Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 175
Filtrar
1.
Prostaglandins Other Lipid Mediat ; 174: 106875, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39019102

RESUMO

The liver plays a central role in systemic metabolism and drug degradation. However, it is highly susceptible to damage due to various factors, including metabolic imbalances, excessive alcohol consumption, viral infections, and drug influences. These factors often result in conditions such as fatty liver, hepatitis, and acute or chronic liver injury. Failure to address these injuries could promptly lead to the development of liver cirrhosis and potentially hepatocellular carcinoma (HCC). Prostaglandin E2 (PGE2) is a metabolite of arachidonic acid that belongs to the class of polyunsaturated fatty acids (PUFA) and is synthesized via the cyclooxygenase (COX) pathway. By binding to its G protein coupled receptors (i.e., EP1, EP2, EP3 and EP4), PGE2 has a wide range of physiological and pathophysiology effects, including pain, inflammation, fever, cardiovascular homeostasis, etc. Recently, emerging studies showed that PGE2 plays an indispensable role in liver health and disease. This review focus on the research progress of the role of PGE2 synthase and its receptors in liver physiological and pathophysiological processes and discuss the possibility of developing liver protective drugs targeting the COXs/PGESs/PGE2/EPs axis.


Assuntos
Dinoprostona , Fígado , Transdução de Sinais , Humanos , Dinoprostona/metabolismo , Fígado/metabolismo , Animais , Receptores de Prostaglandina E/metabolismo
2.
J Peripher Nerv Syst ; 2024 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-39343764

RESUMO

BACKGROUND AND AIMS: Little is known about the ability of serological biomarkers to monitor clinical outcomes in patients with Guillain-Barré syndrome (GBS). The objective of this study was to determine the associations of liver function, easily available and convenient biomarkers, with the clinical course and outcome of severe GBS in patients. METHODS: A prospective data collection was conducted in a cohort of 343 GBS patients from multi-centers between September 2019 and December 2023. Serum samples were obtained at four-time points for mechanical ventilation (MV) patients and two-time points for non-MV patients. The primary endpoint was the need for MV during hospitalization, while secondary outcomes included the ability to walk independently and the mortality at 26-week follow-up. RESULTS: (i) A total of 208 patients were eligible, of whom 50 required MV with a median (interquartile range) ventilation duration of 15 (8-27) days. (ii) Hypohepatia, as evidenced by reduced total protein (OR 0.913 [95% CI 0.862-0.967]) and albumin (0.775 [0.679-0.884]) 1 week after treatment, along with raised liver enzymes (2.732 [1.007-7.413]), was associated with the risk of MV after adjusting for confounders. (iii) After 26-week follow-up, patients with hypohepatia were less likely to regain independent walking and exhibited higher mortality in survival analysis (all log-rank p < .05). (iv) In a cross-sectional study spanning up to 4 years of follow-up, patients with prolonged MV (≥15 days) experienced a longer time to regain independent ambulation than those with shorter MV (167 [46-316] vs. 69 [24-106], p = .036). However, no relationships between liver function and prolonged MV were revealed. INTERPRETATION: Dynamically monitoring hepatic metabolism and promptly adjusting, it can aid the improvement of GBS in patients.

3.
Alcohol Alcohol ; 59(5)2024 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-39233472

RESUMO

AIMS: As the interactions of alcohol and HIV/SIV infection and their impact on liver metabolic homeostasis remain to be fully elucidated, this study aimed to determine alcohol-mediated hepatic adaptations of metabolic pathways in SIV/ART-treated female rhesus macaques fed a nutritionally balanced diet. METHODS: Macaques were administered chronic binge alcohol (CBA; 13-14 g ethanol/kg/week for 14.5 months; n = 7) or vehicle (VEH; n = 8) for 14.5 months. Livers were excised following an overnight fast. Gene and protein expression, enzymatic activity, and lipid content were determined using frozen tissue and histological staining was performed using paraffin-embedded tissue. RESULTS: CBA/SIV macaques showed increased hepatic protein expression of electron transport Complex III and increased gene expression of glycolytic (phosphofructokinase and aldolase) and gluconeogenic (pyruvate carboxylase) enzymes and of genes involved in lipid turnover homeostasis (perilipin 1, peroxisome proliferator-activated receptor gamma, carbohydrate responsive binding protein, and acetyl-CoA carboxylase B) as compared to that of livers from the VEH/SIV group. Plasma triglyceride concentration had a significant positive association with liver triglyceride content in the CBA/SIV group. CONCLUSIONS: These results reflect CBA-associated alterations in expression of proteins and genes involved in glucose and lipid metabolism homeostasis without significant evidence of steatosis or dysglycemia. Whether these changes predispose to greater liver pathology upon consumption of a high fat/high sugar diet that is more aligned with dietary intake of PWH and/or exposure to additional environmental factors warrants further investigation.


Assuntos
Consumo Excessivo de Bebidas Alcoólicas , Fígado , Macaca mulatta , Síndrome de Imunodeficiência Adquirida dos Símios , Animais , Feminino , Síndrome de Imunodeficiência Adquirida dos Símios/metabolismo , Fígado/metabolismo , Fígado/efeitos dos fármacos , Consumo Excessivo de Bebidas Alcoólicas/metabolismo , Adaptação Fisiológica/efeitos dos fármacos , Etanol/farmacologia , Metabolismo dos Lipídeos/efeitos dos fármacos
4.
Toxicol Ind Health ; 40(4): 167-175, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38285958

RESUMO

Phthalic acid esters (PAEs) and carbon nanotubes (CNTs) are common environmental pollutants and may degrade differently with different resulting biotoxicity, when present together. This study investigated the toxicological effects of singular or combined exposure to dibutyl phthalate (DBP) and multi-walled carbon nanotubes (MWCNTs) in KM mice. Results indicated that combined exposure led to slower weight gain and an increased leukocyte count in the blood, as well as liver tissue lesions and downregulation of organ coefficients. Additionally, alanine aminotransferase (ALT) and aspartate aminotransferase (AST) were elevated in the liver, and glucose, pyruvate, triglyceride (TG), and total cholesterol (T-CHO) were significantly reduced, suggesting compromised liver function. Furthermore, mRNA levels of genes related to hepatic glucose and lipid metabolism were significantly altered. These findings suggest that combined exposure to DBP and MWCNTs can have severe impacts on liver function in mice, highlighting the importance of considering interactions between multiple contaminants in environmental risk assessments.


Assuntos
Poluentes Ambientais , Nanotubos de Carbono , Ácidos Ftálicos , Animais , Camundongos , Dibutilftalato/toxicidade , Glucose/metabolismo , Fígado , Ácidos Ftálicos/toxicidade
5.
Mol Carcinog ; 62(5): 577-582, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36752344

RESUMO

Hepatocellular carcinoma (HCC) is one of the most worrying tumors worldwide today, and its epidemiology is on the rise. Traditional pharmacological approaches have shown unfavorable results and exhibited many side effects. Hence, there is a need for new efficacious molecules with fewer side effects and improvements on traditional approaches. We previously showed that lysophosphatidic acid (LPA) supports hepatocarcinogenesis, and its effects are mainly mediated by LPA receptor 6 (LPAR6). We also reported that 9-xanthylacetic acid (XAA) acts as an antagonist of LPAR6 to inhibit the growth of HCC. Here, we report that LPAR6 is involved in the choline-deficient l-amino acid-defined (CDAA) diet-induced hepatocarcinogenesis in mice. Our data demonstrate that CDAA diet-induced metabolic imbalance stimulates LPAR6 expression in mice and that XAA counteracts diet-induced effects on hepatic lipid accumulation, fibrosis, inflammation, and HCC development. These conclusions are corroborated by results on LPAR6 gain and loss-of-function in HCC cells.


Assuntos
Carcinoma Hepatocelular , Deficiência de Colina , Neoplasias Hepáticas , Camundongos , Animais , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/prevenção & controle , Carcinoma Hepatocelular/metabolismo , Aminoácidos , Receptores de Ácidos Lisofosfatídicos/genética , Receptores de Ácidos Lisofosfatídicos/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/prevenção & controle , Neoplasias Hepáticas/metabolismo , Colina/farmacologia , Deficiência de Colina/complicações , Deficiência de Colina/metabolismo , Dieta/efeitos adversos , Carcinogênese/genética
6.
Am J Physiol Regul Integr Comp Physiol ; 324(1): R45-R57, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36315183

RESUMO

An increase in egg incubation temperature was previously shown to enhance the metabolism of mule ducks and increase liver fattening after overfeeding, through a metabolic programming mechanism. Here, we examined whether fasting (F) followed by refeeding (RF) in 11-wk-old mule ducks could become an accelerated model to study the mechanisms of metabolic programming following embryonic thermal manipulation. This study investigated the hepatic response of mule ducks subjected to 23 h of fasting and 1 h of refeeding, in control or thermally programmed animals (with an increase of 1°C, 16 h per day from days 13 to 27 of embryogenesis). Liver weight and energy composition, hepatocyte structure, plasma parameters, and gene expression levels were measured at 1, 2, and 4 h after RF. All these parameters were strongly affected by RF, whereas significant impacts of embryonic programming were measured in cell size (+1 µm on average), lipid composition (+4.2% of saturated fatty acids 4 h after the meal), and relative gene expressions (including HK1, SCD1, ELOVL6, and FASN). In addition to confirming previously identified molecular targets of thermal manipulation, this study revealed new ones, thanks to kinetic sampling after RF. Finally, the detailed description of the impact of the F/RF challenge on the liver structure, composition, and gene expression, but also on plasma parameters allowed us to draw a parallel with these same traits measured during overfeeding. This comparative analysis suggests that this protocol could become a pertinent model to study the mechanisms involved in embryonic liver thermal programming, without overfeeding.


Assuntos
Patos , Fígado Gorduroso , Animais , Patos/metabolismo , Fígado/metabolismo , Jejum , Fígado Gorduroso/genética , Modelos Teóricos
7.
J Sci Food Agric ; 103(13): 6406-6415, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37209399

RESUMO

BACKGROUND: Among type 2 diabetes (T2D) patients, the incidence rate of liver metabolic disorders is much higher than that in healthy subjects. It was observed in our previous research that diabetic symptoms were improved by Lactobacillus plantarum SHY130 (LPSHY130) isolated from yak yogurt in a murine model of T2D. This study sought to investigate the LPSHY130-mediated hepatic metabolic regulation in a murine model of T2D. RESULTS: Treatment with LPSHY130 improved liver function and pathological damage in diabetic mice. Untargeted metabolome analysis revealed that T2D-induced changes in 11 metabolites were regulated after LPSHY130 treatment, mainly involving purine metabolism, amino acid metabolism, and choline metabolism and pantothenate and coenzyme A biosynthesis pathways. In addition, correlation analysis indicated that hepatic metabolic changes can be adjusted by the intestinal microbiota. CONCLUSION: Overall, this study suggests that treatment with LPSHY130 relieves liver injury and regulates liver metabolism in a murine model of T2D, thus providing a theoretical basis for the use of probiotics as dietary supplements to regulate hepatic metabolic disorders associated with T2D. © 2023 Society of Chemical Industry.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Lactobacillus plantarum , Probióticos , Camundongos , Animais , Diabetes Mellitus Tipo 2/metabolismo , Modelos Animais de Doenças , Diabetes Mellitus Experimental/metabolismo , Metabolômica , Fígado/metabolismo
8.
Biol Pharm Bull ; 45(4): 446-451, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35370268

RESUMO

Single-walled carbon nanotubes (SWCNTs) are made from rolled single graphene sheets with a diameter in the nanometer range and are potential carriers for drug delivery systems. However, their effects on uridine 5'-diphosphate-glucuronosyltransferase (UGT) 1A activities remain unclear. The present study aimed to investigate the effect of two kinds of SWCNTs (EC1.5-P- and FH-P-SWCNTs) and other nanocarbons on human UGT1A activity due to the proposed application of SWCNTs in drug and gene delivery. ß-Estradiol 3-glucuronidation, which is catalyzed mainly by UGT1A1, was inhibited by 99 and 76% in the presence of 0.1 mg/mL EC1.5-P- and FH-P-SWCNTs in human liver microsomes, respectively. The observed decrease of free UGT1A1 protein in the enzyme reaction mixture suggests a higher interaction with SWCNTs, and indicates the inhibition of ß-estradiol 3-glucuronidation. Imipramine N-glucuronidation, which is formed mainly by UGT1A4, was also decreased by SWCNTs. Serotonin glucuronidation, which is mainly responsible for UGT1A6, was only influenced by specific nanocarbons in human liver microsomes. The attenuation of free UGT1A6 protein was observed with SWCNTs and carbon black, indicating that UGT1A6 activity was not influenced by the direct interaction of SWCNTs. We also observed a 127% increase by FH-P-SWCNTs for propofol glucuronidation in human liver microsomes, which is catalyzed mainly by UGT1A9. The values of maximum velocity and intrinsic clearance for propofol glucuronidation in the presence of FH-P-SWCNT were 1.8- and 2.0-fold higher than those of the control in human liver microsomes. These results suggest that the effects of SWCNTs on UGT1A are different among isoforms.


Assuntos
Nanotubos de Carbono , Glucuronídeos/metabolismo , Glucuronosiltransferase/metabolismo , Humanos , Fígado/metabolismo , Difosfato de Uridina
9.
Int J Mol Sci ; 23(12)2022 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-35743314

RESUMO

Alterations in mitochondrial function are an important control variable in the progression of metabolic dysfunction-associated fatty liver disease (MAFLD), while also noted by increased de novo lipogenesis (DNL) and hepatic insulin resistance. We hypothesized that the organization and function of a mitochondrial electron transport chain (ETC) in this pathologic condition is a consequence of shifted substrate availability. We addressed this question using a transgenic mouse model with increased hepatic insulin resistance and DNL due to constitutively active human SREBP-1c. The abundance of ETC complex subunits and components of key metabolic pathways are regulated in the liver of these animals. Further omics approaches combined with functional assays in isolated liver mitochondria and primary hepatocytes revealed that the SREBP-1c-forced fatty liver induced a substrate limitation for oxidative phosphorylation, inducing enhanced complex II activity. The observed increased expression of mitochondrial genes may have indicated a counteraction. In conclusion, a shift of available substrates directed toward activated DNL results in increased electron flows, mainly through complex II, to compensate for the increased energy demand of the cell. The reorganization of key compounds in energy metabolism observed in the SREBP-1c animal model might explain the initial increase in mitochondrial function observed in the early stages of human MAFLD.


Assuntos
Fígado Gorduroso , Resistência à Insulina , Animais , Fígado Gorduroso/metabolismo , Lipogênese/genética , Fígado/metabolismo , Camundongos , Fosforilação Oxidativa , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo
10.
Int J Mol Sci ; 23(2)2022 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-35055185

RESUMO

Excess dietary fructose is a major public health concern, yet little is known about its influence on offspring development and later-life disease when consumed in excess during pregnancy. To determine whether increased maternal fructose intake could have long-term consequences on offspring health, we investigated the effects of 10% w/v fructose water intake during preconception and pregnancy in guinea pigs. Female Dunkin Hartley guinea pigs were fed a control diet (CD) or fructose diet (FD; providing 16% of total daily caloric intake) ad libitum 60 days prior to mating and throughout gestation. Dietary interventions ceased at day of delivery. Offspring were culled at day 21 (D21) (weaning) and at 4 months (4 M) (young adult). Fetal exposure to excess maternal fructose intake significantly increased male and female triglycerides at D21 and 4 M and circulating palmitoleic acid and total omega-7 through day 0 (D0) to 4 M. Proteomic and functional analysis of significantly differentially expressed proteins revealed that FD offspring (D21 and 4 M) had significantly increased mitochondrial metabolic activities of ß-oxidation, electron transport chain (ETC) and oxidative phosphorylation and reactive oxygen species production compared to the CD offspring. Western blotting analysis of both FD offspring validated the increased protein abundances of mitochondrial ETC complex II and IV, SREBP-1c and FAS, whereas VDAC1 expression was higher at D21 but lower at 4 M. We provide evidence demonstrating offspring programmed hepatic mitochondrial metabolism and de novo lipogenesis following excess maternal fructose exposure. These underlying asymptomatic programmed pathways may lead to a predisposition to metabolic dysfunction later in life.


Assuntos
Frutose/efeitos adversos , Metabolismo dos Lipídeos/efeitos dos fármacos , Mitocôndrias Hepáticas/metabolismo , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Proteômica/métodos , Animais , Cromatografia Líquida , Complexo de Proteínas da Cadeia de Transporte de Elétrons/metabolismo , Ácidos Graxos Monoinsaturados/sangue , Feminino , Cobaias , Humanos , Masculino , Mitocôndrias Hepáticas/efeitos dos fármacos , Fosforilação Oxidativa/efeitos dos fármacos , Gravidez , Efeitos Tardios da Exposição Pré-Natal/sangue , Espécies Reativas de Oxigênio/metabolismo , Espectrometria de Massas em Tandem , Triglicerídeos/metabolismo , Desmame
11.
Int J Mol Sci ; 23(17)2022 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-36077440

RESUMO

Ginsenoside Rg1 is an important active substance isolated from the root of ginseng. In previous studies, Rg1 has shown excellent therapeutic effects in antioxidant, anti-inflammatory, and metabolic modulation. However, the therapeutic targets of Rg1 are still unknown. In this study, we investigated the therapeutic effects of Rg1 on oxidative stress-related liver damage. The oxidative stress damage model was achieved by intraperitoneal injection of D-galactose (D-gal) for 42 consecutive days in C57BL/6J mice. Rg1 treatment started on Day 16. Body weight, liver weight, degree of hepatic oxidative stress damage, serum lipid levels, and hepatic lipid and glucose metabolism were measured. Proteomics analysis was used to measure liver protein expression. The differential expression proteins were analyzed with bioinformatics. The results showed that Rg1 treatment attenuated liver damage from oxidative stress, reduced hepatic fat accumulation, promoted hepatic glycogen synthesis, and attenuated peripheral blood low-density lipoprotein (LDL), cholesterol (CHO), and triglycerides (TG) levels. Proteomic analysis suggested that Rg1 may regulate hepatocyte metabolism through ECM-Receptor, the PI3K-AKT pathway. The epidermal growth factor receptor (EGFR) and activator of transcription 1 (STAT1) may be the key protein. In conclusion, this study provides an experimental basis for further clarifying the specific mechanism of Rg1 in the treatment of oxidative stress damage-related liver disease.


Assuntos
Ginsenosídeos , Hepatopatias , Animais , Ginsenosídeos/farmacologia , Ginsenosídeos/uso terapêutico , Lipídeos/farmacologia , Hepatopatias/tratamento farmacológico , Camundongos , Camundongos Endogâmicos C57BL , Estresse Oxidativo , Fosfatidilinositol 3-Quinases/metabolismo , Proteômica
12.
Molecules ; 27(13)2022 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-35807248

RESUMO

Hyperglycemia is reported to be associated with oxidative stress. It can result in changes in the activities of drug-metabolizing enzymes and membrane-integrated transporters, which can modify the fate of drugs and other xenobiotics; furthermore, it can result in the formation of non-enzyme catalyzed oxidative metabolites. The present work aimed to investigate how experimental hyperglycemia affects the intestinal and biliary appearance of the oxidative and Phase II metabolites of ibuprofen in rats. In vivo studies were performed by luminal perfusion of 250 µM racemic ibuprofen solution in control and streptozotocin-treated (hyperglycemic) rats. Analysis of the collected intestinal perfusate and bile samples was performed by HPLC-UV and HPLC-MS. No oxidative metabolites could be detected in the perfusate samples. The biliary appearance of ibuprofen, 2-hydroxyibuprofen, ibuprofen glucuronide, hydroxylated ibuprofen glucuronide, and ibuprofen taurate was depressed in the hyperglycemic animals. However, no specific non-enzymatic (hydroxyl radical initiated) hydroxylation product could be detected. Instead, the depression of biliary excretion of ibuprofen and ibuprofen metabolites turned out to be the indicative marker of hyperglycemia. The observed changes impact the pharmacokinetics of drugs administered in hyperglycemic individuals.


Assuntos
Hiperglicemia , Ibuprofeno , Animais , Cromatografia Líquida de Alta Pressão , Glucuronídeos/metabolismo , Hiperglicemia/tratamento farmacológico , Hiperglicemia/metabolismo , Ibuprofeno/metabolismo , Intestinos , Fígado/metabolismo , Ratos
13.
J Biol Chem ; 294(38): 13864-13875, 2019 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-31413113

RESUMO

Asparaginase is an amino acid-depleting agent used to treat blood cancers. Metabolic complications due to asparaginase affect liver function in humans. To examine how the liver response to asparaginase changes during maturity to adulthood, here we treated juvenile (2-week), young adult (8-week), and mature adult (16-week) mice with drug or excipient for 1 week and conducted RNA-Seq and functional analyses. Asparaginase reduced body growth and liver mass in juveniles but not in the adult animals. Unbiased exploration of the effect of asparaginase on the liver transcriptome revealed that the integrated stress response (ISR) was the only molecular signature shared across the ages, corroborating similar eukaryotic initiation factor 2 phosphorylation responses to asparaginase at all ages. Juvenile livers exhibited steatosis and iron accumulation following asparaginase exposure along with a hepatic gene signature indicating that asparaginase uniquely affects lipid, cholesterol, and iron metabolism in juvenile mice. In contrast, asparaginase-treated adult mice displayed greater variability in liver function, which correlated with an acute-phase inflammatory response gene signature. Asparaginase-exposed adults also had a serine/glycine/one-carbon metabolism gene signature in liver that corresponded with reduced circulating glycine and serine levels. These results establish the ISR as a conserved response to asparaginase-mediated amino acid deprivation and provide new insights into the relationship between the liver transcriptome and hepatic function upon asparaginase exposure.


Assuntos
Asparaginase/efeitos adversos , Asparaginase/metabolismo , Fígado/metabolismo , Fatores Etários , Aminoácidos/metabolismo , Animais , Asparaginase/fisiologia , Fator de Iniciação 2 em Eucariotos/metabolismo , Fígado Gorduroso/metabolismo , Feminino , Fígado/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fosforilação , Proteínas Serina-Treonina Quinases/metabolismo , Estresse Fisiológico/efeitos dos fármacos , Transcriptoma/efeitos dos fármacos , Transcriptoma/genética
14.
Xenobiotica ; 50(4): 408-414, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31305200

RESUMO

Combinations of bioactive phytochemicals with synthetic compounds have been suggested as promissory tools for the improvement of nematode control in livestock. Bioactive phytochemicals may interfere with the activity of drug-metabolizing enzymes and delay the metabolic conversion of anthelmintics into less potent metabolites.This research assessed the effect of the monoterpene thymol (TML) on the in vitro hepatic metabolism of the anthelmintic albendazole (ABZ) in sheep.Liver microsomes from four (4) Texel lambs were incubated with ABZ (50 µM) in absence or in presence of TML (0.05-10 mM).The concentration of TML producing a 50% decrease in ABZ S-oxygenation (IC50) was 13.5 mM. The FMO-dependent S-oxygenation of ABZ was markedly inhibited by the monoterpene (54.1 ± 11.6%, p < .01). In agreement with this observation, TML produced a marked inhibition of benzydamine (BZ) N-oxidase, a specific FMO activity.The CYP-dependent production of the sulfoxide metabolite (ABZSO) was less affected, being 25.3 ± 17.5 lower (p < .05) in presence of TML. Additionally, TML completely abolished the specific CYP1A1-dependent enzyme activity 7-ethoxyresorufin O-deethylase.Overall, the results presented here show that, in addition to its own anthelmintic affect, TML may potentiate ABZ anthelmintic activity by preventing its metabolic conversion into a less active metabolite.


Assuntos
Albendazol/metabolismo , Anti-Helmínticos/metabolismo , Timol/metabolismo , Albendazol/química , Animais , Anti-Helmínticos/química , Citocromo P-450 CYP1A1/metabolismo , Fígado/metabolismo , Taxa de Depuração Metabólica , Microssomos Hepáticos/metabolismo , Monoterpenos , Ovinos
15.
Xenobiotica ; 50(5): 526-535, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31491346

RESUMO

1. Immunodeficient chimeric mice with humanised liver have been useful in predicting total clearance values of drugs in humans. However, their usefulness may currently be limited for specific compounds with interspecies differences.2. In vivo total clearance and in vitro hepatic intrinsic clearance values of 16 model compounds were determined in control/humanised-liver mice and in mouse and human hepatocytes, respectively, for extrapolating the total clearance values of compounds in humans.3. The predictability of in vivo total clearance values of 11 model compounds in humans was adequate using pharmacokinetic data from humanised-liver mice. The predictability of total clearance values using humanised-liver mice was better than conventional allometric scaling for compounds with large interspecies differences in in vitro hepatic intrinsic clearance or plasma unbound fractions.4. There were trends that total clearance values in control and humanised-liver mice were similar to or higher than reported hepatic blood flow rates in normal mice among four compounds with poor predictability. Diazepam, with the poorest predictability, showed 38-fold-higher hepatic intrinsic clearance in mice than in humans.5. These results could lead to guidelines describing that compounds may be suited or unsuited to extrapolating total clearance values in humans from pharmacokinetics in humanised-liver mice.


Assuntos
Taxa de Depuração Metabólica , Modelos Biológicos , Animais , Quimera , Hepatócitos , Humanos , Cinética , Fígado , Camundongos , Microssomos Hepáticos , Farmacocinética , Ligação Proteica , Especificidade da Espécie
16.
Xenobiotica ; 50(7): 776-782, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31755346

RESUMO

Quantitative aspects of in vitro phase II glucuronidative metabolism of O-desmethyltramadol (O-DSMT or M1), the active metabolite of the analgesic drug tramadol, by feline, canine and common brush-tailed possum hepatic microsomes are described.Whilst previous studies have focused on the phase I conversion of tramadol to M1, this is the first report in which the phase II glucuronidative metabolic pathway of M1 has been isolated by an in vitro comparative species study.Using the substrate depletion method, microsomal phase II glucuronidative in vitro intrinsic clearance (Clint) of M1 was determined.The in vitro Clint (mean ± SD) by pooled common brush-tailed possum microsomes was 9.9 ± 1.7 µL/min/mg microsomal protein whereas the in vitro Clint by pooled canine microsomes was 1.9 ± 0.07 µL/min/mg microsomal protein. The rate of M1 depletion by feline microsomes, as measured solely by high pressure liquid chromatography, was too slow to determine. Liquid chromatography-mass spectrometry identified O-DSMT glucuronide in samples generated from all three species' microsomes, although the amount detected under the feline condition was minimal.This study indicates that M1 likely undergoes in vitro phase II glucuronidation by canine and common brush-tailed possum microsomes and, to a minor extent, by feline microsomes. The rate of depletion of M1 by phase I metabolism was also undertaken.When incubated with phase I co-factors and common brush-tailed possum microsomes or canine microsomes, M1 had an in vitro Clint of 47.6 and 22.8 µL/min/mg microsomal protein, respectively. However, due to a lack of CYP2B-like activity in the feline liver, unsurprisingly, M1 did not deplete when incubated with feline microsomes. Consequently, major M1 elimination pathways, using feline microsomes, were not determined."


Assuntos
Tramadol/análogos & derivados , Animais , Gatos , Cães , Glucuronídeos/metabolismo , Humanos , Taxa de Depuração Metabólica , Microssomos/metabolismo , Tramadol/metabolismo , Trichosurus/metabolismo
17.
J Dairy Sci ; 103(12): 11449-11460, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33222857

RESUMO

Our objective was to determine the temporal effects of increasing supply of propionate on propionate metabolism in liver tissue of dairy cows in the postpartum (PP) period. A total of 6 dairy cows [primiparous: n = 3, 9.00 ± 1.00 d PP (mean ± SD) and multiparous: n = 3; 4.67 ± 1.15 d PP] were biopsied for liver explants in a block-design experiment. Explants were treated with 3 concentrations of [13C3]sodium propionate of 1, 2, or 4 mM. Explants were incubated in 2 mL of Medium 199 supplemented with 1% BSA, 0.6 mM oleic acid, 2 mM sodium l-lactate, 0.2 mM sodium pyruvate, and 0.5 mMl-glutamine at 38°C and sampled at 0.5, 15, and 60 min. Increasing the concentration of [13C3]propionate increased total 13C% enrichment of propionyl coenzyme A (CoA), succinate, fumarate, malate, and citrate with time. Concentration of propionate did not affect total 13C% enrichment of hepatic glucose or acetyl CoA, but total 13C% enrichment increased with time for hepatic glucose. The 13C labeling from propionate was incorporated into acetyl CoA, but increased concentrations of propionate did not result in greater labeling of acetyl CoA. However, increases in 13C% enrichment of [M+4]citrate and [M+5]citrate concentrations of [13C3]propionate indicate propionate conversion to acetyl CoA and subsequent entry of acetyl CoA into the tricarboxylic acid cycle in dairy cows in the PP period. This research presents evidence that despite an increase in hepatic acetyl CoA concentration and general consensus on the upregulation of gluconeogenesis of dairy cows during the PP period, carbon derived from propionate contributes to the pool of acetyl CoA, which increases as concentration of propionate increases, in addition to stimulating oxidation of acetyl CoA from other sources. Because of the hypophagic effects of propionate, but importance of propionate as a glucose precursor, a balance of propionate supply to dairy cows could lead to improvements in dry matter intake, and subsequently, health and production in dairy cows.


Assuntos
Bovinos/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Período Pós-Parto/metabolismo , Propionatos/administração & dosagem , Acetilcoenzima A/metabolismo , Animais , Ácido Cítrico/metabolismo , Ciclo do Ácido Cítrico , Suplementos Nutricionais , Relação Dose-Resposta a Droga , Feminino , Fumaratos/metabolismo , Gluconeogênese , Glucose/metabolismo , Lactação/fisiologia , Malatos/metabolismo , Propionatos/metabolismo
18.
Zhongguo Zhong Yao Za Zhi ; 45(2): 412-417, 2020 Jan.
Artigo em Chinês | MEDLINE | ID: mdl-32237326

RESUMO

The bilirubin metabolism mediated by the phase Ⅱ metabolizing enzyme UGT1A1 in the liver was evaluated to study the potential hepatotoxicity risk based on investigation on the inhibitory effect of rhein and its metabolites on the UGT1A1 enzyme in Rhei Radix et Rhizoma. Firstly, in vitro liver microsomes incubation was used to initiate the phase Ⅱ metabolic reaction to investigate the inhibitory effect of rheinon UGT1A1 enzyme. Secondly, the phase Ⅰ and phase Ⅱ metabolic reactions were initiated to investigate the hepatotoxicity risk of rhein metabolites. It was found that the rhein and its phase Ⅱ metabolites had no significant inhibitory effect on UGT1A1 enzyme, but its phase Ⅰ metabolites significantly reduced UGT1A1 enzyme activity. Based on the metabolites analysis, it is speculated that the rhein phase Ⅰ metabolite rheinhydroxylate and its tautomers have certain hepatotoxicity risks, while the toxicity risk induced by the prototype and phase Ⅱ metabolites of rheinglucoside, rheinglucuronic acid and rhein sulfate is small.


Assuntos
Antraquinonas/toxicidade , Doença Hepática Induzida por Substâncias e Drogas , Medicamentos de Ervas Chinesas/toxicidade , Fígado/efeitos dos fármacos , Microssomos Hepáticos/efeitos dos fármacos , Glucuronosiltransferase/metabolismo , Humanos , Fígado/enzimologia , Rizoma
19.
J Biol Chem ; 293(20): 7508-7516, 2018 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-29514978

RESUMO

Compartmentalization is a fundamental design principle of eukaryotic metabolism. Here, we review the compartmentalization of NAD+/NADH and NADP+/NADPH with a focus on the liver, an organ that experiences the extremes of biochemical physiology each day. Historical studies of the liver, using classical biochemical fractionation and measurements of redox-coupled metabolites, have given rise to the prevailing view that mitochondrial NAD(H) pools tend to be oxidized and important for energy homeostasis, whereas cytosolic NADP(H) pools tend to be highly reduced for reductive biosynthesis. Despite this textbook view, many questions still remain as to the relative size of these subcellular pools and their redox ratios in different physiological states, and to what extent such redox ratios are simply indicators versus drivers of metabolism. By performing a bioinformatic survey, we find that the liver expresses 352 known or predicted enzymes composing the hepatic NAD(P)ome, i.e. the union of all predicted enzymes producing or consuming NADP(H) or NAD(H) or using them as a redox co-factor. Notably, less than half are predicted to be localized within the cytosol or mitochondria, and a very large fraction of these genes exhibit gene expression patterns that vary during the time of day or in response to fasting or feeding. A future challenge lies in applying emerging new genetic tools to measure and manipulate in vivo hepatic NADP(H) and NAD(H) with subcellular and temporal resolution. Insights from such fundamental studies will be crucial in deciphering the pathogenesis of very common diseases known to involve alterations in hepatic NAD(P)H, such as diabetes and fatty liver disease.


Assuntos
Citosol/metabolismo , Metabolismo Energético , Fígado/metabolismo , Redes e Vias Metabólicas , Mitocôndrias/metabolismo , NADP/metabolismo , NAD/metabolismo , Animais , Homeostase , Humanos , Oxirredução , Estresse Oxidativo , Análise Espaço-Temporal
20.
J Cell Biochem ; 120(7): 11068-11080, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30719751

RESUMO

Gluconeogenesis (GN) is increased in patients with cancer cachexia, but is reduced in liver perfusion of Walker-256 tumor-bearing cachectic rats (TB rats). The causes of these differences are unknown. We investigated the influence of circulating concentrations of lactate (NADH generator) and NADH on GN in perfused livers of TB rats. Lactate, at concentrations similar to those found on days 5 (3.0 mM), 8 (5.5 mM), and 12 (8.0 mM) of the tumor, prevented the reduction of GN from 2.0 mM lactate (lactatemia of healthy rat) in TB rats. NADH, 50 or 75 µM, but not 25 µM, increased GN from 2.0 mM lactate in TB rats to higher values than healthy rats. High concentrations of pyruvate (no NADH generator, 5.0 and 8.0 mM) did not prevent the reduction of GN from 2.0 mM pyruvate in TB rats. However, 50 or 75 µM NADH, but not 25 µM, increased GN from 2.0 mM pyruvate in TB rats to similar or higher values than healthy rats. High concentration of glutamine (NADH generator, 2.5 mM) or 50 µM NADH prevented the reduction of GN from 1 mM glutamine in TB rats. Intraperitoneal administration of pyruvate (1.0 mg/kg) or glutamine (0.5 mg/kg) similarly increased the glycemia of healthy and TB rats. In conclusion, high lactate concentration, similar to hyperlactatemia, prevented the reduction of GN in perfused livers of TB rats, an effect probably caused by the increased redox potential (NADH/NAD+ ). Thus, the decreased GN in livers from TB rats is due, at least in part, to the absence of simulation of in vivo hyperlactatemia in liver perfusion studies.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa