Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Int J Mol Sci ; 17(2)2016 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-26840304

RESUMO

Due to drug-induced potential congestive heart failure and irreversible dilated cardiomyopathies, preclinical evaluation of cardiac dysfunction is important to assess the safety of traditional or novel treatments. The embryos of Nelumbo nucifera Gaertner seeds are a homology of traditional Chinese medicine and food. In this study, we applied the real time cellular analysis (RTCA) Cardio system, which can real-time monitor the contractility of cardiomyocytes (CMs), to evaluate drug safety in rat neonatal CMs and human induced pluripotent stem cell-derived cardiomyocytes (hiPS-CMs). This study showed detailed biomechanical CM contractility in vitro, and provided insights into the cardiac dysfunctions associated with liensinine and neferine treatment. These effects exhibited dose and time-dependent recovery. Neferine showed stronger blocking effect in rat neonatal CMs than liensinine. In addition, the effects of liensinine and neferine were further evaluated on hiPS-CMs. Our study also indicated that both liensinine and neferine can cause disruption of calcium homeostasis. For the first time, we demonstrated the potential cardiac side effects of liensinine or neferine. While the same inhibition was observed on hiPS-CMs, more importantly, this study introduced an efficient and effective approach to evaluate the cardiotoxicity of the existing and novel drug candidates.


Assuntos
Benzilisoquinolinas/efeitos adversos , Medicamentos de Ervas Chinesas/efeitos adversos , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Isoquinolinas/efeitos adversos , Miócitos Cardíacos/efeitos dos fármacos , Fenóis/efeitos adversos , Animais , Benzilisoquinolinas/toxicidade , Cardiotoxicidade , Células Cultivadas , Medicamentos de Ervas Chinesas/toxicidade , Feminino , Humanos , Isoquinolinas/toxicidade , Masculino , Fenóis/toxicidade , Ratos , Ratos Sprague-Dawley
2.
Am J Physiol Heart Circ Physiol ; 305(6): H913-22, 2013 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-23832699

RESUMO

Human-induced pluripotent stem cell-derived cardiomyocytes (hiPS-CMs) have been recently derived and are used for basic research, cardiotoxicity assessment, and phenotypic screening. However, the hiPS-CM phenotype is dependent on their derivation, age, and culture conditions, and there is disagreement as to what constitutes a functional hiPS-CM. The aim of the present study is to characterize the temporal changes in hiPS-CM phenotype by examining five determinants of cardiomyocyte function: gene expression, ion channel functionality, calcium cycling, metabolic activity, and responsiveness to cardioactive compounds. Based on both gene expression and electrophysiological properties, at day 30 of differentiation, hiPS-CMs are immature cells that, with time in culture, progressively develop a more mature phenotype without signs of dedifferentiation. This phenotype is characterized by adult-like gene expression patterns, action potentials exhibiting ventricular atrial and nodal properties, coordinated calcium cycling and beating, suggesting the formation of a functional syncytium. Pharmacological responses to pathological (endothelin-1), physiological (IGF-1), and autonomic (isoproterenol) stimuli similar to those characteristic of isolated adult cardiac myocytes are present in maturing hiPS-CMs. In addition, thyroid hormone treatment of hiPS-CMs attenuated the fetal gene expression in favor of a more adult-like pattern. Overall, hiPS-CMs progressively acquire functionality when maintained in culture for a prolonged period of time. The description of this evolving phenotype helps to identify optimal use of hiPS-CMs for a range of research applications.


Assuntos
Potenciais de Ação/fisiologia , Sinalização do Cálcio/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Miócitos Cardíacos/citologia , Miócitos Cardíacos/fisiologia , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/fisiologia , Diferenciação Celular/fisiologia , Linhagem Celular , Humanos , Canais Iônicos/fisiologia , Miócitos Cardíacos/classificação , Fenótipo , Células-Tronco Pluripotentes/classificação
3.
Biomaterials ; 279: 121231, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34739980

RESUMO

Cell therapy offers a promising paradigm for heart tissue regeneration. Human induced pluripotent stem cells (hiPS) and their cardiac derivatives are emerging as a novel treatment for post-myocardial infarction repair. However, the immature phenotype and function of hiPS-derived cardiomyocytes (hiPS-CMs), particularly poor electrical coupling, limit their potential as a therapy. Herein, we developed a hybrid gold nanoparticle (AuNP)-hyaluronic acid (HA) hydrogel matrix encapsulating hiPS-CMs to overcome this limitation. Methacrylate-modified-HA was used as the backbone and crosslinked with a matrix metalloproteinase-2 (MMP-2) degradable peptide to obtain a MMP-2-responsive hydrogel; RGD peptide was introduced as an adhesion point to enhance biocompatibility; AuNPs were incorporated to regulate the mechanical and topological properties of the matrix by significantly increasing its stiffness and surface roughness, thereby accelerating gap junction formation in hiPS-CMs and orchestrating calcium handling via the αnß1integrin-mediated ILK-1/p-AKT/GATA4 pathway. Transplanted AuNP-HA-hydrogel-encapsulated-hiPS-CMs developed more robust gap junctions in the infarcted mice heart and resynchronized electrical conduction of the ventricle post-myocardial infarction. The hiPS-CMs delivered by the hydrogels exerted stronger angiogenic effects, which also contributed to the recovery process. This study provides insight into constructing an injectable biomimetic for structural and functional renovation of the injured heart.


Assuntos
Células-Tronco Pluripotentes Induzidas , Nanopartículas Metálicas , Animais , Junções Comunicantes , Ouro , Humanos , Ácido Hialurônico , Metaloproteinase 2 da Matriz , Camundongos , Miócitos Cardíacos
4.
J Am Coll Cardiol ; 73(21): 2705-2718, 2019 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-31146816

RESUMO

BACKGROUND: Patients with chronic kidney disease (CKD) and coincident heart failure with preserved ejection fraction (HFpEF) may constitute a distinct HFpEF phenotype. Osteopontin (OPN) is a biomarker of HFpEF and predictive of disease outcome. We recently reported that OPN blockade reversed hypertension, mitochondrial dysfunction, and kidney failure in Col4a3-/- mice, a model of human Alport syndrome. OBJECTIVES: The purpose of this study was to identify potential OPN targets in biopsies of HF patients, healthy control subjects, and human induced pluripotent stem cell-derived cardiomyocytes (hiPS-CMs), and to characterize the cardiac phenotype of Col4a3-/- mice, relate this to HFpEF, and investigate possible causative roles for OPN in driving the cardiomyopathy. METHODS: OGDHL mRNA and protein were quantified in myocardial samples from patients with HFpEF, heart failure with reduced ejection fraction, and donor control subjects. OGDHL expression was quantified in hiPS-CMs treated with or without anti-OPN antibody. Cardiac parameters were evaluated in Col4a3-/- mice with and without global OPN knockout or AAV9-mediated delivery of 2-oxoglutarate dehydrogenase-like (Ogdhl) to the heart. RESULTS: OGDHL mRNA and protein displayed abnormal abundances in cardiac biopsies of HFpEF (n = 17) compared with donor control subjects (n = 12; p < 0.01) or heart failure with reduced ejection fraction patients (n = 12; p < 0.05). Blockade of OPN in hiPS-CMs conferred increased OGDHL expression. Col4a3-/- mice demonstrated cardiomyopathy with similarities to HFpEF, including diastolic dysfunction, cardiac hypertrophy and fibrosis, pulmonary edema, and impaired mitochondrial function. The cardiomyopathy was ameliorated by Opn-/- coincident with improved renal function and increased expression of Ogdhl. Heart-specific overexpression of Ogdhl in Col4a3-/- mice also improved cardiac function and cardiomyocyte energy state. CONCLUSIONS: Col4a3-/- mice present a model of HFpEF secondary to CKD wherein OPN and OGDHL are intermediates, and possibly therapeutic targets.


Assuntos
Modelos Animais de Doenças , Insuficiência Cardíaca Diastólica/etiologia , Complexo Cetoglutarato Desidrogenase/metabolismo , Osteopontina/metabolismo , Disfunção Ventricular Esquerda/etiologia , Animais , Autoantígenos/genética , Colágeno Tipo IV/genética , Fibrose , Terapia Genética , Insuficiência Cardíaca Diastólica/metabolismo , Insuficiência Cardíaca Diastólica/patologia , Insuficiência Cardíaca Diastólica/terapia , Complexo Cetoglutarato Desidrogenase/genética , Camundongos , Camundongos Knockout , Mitocôndrias/metabolismo , Miocárdio/metabolismo , Miocárdio/patologia , Nefrite Hereditária/complicações , Osteopontina/genética , Estresse Oxidativo , Disfunção Ventricular Esquerda/metabolismo
5.
Micromachines (Basel) ; 10(7)2019 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-31331014

RESUMO

In this report, we propose a micro vacuum chuck (MVC) which can connect three-dimensional (3D) tissues to a tensile test system by vacuum pressure. Because the MVC fixes the 3D tissue by vacuum pressure generated on multiple vacuum holes, it is expected that the MVC can fix 3D tissue to the system easily and mitigate the damage which can happen by handling during fixing. In order to decide optimum conditions for the size of the vacuum holes and the vacuum pressure, various sized vacuum holes and vacuum pressures were applied to a normal human cardiac fibroblast 3D tissue. From the results, we confirmed that a square shape with 100 µm sides was better for fixing the 3D tissue. Then we mounted our developed MVCs on a specially developed tensile test system and measured the bio-mechanical property (beating force) of cardiac 3D tissue which was constructed of human induced pluripotent stem cell-derived cardiomyocytes (hiPS-CM); the 3D tissue had been assembled by the layer-by-layer (LbL) method. We measured the beating force of the cardiac 3D tissue and confirmed the measured force followed the Frank-Starling relationship. This indicates that the beating property of cardiac 3D tissue obtained by the LbL method was close to that of native cardiac tissue.

7.
Artigo em Chinês | WPRIM | ID: wpr-665096

RESUMO

OBJECTIVE Transient outward potassium current (Ito) plays a crucial role in cardiac phase 1 repolarization and the channels are assembled by pore-forming α-subunits (Kv4.2 or Kv4.3) and auxiliary subunits (KChIP2 and DPP6). Previous studies have found that the compound NS5806 increases Ito in canine ventricular cardiomyocytes through slowing current decay. Here, we reported that NS5806 produced an acute inhibitory action on Ito in mouse ventricular cardiomyocytes and human induced pluripotent stem cell-derived cardiomyocytes (hiPS-CM). METHODS Whole-cell patch-clamp was used to record Ito in native myocytes and in HEK cells expressing cloned Kv4.x/KChIP2/DPP6 channels; Western-blot detected the channel protein expression. RESULTS In isolated mouse ventricular cardiomyocytes, NS5806 (0.1-30 μmol·L-1) inhibited Ito in a concentration-dependent manner with IC50 of 6.6±1.9 μmol·L-1. The current decay was significantly accelerated with a time constant from 53.8±5.5 to 41.8±3.0 ms at +60 mV (P<0.01). Similarly, NS5806 concentration-dependently reduced the Ito peak current amplitude with an acceleration of current decay. In addition, NS5806 increased IKv4.2/KChIP2 and delayed current decay, but decreased IKv4.2/KChIP2/DPP6 with the acceleration of current decay. The inhibitory action on the current was more potent if DPP6 expression level was increased from Kv4.2/KChIP2/DPP61:1:1 to 1:1:3. Western-blot showed a higher expression of DPP6 protein in mouse heart and in hiPS- CM compared to canine heart. Moreover, specific knock- down DPP6 expression by siRNA antagonized the inhibitory action of NS5806 in hiPS-CM. Our results pointed to an important role of DPP6 subunit in the regulation of NS5806 on the channel. By using molecular docking simulation, five interaction sites with high possibility between KChIP2 and DPP6 were identified. Mutations of those sites changed the inhibitory action of NS58056 into excitatory effect on the current with the delay of current decay. CONCLUSION NS5806 significantly inhibits Ito by accelerating current decay in mouse cardiomyocytes and hiPS-CM. The effect depends on the interaction between DPP6 and KChIP2 subunits.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa