapeutic strategies with approved as well as next-generation HH/GLI inhibitors. Further, we also critically discuss recent studies demonstrating a possible negative impact of current HH/GLI pathway inhibitors on the anti-tumoral immune response, which may explain some of the disappointing results of several oncological trials with anti-HH drugs. Additional file 1Video abstract. (9500 kb).


Assuntos
Carcinoma/imunologia , Proteínas Hedgehog/metabolismo , Leucemia Mieloide Aguda/imunologia , Transdução de Sinais , Proteína GLI1 em Dedos de Zinco/metabolismo , Animais , Antineoplásicos/farmacologia , Carcinoma/terapia , Proteínas Hedgehog/antagonistas & inibidores , Humanos , Imunoterapia , Leucemia Mieloide Aguda/terapia , Transdução de Sinais/efeitos dos fármacos , Proteína GLI1 em Dedos de Zinco/antagonistas & inibidores
4.
Cell Commun Signal ; 15(1): 15, 2017 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-28427431

RESUMO

Infections with the human pathogen Helicobacter pylori (H. pylori) are closely associated with the development of inflammatory disorders and neoplastic transformation of the gastric epithelium. Drastic changes in the micromilieu involve a complex network of H. pylori-regulated signal transduction pathways leading to the release of proinflammatory cytokines, gut hormones and a wide range of signaling molecules. Besides controlling embryonic development, the Hedgehog/GLI signaling pathway also plays important roles in epithelial proliferation, differentiation, and regeneration of the gastric physiology, but also in the induction and progression of inflammation and neoplastic transformation in H. pylori infections. Here, we summarize recent findings of H. pylori-associated Hedgehog/GLI signaling in gastric homeostasis, malignant development and the modulation of the gastric tumor microenvironment.


Assuntos
Proteínas Hedgehog/metabolismo , Helicobacter pylori/fisiologia , Transdução de Sinais , Neoplasias Gástricas/microbiologia , Neoplasias Gástricas/patologia , Proteína GLI1 em Dedos de Zinco/metabolismo , Animais , Humanos , Inflamação/microbiologia , Inflamação/patologia
5.
Cell Commun Signal ; 15(1): 8, 2017 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-28122581

RESUMO

Treatment of acute myeloid leukemia (AML), an aggressive and heterogeneous hematological malignancy, remains a challenge. Despite advances in our understanding of the complex genetics and biology of AML pathophysiology, these findings have been translated to the clinic with only limited success, and poor outcomes persist for the majority of patients. Thus, novel treatment strategies are clearly needed for achieving deeper and prolonged remissions and for avoiding the development of resistance. Due to its profound role in (cancer) stem cell biology and differentiation, the Hedgehog (HH)/Glioma-associated Oncogene Homolog (GLI) signaling pathway may be an attractive novel therapeutic target in AML. In this review, we aim to provide a critical and concise overview of the currently known potential and challenges of HH/GLI targeting. We describe the biological role of the HH/GLI pathway in AML pathophysiology. We specifically focus on ways of targeting non-canonical HH/GLI signaling in AML, particularly in combination with standard treatment regimens, which may overcome some hurdles observed with approved HH pathway inhibitors in solid tumors.


Assuntos
Proteínas Hedgehog/metabolismo , Leucemia Mieloide Aguda/metabolismo , Terapia de Alvo Molecular , Transdução de Sinais , Proteína GLI1 em Dedos de Zinco/metabolismo , Animais , Humanos , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia
6.
Semin Cell Dev Biol ; 33: 93-104, 2014 09.
Artigo em Inglês | MEDLINE | ID: mdl-24852887

RESUMO

Canonical Hedgehog (HH) signaling leads to the regulation of the GLI code: the sum of all positive and negative functions of all GLI proteins. In humans, the three GLI factors encode context-dependent activities with GLI1 being mostly an activator and GLI3 often a repressor. Modulation of GLI activity occurs at multiple levels, including by co-factors and by direct modification of GLI structure. Surprisingly, the GLI proteins, and thus the GLI code, is also regulated by multiple inputs beyond HH signaling. In normal development and homeostasis these include a multitude of signaling pathways that regulate proto-oncogenes, which boost positive GLI function, as well as tumor suppressors, which restrict positive GLI activity. In cancer, the acquisition of oncogenic mutations and the loss of tumor suppressors - the oncogenic load - regulates the GLI code toward progressively more activating states. The fine and reversible balance of GLI activating GLI(A) and GLI repressing GLI(R) states is lost in cancer. Here, the acquisition of GLI(A) levels above a given threshold is predicted to lead to advanced malignant stages. In this review we highlight the concepts of the GLI code, the oncogenic load, the context-dependency of GLI action, and different modes of signaling integration such as that of HH and EGF. Targeting the GLI code directly or indirectly promises therapeutic benefits beyond the direct blockade of individual pathways.


Assuntos
Carcinogênese/metabolismo , Carcinoma Basocelular/metabolismo , Neoplasias do Colo/metabolismo , Transdução de Sinais , Fatores de Transcrição/fisiologia , Animais , Carcinogênese/genética , Carcinoma Basocelular/tratamento farmacológico , Carcinoma Basocelular/genética , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/genética , Regulação Neoplásica da Expressão Gênica , Proteínas Hedgehog/fisiologia , Humanos , Terapia de Alvo Molecular , Proteína GLI1 em Dedos de Zinco
7.
Cancers (Basel) ; 13(16)2021 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-34439381

RESUMO

(1) Background: Aberrant activation of the hedgehog (HH)-GLI pathway in stem-like tumor-initiating cells (TIC) is a frequent oncogenic driver signal in various human malignancies. Remarkable efficacy of anti-HH therapeutics led to the approval of HH inhibitors targeting the key pathway effector smoothened (SMO) in basal cell carcinoma and acute myeloid leukemia. However, frequent development of drug resistance and severe adverse effects of SMO inhibitors pose major challenges that require alternative treatment strategies targeting HH-GLI in TIC downstream of SMO. We therefore investigated members of the casein kinase 1 (CSNK1) family as novel drug targets in HH-GLI-driven malignancies. (2) Methods: We genetically and pharmacologically inhibited CSNK1D in HH-dependent cancer cells displaying either sensitivity or resistance to SMO inhibitors. To address the role of CSNK1D in oncogenic HH signaling and tumor growth and initiation, we quantitatively analyzed HH target gene expression, performed genetic and chemical perturbations of CSNK1D activity, and monitored the oncogenic transformation of TIC in vitro and in vivo using 3D clonogenic tumor spheroid assays and xenograft models. (3) Results: We show that CSNK1D plays a critical role in controlling oncogenic GLI activity downstream of SMO. We provide evidence that inhibition of CSNK1D interferes with oncogenic HH signaling in both SMO inhibitor-sensitive and -resistant tumor settings. Furthermore, genetic and pharmacologic perturbation of CSNK1D decreases the clonogenic growth of GLI-dependent TIC in vitro and in vivo. (4) Conclusions: Pharmacologic targeting of CSNK1D represents a novel therapeutic approach for the treatment of both SMO inhibitor-sensitive and -resistant tumors.

8.
Aging (Albany NY) ; 12(21): 21837-21853, 2020 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-33170154

RESUMO

BACKGROUND: Galectin-1 (GAL-1), which is encoded by LGALS1, promotes vasculogenic mimicry (VM) in gastric cancer (GC) tissue. However, the underlying mechanism remains unclear. METHODS: Immunohistochemical (IHC) and CD34-periodic acid-Schiff (PAS) double staining were used to investigate Glioma-associated oncogene-1(GLI1) expression and VM in paraffin-embedded sections from 127 patients with GC of all tumor stages. LGALS1 or GLI1 were stably transduced into MGC-803 cells and AGS cells, and western blotting, IHC, CD34-PAS double staining and three-dimensional culture in vitro, and tumorigenicity in vivo were used to explore the mechanisms of GAL-1/ GLI1 promotion of VM formation in GC tissues. RESULTS: A significant association between GAL-1 and GLI1 expression was identified by IHC staining, as well as a significant association between GLI1 expression and VM formation. Furthermore, overexpression of LGALS1 enhanced expression of GLI1 in MGC-803 and AGS cells. GLI1 promoted VM formation both in vitro and in vivo. The effects of GLI1 on VM formation were independent of LGALS1. Importantly, the expression of VM-related molecules, such as MMP2, MMP14 and laminin5γ2, was also affected upon GLI1 overexpression or silencing in GC cell lines. CONCLUSION: GAL-1 promotes VM in GC through the Hh/GLI pathway, which has potential as a novel therapeutic target for treatment of VM in GC.


Assuntos
Adenocarcinoma/metabolismo , Galectina 1/metabolismo , Proteínas Hedgehog/metabolismo , Mimetismo Molecular , Neovascularização Patológica , Neoplasias Gástricas/metabolismo , Proteína GLI1 em Dedos de Zinco/metabolismo , Adenocarcinoma/genética , Adenocarcinoma/patologia , Animais , Linhagem Celular Tumoral , Galectina 1/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Camundongos Nus , Transdução de Sinais , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia , Proteína GLI1 em Dedos de Zinco/genética
9.
Oncotarget ; 11(33): 3174-3187, 2020 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-32913560

RESUMO

The Hedgehog/GLI (HH/GLI) signaling pathway plays a critical role in human oncogenesis. Unfortunately, the clinical use of HH inhibitor(s) has been associated with serious adverse effects and mutation-related drug resistance. Since the efficacy of SMO (Smoothened) and GLI inhibitors is limited in clinical trials, there remains a critical need for the HH/GLI pathway inhibitors with different mechanisms of action. Here, we show that esophageal adenocarcinoma (EAC) cell lines are insensitive to vismodegib (SMO inhibitor) but respond to GANT61 (GLI1 inhibitor). Furthermore, we examine the role of GLI1 in tumorigenicity of EAC and how a selective bromodomain inhibitor IBET-151 downregulates transcriptional activity of the GLI1 transcription factor in EAC. Our study demonstrates that GLI1 plays an important role in tumorigenicity of EAC and that elevated GLI1 expression in patients' ultrasound-assisted endoscopic biopsy may predict the response to neoadjuvant chemotherapy (NAC) FOLFOX. Importantly, IBET-151 abrogates the growth of vismodegib-resistant EAC cells and downregulates HH/GLI by reducing the occupancy of BRD4 at the GLI1 locus. IBET-151 also attenuates tumor growth of EAC-PDXs and does so in an on-target manner as it reduces the expression of GLI1. We identify HH/GLI signaling as a novel druggable pathway in EAC as well as validate an ability of clinically relevant GLI inhibitor to attenuate the viability of vismodegib-resistant EAC cells. Therefore, we propose that selective bromodomain inhibitors, such as IBET-151, could be used as novel therapeutic agents for EAC patients harboring GLI-dependent tumors.

10.
Mol Oncol ; 14(9): 1930-1946, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32615027

RESUMO

Genetic activation of hedgehog/glioma-associated oncogene homolog (HH/GLI) signaling causes basal cell carcinoma (BCC), a very frequent nonmelanoma skin cancer. Small molecule targeting of the essential HH effector Smoothened (SMO) has proven an effective therapy of BCC, though the frequent development of drug resistance poses major challenges to anti-HH treatments. In light of recent breakthroughs in cancer immunotherapy, we analyzed the possible immunosuppressive mechanisms in HH/GLI-induced BCC in detail. Using a genetic mouse model of BCC, we identified profound differences in the infiltration of BCC lesions with cells of the adaptive and innate immune system. Epidermal activation of Hh/Gli signaling led to an accumulation of immunosuppressive regulatory T cells, and to an increased expression of immune checkpoint molecules including programmed death (PD)-1/PD-ligand 1. Anti-PD-1 monotherapy, however, did not reduce tumor growth, presumably due to the lack of immunogenic mutations in common BCC mouse models, as shown by whole-exome sequencing. BCC lesions also displayed a marked infiltration with neutrophils, the depletion of which unexpectedly promoted BCC growth. The study provides a comprehensive survey of and novel insights into the immune status of murine BCC and serves as a basis for the design of efficacious rational combination treatments. This study also underlines the need for predictive immunogenic mouse models of BCC to evaluate the efficacy of immunotherapeutic strategies in vivo.


Assuntos
Carcinoma Basocelular/imunologia , Epiderme/patologia , Proteínas Hedgehog/metabolismo , Imunidade , Terapia de Imunossupressão , Transdução de Sinais , Neoplasias Cutâneas/imunologia , Microambiente Tumoral/imunologia , Animais , Carcinoma Basocelular/patologia , Proliferação de Células , Quimiocinas/metabolismo , Proteínas de Checkpoint Imunológico/metabolismo , Camundongos , Neutrófilos/metabolismo , Oncogenes , Neoplasias Cutâneas/patologia , Linfócitos T/imunologia , Proteína GLI1 em Dedos de Zinco/metabolismo
11.
Oncotarget ; 8(7): 10891-10904, 2017 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-26988754

RESUMO

INTRODUCTION: The lack of efficient treatment options for pancreatic cancer highlights the critical need for the development of novel and effective chemotherapeutic agents. The medicinal properties found in plants have been used to treat many different illnesses including cancers. This study focuses on the anticancer effects of gedunin, a natural compound isolated from Azadirachta indica. METHODS: Anti-proliferative effect of gedunin on pancreatic cancer cells was assessed using MTS assay. We used matrigel invasion assay, scratch assay, and soft agar colony formation assay to measure the anti-metastatic potential of gedunin. Immunoblotting was performed to analyze the effect of gedunin on the expression of key proteins involved in pancreatic cancer growth and metastasis. Gedunin induced apoptosis was measured using flow cytometric analysis. To further validate, xenograft studies with HPAC cells were performed. RESULTS: Gedunin treatment is highly effective in inducing death of pancreatic cancer cells via intrinsic and extrinsic mediated apoptosis. Our data further indicates that gedunin inhibited metastasis of pancreatic cancer cells by decreasing their EMT, invasive, migratory and colony formation capabilities. Gedunin treatment also inhibited sonic hedgehog signaling pathways. Further, experiments with recombinant sonic hedgehog protein and Gli inhibitor (Gant-61) demonstrated that gedunin induces its anti-metastatic effect through inhibition of sonic hedgehog signaling. The anti-cancer effect of gedunin was further validated using xenograft mouse model. CONCLUSION: Overall, our data suggests that gedunin could serve as a potent anticancer agent against pancreatic cancers.


Assuntos
Proteínas Hedgehog/metabolismo , Limoninas/farmacologia , Neoplasias Pancreáticas/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto/métodos , Animais , Apoptose/genética , Azadirachta/química , Linhagem Celular , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Feminino , Humanos , Immunoblotting , Camundongos Nus , Invasividade Neoplásica , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia
12.
Oncotarget ; 7(6): 7134-48, 2016 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-26784250

RESUMO

A wide range of human malignancies displays aberrant activation of Hedgehog (HH)/GLI signaling, including cancers of the skin, brain, gastrointestinal tract and hematopoietic system. Targeting oncogenic HH/GLI signaling with small molecule inhibitors of the essential pathway effector Smoothened (SMO) has shown remarkable therapeutic effects in patients with advanced and metastatic basal cell carcinoma. However, acquired and de novo resistance to SMO inhibitors poses severe limitations to the use of SMO antagonists and urgently calls for the identification of novel targets and compounds.Here we report on the identification of the Dual-Specificity-Tyrosine-Phosphorylation-Regulated Kinase 1B (DYRK1B) as critical positive regulator of HH/GLI signaling downstream of SMO. Genetic and chemical inhibition of DYRK1B in human and mouse cancer cells resulted in marked repression of HH signaling and GLI1 expression, respectively. Importantly, DYRK1B inhibition profoundly impaired GLI1 expression in both SMO-inhibitor sensitive and resistant settings. We further introduce a novel small molecule DYRK1B inhibitor, DYRKi, with suitable pharmacologic properties to impair SMO-dependent and SMO-independent oncogenic GLI activity. The results support the use of DYRK1B antagonists for the treatment of HH/GLI-associated cancers where SMO inhibitors fail to demonstrate therapeutic efficacy.


Assuntos
Carcinoma Basocelular/patologia , Resistencia a Medicamentos Antineoplásicos , Proteínas Hedgehog/metabolismo , Neoplasias Pancreáticas/patologia , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Tirosina Quinases/metabolismo , Receptor Smoothened/metabolismo , Proteína GLI1 em Dedos de Zinco/metabolismo , Animais , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Western Blotting , Carcinoma Basocelular/tratamento farmacológico , Carcinoma Basocelular/genética , Carcinoma Basocelular/metabolismo , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Fatores de Transcrição Forkhead/fisiologia , Proteínas Hedgehog/antagonistas & inibidores , Proteínas Hedgehog/genética , Humanos , Camundongos , Camundongos Nus , Células NIH 3T3 , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/genética , Proteínas Tirosina Quinases/antagonistas & inibidores , Proteínas Tirosina Quinases/genética , RNA Mensageiro/genética , RNA Interferente Pequeno/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Neoplasias Cutâneas/tratamento farmacológico , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/metabolismo , Neoplasias Cutâneas/patologia , Receptor Smoothened/antagonistas & inibidores , Receptor Smoothened/genética , Ensaios Antitumorais Modelo de Xenoenxerto , Proteína GLI1 em Dedos de Zinco/antagonistas & inibidores , Proteína GLI1 em Dedos de Zinco/genética , Quinases Dyrk
13.
Cancer Biol Ther ; 16(1): 1-7, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25692617

RESUMO

Wnt/ß-catenin and Hedgehog/Gli signalings play key roles in multiple biogenesis such as embryonic development and tissue homeostasis. Dysregulations of these 2 pathways are frequently found in most cancers, particularly in colon cancer. Their crosstalk has been increasingly appreciated as an important mechanism in regulating colon cancer progression. Our studies into the link between Wnt/ß-catenin and Hedgehog/Gli signalings in colon cancer revealed several possible crosstalk points and suggested potential therapeutic strategies for colon cancer.


Assuntos
Neoplasias do Colo/metabolismo , Proteínas Hedgehog/metabolismo , Proteínas Oncogênicas/metabolismo , Transdução de Sinais , Transativadores/metabolismo , Proteínas Wnt/metabolismo , beta Catenina/metabolismo , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Neoplasias do Colo/tratamento farmacológico , Humanos , Terapia de Alvo Molecular , Ligação Proteica , Transdução de Sinais/efeitos dos fármacos , Proteína GLI1 em Dedos de Zinco
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa