RESUMO
Traditional linear mediation analysis has inherent limitations when it comes to handling high-dimensional mediators. Particularly, accurately estimating and rigorously inferring mediation effects is challenging, primarily due to the intertwined nature of the mediator selection issue. Despite recent developments, the existing methods are inadequate for addressing the complex relationships introduced by confounders. To tackle these challenges, we propose a novel approach called DP2LM (Deep neural network-based Penalized Partially Linear Mediation). This approach incorporates deep neural network techniques to account for nonlinear effects in confounders and utilizes the penalized partially linear model to accommodate high dimensionality. Unlike most existing works that concentrate on mediator selection, our method prioritizes estimation and inference on mediation effects. Specifically, we develop test procedures for testing the direct and indirect mediation effects. Theoretical analysis shows that the tests maintain the Type-I error rate. In simulation studies, DP2LM demonstrates its superior performance as a modeling tool for complex data, outperforming existing approaches in a wide range of settings and providing reliable estimation and inference in scenarios involving a considerable number of mediators. Further, we apply DP2LM to investigate the mediation effect of DNA methylation on cortisol stress reactivity in individuals who experienced childhood trauma, uncovering new insights through a comprehensive analysis.
Assuntos
Aprendizado Profundo , Análise de Mediação , Humanos , Modelos EstatísticosRESUMO
The need to select mediators from a high dimensional data source, such as neuroimaging data and genetic data, arises in much scientific research. In this work, we formulate a multiple-hypothesis testing framework for mediator selection from a high-dimensional candidate set, and propose a method, which extends the recent development in false discovery rate (FDR)-controlled variable selection with knockoff to select mediators with FDR control. We show that the proposed method and algorithm achieved finite sample FDR control. We present extensive simulation results to demonstrate the power and finite sample performance compared with the existing method. Lastly, we demonstrate the method for analyzing the Adolescent Brain Cognitive Development (ABCD) study, in which the proposed method selects several resting-state functional magnetic resonance imaging connectivity markers as mediators for the relationship between adverse childhood events and the crystallized composite score in the NIH toolbox.
Assuntos
Algoritmos , Encéfalo , Simulação por Computador , Imageamento por Ressonância Magnética , Humanos , Imageamento por Ressonância Magnética/métodos , Imageamento por Ressonância Magnética/estatística & dados numéricos , Adolescente , Encéfalo/diagnóstico por imagem , Neuroimagem/métodos , Neuroimagem/estatística & dados numéricos , Interpretação Estatística de Dados , Modelos Estatísticos , Reações Falso-Positivas , Biometria/métodos , CogniçãoRESUMO
BACKGROUND: Environmental exposures can regulate intermediate molecular phenotypes, such as gene expression, by different mechanisms and thereby lead to various health outcomes. It is of significant scientific interest to unravel the role of potentially high-dimensional intermediate phenotypes in the relationship between environmental exposure and traits. Mediation analysis is an important tool for investigating such relationships. However, it has mainly focused on low-dimensional settings, and there is a lack of a good measure of the total mediation effect. Here, we extend an R-squared (R[Formula: see text]) effect size measure, originally proposed in the single-mediator setting, to the moderate- and high-dimensional mediator settings in the mixed model framework. RESULTS: Based on extensive simulations, we compare our measure and estimation procedure with several frequently used mediation measures, including product, proportion, and ratio measures. Our R[Formula: see text]-based second-moment measure has small bias and variance under the correctly specified model. To mitigate potential bias induced by non-mediators, we examine two variable selection procedures, i.e., iterative sure independence screening and false discovery rate control, to exclude the non-mediators. We establish the consistency of the proposed estimation procedures and introduce a resampling-based confidence interval. By applying the proposed estimation procedure, we found that 38% of the age-related variations in systolic blood pressure can be explained by gene expression profiles in the Framingham Heart Study of 1711 individuals. An R package "RsqMed" is available on CRAN. CONCLUSION: R-squared (R[Formula: see text]) is an effective and efficient measure for total mediation effect especially under high-dimensional setting.
Assuntos
Estudos Longitudinais , HumanosRESUMO
Causal mediation analysis aims to examine the role of a mediator or a group of mediators that lie in the pathway between an exposure and an outcome. Recent biomedical studies often involve a large number of potential mediators based on high-throughput technologies. Most of the current analytic methods focus on settings with one or a moderate number of potential mediators. With the expanding growth of -omics data, joint analysis of molecular-level genomics data with epidemiological data through mediation analysis is becoming more common. However, such joint analysis requires methods that can simultaneously accommodate high-dimensional mediators and that are currently lacking. To address this problem, we develop a Bayesian inference method using continuous shrinkage priors to extend previous causal mediation analysis techniques to a high-dimensional setting. Simulations demonstrate that our method improves the power of global mediation analysis compared to simpler alternatives and has decent performance to identify true nonnull contributions to the mediation effects of the pathway. The Bayesian method also helps us to understand the structure of the composite null cases for inactive mediators in the pathway. We applied our method to Multi-Ethnic Study of Atherosclerosis and identified DNA methylation regions that may actively mediate the effect of socioeconomic status on cardiometabolic outcomes.
Assuntos
Metilação de DNA , Modelos Estatísticos , Teorema de Bayes , Causalidade , Análise de MediaçãoRESUMO
Environmental exposures such as cigarette smoking influence health outcomes through intermediate molecular phenotypes, such as the methylome, transcriptome, and metabolome. Mediation analysis is a useful tool for investigating the role of potentially high-dimensional intermediate phenotypes in the relationship between environmental exposures and health outcomes. However, little work has been done on mediation analysis when the mediators are high-dimensional and the outcome is a survival endpoint, and none of it has provided a robust measure of total mediation effect. To this end, we propose an estimation procedure for Mediation Analysis of Survival outcome and High-dimensional omics mediators (MASH) based on sure independence screening for putative mediator variable selection and a second-moment-based measure of total mediation effect for survival data analogous to the R2 measure in a linear model. Extensive simulations showed good performance of MASH in estimating the total mediation effect and identifying true mediators. By applying MASH to the metabolomics data of 1919 subjects in the Framingham Heart Study, we identified five metabolites as mediators of the effect of cigarette smoking on coronary heart disease risk (total mediation effect, 51.1%) and two metabolites as mediators between smoking and risk of cancer (total mediation effect, 50.7%). Application of MASH to a diffuse large B-cell lymphoma genomics data set identified copy-number variations for eight genes as mediators between the baseline International Prognostic Index score and overall survival.
RESUMO
Environmental exposures such as cigarette smoking influence health outcomes through intermediate molecular phenotypes, such as the methylome, transcriptome, and metabolome. Mediation analysis is a useful tool for investigating the role of potentially high-dimensional intermediate phenotypes in the relationship between environmental exposures and health outcomes. However, little work has been done on mediation analysis when the mediators are high-dimensional and the outcome is a survival endpoint, and none of it has provided a robust measure of total mediation effect. To this end, we propose an estimation procedure for Mediation Analysis of Survival outcome and High-dimensional omics mediators (MASH) based on sure independence screening for putative mediator variable selection and a second-moment-based measure of total mediation effect for survival data analogous to the R 2 measure in a linear model. Extensive simulations showed good performance of MASH in estimating the total mediation effect and identifying true mediators. By applying MASH to the metabolomics data of 1919 subjects in the Framingham Heart Study, we identified five metabolites as mediators of the effect of cigarette smoking on coronary heart disease risk (total mediation effect, 51.1%) and two metabolites as mediators between smoking and risk of cancer (total mediation effect, 50.7%). Application of MASH to a diffuse large B-cell lymphoma genomics data set identified copy-number variations for eight genes as mediators between the baseline International Prognostic Index score and overall survival.
RESUMO
In mediation analysis, the exposure often influences the mediating effect, i.e., there is an interaction between exposure and mediator on the dependent variable. When the mediator is high-dimensional, it is necessary to identify non-zero mediators M and exposure-by-mediator ( X -by- M ) interactions. Although several high-dimensional mediation methods can naturally handle X -by- M interactions, research is scarce in preserving the underlying hierarchical structure between the main effects and the interactions. To fill the knowledge gap, we develop the XMInt procedure to select M and X -by- M interactions in the high-dimensional mediators setting while preserving the hierarchical structure. Our proposed method employs a sequential regularization-based forward-selection approach to identify the mediators and their hierarchically preserved interaction with exposure. Our numerical experiments showed promising selection results. Further, we applied our method to ADNI morphological data and examined the role of cortical thickness and subcortical volumes on the effect of amyloid-beta accumulation on cognitive performance, which could be helpful in understanding the brain compensation mechanism.
RESUMO
DNA methylation (DNAm) has been suggested to play a critical role in post-traumatic stress disorder (PTSD), through mediating the relationship between trauma and PTSD. However, this underlying mechanism of PTSD for African Americans still remains unknown. To fill this gap, in this article, we investigate how DNAm mediates the effects of traumatic experiences on PTSD symptoms in the Detroit Neighborhood Health Study (DNHS) (2008-2013) which involves primarily African Americans adults. To achieve this, we develop a new mediation analysis approach for high-dimensional potential DNAm mediators. A key novelty of our method is that we consider heterogeneity in mediation effects across subpopulations. Specifically, mediators in different subpopulations could have opposite effects on the outcome, and thus could be difficult to identify under a traditional homogeneous model framework. In contrast, the proposed method can estimate heterogeneous mediation effects and identifies subpopulations in which individuals share similar effects. Simulation studies demonstrate that the proposed method outperforms existing methods for both homogeneous and heterogeneous data. We also present our mediation analysis results of a dataset with 125 participants and more than 450,000 CpG sites from the DNHS study. The proposed method finds three subgroups of subjects and identifies DNAm mediators corresponding to genes such as HSP90AA1 and NFATC1 which have been linked to PTSD symptoms in literature. Our finding could be useful in future finer-grained investigation of PTSD mechanism and in the development of new treatments for PTSD.
RESUMO
Mediation analysis is a common statistical method for investigating the mechanism of environmental exposures on health outcomes. Previous studies have extended mediation models with a single mediator to high-dimensional mediators selection. It is often assumed that there are no confounders that influence the relations among the exposure, mediator, and outcome. This is not realistic for the observational studies. To accommodate the potential confounders, we propose a concise and efficient high-dimensional mediation analysis procedure using the propensity score for adjustment. Results from simulation studies demonstrate the proposed procedure has good performance in mediator selection and effect estimation compared with methods that ignore all confounders. Of note, as the sample size increases, the performance of variable selection and mediation effect estimation is as well as the results shown in the method which include all confounders as covariates in the mediation model. By applying this procedure to a TCGA lung cancer data set, we find that lung cancer patients who had serious smoking history have increased the risk of death via the methylation markers cg21926276 and cg20707991 with significant hazard ratios of 1.2093 (95% CI: 1.2019-1.2167) and 1.1388 (95% CI: 1.1339-1.1438), respectively.
RESUMO
Mediation analysis has been extensively used to identify potential pathways between exposure and outcome. However, the analytical methods of high-dimensional mediation analysis for survival data are still yet to be promoted, especially for non-Cox model approaches. We propose a procedure including "two-step" variable selection and indirect effect estimation for the additive hazards model with high-dimensional mediators. We first apply sure independence screening and smoothly clipped absolute deviation regularization to select mediators. Then we use the Sobel test and the BH method for indirect effect hypothesis testing. Simulation results demonstrate its good performance with a higher true-positive rate and accuracy, as well as a lower false-positive rate. We apply the proposed procedure to analyze DNA methylation markers mediating smoking and survival time of lung cancer patients in a TCGA (The Cancer Genome Atlas) cohort study. The real data application identifies four mediate CpGs, three of which are newly found.
RESUMO
Causal mediation analysis aims to characterize an exposure's effect on an outcome and quantify the indirect effect that acts through a given mediator or a group of mediators of interest. With the increasing availability of measurements on a large number of potential mediators, like the epigenome or the microbiome, new statistical methods are needed to simultaneously accommodate high-dimensional mediators while directly target penalization of the natural indirect effect (NIE) for active mediator identification. Here, we develop two novel prior models for identification of active mediators in high-dimensional mediation analysis through penalizing NIEs in a Bayesian paradigm. Both methods specify a joint prior distribution on the exposure-mediator effect and mediator-outcome effect with either (a) a four-component Gaussian mixture prior or (b) a product threshold Gaussian prior. By jointly modeling the two parameters that contribute to the NIE, the proposed methods enable penalization on their product in a targeted way. Resultant inference can take into account the four-component composite structure underlying the NIE. We show through simulations that the proposed methods improve both selection and estimation accuracy compared to other competing methods. We applied our methods for an in-depth analysis of two ongoing epidemiologic studies: the Multi-Ethnic Study of Atherosclerosis (MESA) and the LIFECODES birth cohort. The identified active mediators in both studies reveal important biological pathways for understanding disease mechanisms.