Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Nanotechnology ; 33(44)2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-35882215

RESUMO

The design and construction of active centres are key to exploring advanced electrocatalysts for oxygen evolution reaction (OER). In this work, we demonstrate thein situconstruction of point defects on CrOOH by Ni doping (Ni-CrOOH/NF). Compared with pure CrOOH/NF, Ni-CrOOH/NF showed enhanced OER activity. The effect of the amount of Ni introduced on the OER performance was investigated. Ni0.2-CrOOH/NF, the best introduction of Ni, uses a low overpotential of 253 mV to achieve a current density of 10 mA cm-2with a high turnover frequency of 0.27 s-1in 1.0 M NaOH. In addition, the electrocatalytic performance of Ni0.2-CrOOH/NF showed little deterioration after 1000-cycle cyclic voltammetry scanning. In the potentiostatic test, activity was stable for at least 20 h.

2.
Nanotechnology ; 32(28)2021 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-33765662

RESUMO

The oxygen evolution reaction (OER) is a process in electrochemical water splitting with sluggish kinetics that needs efficient non-noble-metal electrocatalysts. There have been few studies of CrOOH electrocatalysts for water oxidation due to their low performance. Herein,in situsynthesized Fe-doped CrOOH nanosheets on Ni foam (Fe-CrOOH/NF) were designed as electrocatalysts and performance in the OER was obviously improved. The effect of the amount of Fe doping was also investigated. Experiments revealed that the best performance of Fe-CrOOH/NF requires low overpotentials of 259 mV to reach 20 mA cm-2together with a turnover frequency of 0.245 s-1in 1.0 M KOH, which may suggest a new direction for the development of Fe-doped OER electrocatalysts.

3.
Sci Bull (Beijing) ; 67(17): 1763-1775, 2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-36546062

RESUMO

Anodic urea oxidation reaction (UOR) is an intriguing half reaction that can replace oxygen evolution reaction (OER) and work together with hydrogen evolution reaction (HER) toward simultaneous hydrogen fuel generation and urea-rich wastewater purification; however, it remains a challenge to achieve overall urea electrolysis with high efficiency. Herein, we report a multifunctional electrocatalyst termed as Rh/NiV-LDH, through integration of nickel-vanadium layered double hydroxide (LDH) with rhodium single-atom catalyst (SAC), to achieve this goal. The electrocatalyst delivers high HER mass activity of 0.262 A mg-1 and exceptionally high turnover frequency (TOF) of 2.125 s-1 at an overpotential of 100 mV. Moreover, exceptional activity toward urea oxidation is addressed, which requires a potential of 1.33 V to yield 10 mA cm-2, endorsing the potential to surmount the sluggish OER. The splendid catalytic activity is enabled by the synergy of the NiV-LDH support and the atomically dispersed Rh sites (located on the Ni-V hollow sites) as evidenced both experimentally and theoretically. The self-supported Rh/NiV-LDH catalyst serving as the anode and cathode for overall urea electrolysis (1 mol L-1 KOH with 0.33 mol L-1 urea as electrolyte) only requires a small voltage of 1.47 V to deliver 100 mA cm-2 with excellent stability. This work provides important insights into multifunctional SAC design from the perspective of support sites toward overall electrolysis applications.


Assuntos
Eletrólise , Ureia , Nitrogênio da Ureia Sanguínea , Hidrogênio , Hidróxidos , Oxigênio
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa