Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cancer Sci ; 115(8): 2659-2672, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38710213

RESUMO

Circular RNAs (circRNAs) have emerged as crucial regulators in tumor progression, yet their specific role in hepatocellular carcinoma (HCC) remains largely uncharacterized. In this study, we utilized high-transcriptome sequencing to identify the upregulation of circESYT2 (hsa_circ_002142) in HCC tissues. Functional experiments carried out in vivo and in vitro revealed that circESYT2 played a significant role in maintaining the growth and metastatic behaviors of HCC. Through integrative analysis, we identified enolase 2 (ENO2) as a potential target regulated by circESYT2 through the competitive endogenous RNA sponge mechanism. Additional gain- or loss-of-function experiments indicated that overexpression of circESYT2 led to a tumor-promoting effect, which could be reversed by transfection of microRNA-665 (miR-665) mimic or ENO2 knockdown in HCC cells. Furthermore, the direct interaction between miR-665 and circESYT2 and between miR-665 and ENO2 was confirmed using RNA immunoprecipitation, FISH, RNA pull-down, and dual-luciferase reporter assays, highlighting the involvement of the circESYT2/miR-665/ENO2 axis in promoting HCC progression. These findings shed light on the molecular characteristics of circESYT2 in HCC tissues and suggest its potential as a biomarker or therapeutic target for HCC treatment.


Assuntos
Carcinoma Hepatocelular , Progressão da Doença , Regulação Neoplásica da Expressão Gênica , Neoplasias Hepáticas , MicroRNAs , Fosfopiruvato Hidratase , RNA Circular , Animais , Feminino , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Proliferação de Células/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Camundongos Nus , MicroRNAs/genética , Fosfopiruvato Hidratase/genética , Fosfopiruvato Hidratase/metabolismo , RNA Circular/genética , Regulação para Cima/genética , Sinaptotagminas/genética
2.
Cancer Sci ; 108(4): 620-631, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28132399

RESUMO

MicroRNA-155-5p (miR-155-5p) has been reported to play an oncogenic role in different human malignancies; however, its role in hepatocellular carcinoma (HCC) progression is not clearly understood. In this study, we used real-time PCR in 20 rats with chemically-induced HCC, 28 human HCC tissues, and the matched paracarcinoma tissues, and HCC cell lines to determine the expression patterns of miR-155-5p and PTEN mRNA. Algorithm-based and experimental strategies, such as dual luciferase gene reporter assays, real-time PCR and western blots were used to identify PTEN as a candidate miR-155-5p target. Gain- and loss-of-function experiments and administration of a PI3K/Akt pathway inhibitor (wortmannin) were used to identify the effects of miR-155-5p and PTEN in MTT assays, flow cytometric analysis, wound healing assays and transwell assays. The results showed that miR-155-5p was highly overexpressed; however, PTEN was underexpressed in the HCC rat models, human HCC tissues and cell lines. In addition, miR-155-5p upregulation and PTEN downregulation were significantly associated with TNM stage (P < 0.05). Through in vitro experiments, we found that miR-155-5p promoted proliferation, invasion and migration, but inhibited apoptosis in HCC by directly targeting the 3'-UTR of PTEN. Western blots showed that miR-155-5p inactivated Bax and caspase-9, but activated Bcl-2 to inhibit apoptosis, and it activated MMP to promote migration and invasion via the PI3K/Akt pathway. A xenograft tumor model was used to demonstrate that miR-155-5p targets PTEN and activates the PI3K/Akt pathway in vivo as well. Our study highlighted the importance of miR-155-5p and PTEN associated with aggressive HCC both in vitro and in vivo.


Assuntos
Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , MicroRNAs/genética , PTEN Fosfo-Hidrolase/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Regiões 3' não Traduzidas/genética , Animais , Apoptose/genética , Western Blotting , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Modelos Animais de Doenças , Progressão da Doença , Regulação Neoplásica da Expressão Gênica , Células Hep G2 , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Masculino , Camundongos Endogâmicos BALB C , Camundongos Nus , PTEN Fosfo-Hidrolase/metabolismo , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais , Transplante Heterólogo
3.
Hepatol Int ; 17(6): 1500-1518, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37460832

RESUMO

BACKGROUND: Hepatocellular carcinoma (HCC) is most common malignant tumor worldwide, and one of the most lethal malignancies. MEX3A, RNA-binding protein, is profoundly implicated in tumor initiation and progression. But its role and potential mechanism in HCC remains fully unclear. METHODS: The expression of MEX3A in HCC was analysis using the data derived from the Cancer Genome Atlas (TCGA) dataset and further confirmed by HCC samples and cells lines. The roles of MEX3A in the proliferation, migration and sorafenib resistance were detected both in vitro and vivo. In addition, the underline mechanism was investigated. RESULTS: In this study, MEX3A expression was upregulated in HCC tissue and cell lines. Knockdown or overexpression of MEX3A disturbed the proliferation, migration and apoptosis of HCC cells by modulating the activation of Hippo signaling pathway. The expression of MEX3A was negatively associated with sorafenib sensitivity and upregulated in sorafenib resistant HCC cells. MEX3A knockdown facilitated the expression of WWC1, a negative modulator of Hippo signaling pathway, and led to increase of the phosphorylation of LATS1 and YAP1. Pharmacological inhibition of LATS1 or WWC1 overexpression alleviated the proliferative and migrated suppression and increased sorafenib sensitivity, whereas WWC1 inhibition using genetic interference strategy showed opposite trend in MEX3A knockdown HCC cells. Importantly, MEX3A knockdown led to growth and lung metastasis inhibition using xenograft model established by means of subcutaneous or tail vein injection. In addition, a combination of MEX3A knockdown and WWC1 overexpression dramatically enhances the growth inhibition of sorafenib in vivo. CONCLUSION: MEX3A may facilitate HCC progression and hinder sorafenib sensitivity via inactivating Hippo signaling. The present study suggested that targeting MEX3A can be served as a novel therapeutic strategy for HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/genética , Sorafenibe/farmacologia , Sorafenibe/uso terapêutico , Neoplasias Hepáticas/genética , Linhagem Celular Tumoral , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/uso terapêutico , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/uso terapêutico , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Fosfoproteínas/uso terapêutico , Proteínas de Ligação a RNA/genética
4.
J Exp Clin Cancer Res ; 40(1): 72, 2021 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-33596983

RESUMO

BACKGROUND: Long non-coding RNAs (lncRNAs) are widely involved in human cancers' progression by regulating tumor cells' various malignant behaviors. MAPKAPK5-AS1 has been recognized as an oncogene in colorectal cancer. However, the biological role of MAPKAPK5-AS1 in hepatocellular carcinoma (HCC) has not been explored. METHODS: Quantitative real-time PCR was performed to detect the level of MAPKAPK5-AS1 in HCC tissues and cell lines. The effects of MAPKAPK5-AS1 on tumor growth and metastasis were assessed via in vitro experiments, including MTT, colony formation, EdU, flow cytometry, transwell assays, and nude mice models. The western blotting analysis was carried out to determine epithelial-mesenchymal transition (EMT) markers and AKT signaling. The interaction between MAPKAPK5-AS1, miR-154-5p, and PLAGL2 were explored by luciferase reporter assay and RNA immunoprecipitation. The regulatory effect of HIF-1α on MAPKAPK5-AS1 was evaluated by chromatin immunoprecipitation. RESULTS: MAPKAPK5-AS1 expression was significantly elevated in HCC, and its overexpression associated with malignant clinical features and reduced survival. Functionally, MAPKAPK5-AS1 knockdown repressed the proliferation, mobility, and EMT of HCC cells and induced apoptosis. Ectopic expression of MAPKAPK5-AS1 contributed to HCC cell proliferation and invasion in vitro. Furthermore, MAPKAPK5-AS1 silencing suppressed, while MAPKAPK5-AS1 overexpression enhanced HCC growth and lung metastasis in vivo. Mechanistically, MAPKAPK5-AS1 upregulated PLAG1 like zinc finger 2 (PLAGL2) expression by acting as an endogenous competing RNA (ceRNA) to sponge miR-154-5p, thereby activating EGFR/AKT signaling. Importantly, rescue experiments demonstrated that the miR-154-5p/PLAGL2 axis mediated the function of MAPKAPK5-AS1 in HCC cells. Interestingly, we found that hypoxia-inducible factor 1α (HIF-1α), a transcript factor, could directly bind to the promoter to activate MAPKAPK5-AS1 transcription. MAPKAPK5-AS1 regulated HIF-1α expression through PLAGL2 to form a hypoxia-mediated MAPKAPK5-AS1/PLAGL2/HIF-1α signaling loop in HCC. CONCLUSIONS: Our results reveal a MAPKAPK5-AS1/PLAGL2/HIF-1α signaling loop in HCC progression and suggest that MAPKAPK5-AS1 could be a potential novel therapeutic target of HCC.


Assuntos
Carcinoma Hepatocelular/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Neoplasias Hepáticas/metabolismo , Proteínas Serina-Treonina Quinases/genética , RNA Longo não Codificante/metabolismo , Idoso , Animais , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Proliferação de Células/fisiologia , Proteínas de Ligação a DNA/metabolismo , Progressão da Doença , Xenoenxertos , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Masculino , Camundongos , Camundongos Nus , RNA Antissenso/genética , RNA Antissenso/metabolismo , RNA Longo não Codificante/genética , Proteínas de Ligação a RNA/metabolismo , Transdução de Sinais , Fatores de Transcrição/metabolismo , Transfecção
5.
Life Sci ; 260: 118476, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-32971102

RESUMO

Hepatocellular carcinoma (HCC) is the sixth most common malignancy and has the third highest mortality rate among all tumors. Previous studies found that phosphatidylinositol glycan anchor biosynthesis class U (PIGU) was highly expressed in hepatocellular carcinoma (HCC), while the function of PIGU in HCC remains unknown. Here, we deeply investigated this issue. The expression levels of PIGU in HCC cells were measured by Western blotting. The functions of PIGU in HCC cells were assessed in vitro, followed by assessing the nuclear factor-kappa B (NF-κB) pathway-related protein levels. The xenograft mouse models were conducted to investigate the effects of PIGU in vivo. Moreover, the effects of PIGU downregulation on natural killer (NK)-92 cell-mediated cell killing were detected. The results showed that PIGU was highly expressed in HCC cells compared with normal liver cells. Functional studies showed that PIGU promoted viability, cell cycle progression, migration, and invasion and suppressed apoptosis in HCC cells. Mechanism studies indicated that PIGU silencing blocked the NF-κB pathway and the blockade of the NF-κB pathway reversed the effects of PIGU overexpression on HCC cell function, including cell viability, migration, invasion, and apoptosis. In vivo studies further verified the effects of PIGU on HCC cell function, and demonstrated that PIGU knockdown suppressed tumorigenesis. Additionally, we proved that PIGU downregulation significantly enhanced the sensitivity of HCC cells to NK-92 cell cytolysis. Collectively, PIGU may promote HCC progression through activating the NF-κB pathway and promoting immune escape, indicating that PIGU may serve as a promising therapeutic target for HCC treatment.


Assuntos
Aciltransferases/metabolismo , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , NF-kappa B/metabolismo , Aciltransferases/genética , Aciltransferases/imunologia , Animais , Apoptose/genética , Carcinoma Hepatocelular/imunologia , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/mortalidade , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Neoplasias Hepáticas/imunologia , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/mortalidade , Masculino , Camundongos Nus , Evasão Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa