Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Musculoskelet Neuronal Interact ; 23(4): 377-385, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-38037356

RESUMO

OBJECTIVES: This study compared muscle growth in response to very low load resistance training with direct pulsed current (DPC) stimulation and traditional high load training. METHODS: Twenty-six resistance trained individuals had each leg assigned to one of two unilateral knee extension protocols: 1) 4 sets of 20 repetitions at ~10% one-repetition maximum (1RM) and inter-set rest periods of 30 s (DPC) and 2) 4 sets to muscular failure at ~70% 1RM (TRAD). Muscle thickness (MTH), 1RM strength, and local muscular endurance (LME) were measured before and after 8-weeks of training. An alpha level of 0.05 was used for all comparisons. RESULTS: MTH increased similarly between TRAD and DPC at the 50% (0.24 cm, 95%CI: 0.11-0.36), and the 60% anterior sites (0.25 cm, 95%CI: 0.10-.040), as well as the lateral (0.25 cm, 95%CI: 0.10-.040) and medial sites (0.21 cm, 95%CI: 0.10-0.31), but was greater for TRAD at the 40% anterior site (0.3 cm, 95%CI: 0.16-0.43). Changes in 1RM were greater for TRAD (10.2 kg, 95%CI: 5.8-14.4). LME increased similarly between protocols (5 repetitions, 95%CI: 3-7). CONCLUSIONS: The current data suggest that very low load knee extension resistance training with DPC could be a viable training strategy for promoting skeletal muscle growth and local muscular endurance.


Assuntos
Músculo Esquelético , Treinamento Resistido , Humanos , Músculo Esquelético/fisiologia , Treinamento Resistido/métodos , Força Muscular/fisiologia , Articulação do Joelho
2.
Clin Physiol Funct Imaging ; 43(2): 109-119, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36401343

RESUMO

PURPOSE: The purpose of this study is to examine the acute muscular and cardiovascular responses to applying blood flow restriction (BFR) before high-load training. METHODS: Forty trained individuals visited the lab on three occasions. On Visit 1, participants completed paperwork and performed strength assessments. During Visits 2 and 3, participants completed four exercise conditions (one in each arm during each visit) as follows: (1) traditional resistance training (TRAD), (2) low load training with BFR (LLBFR), (3) low repetition high load training with pre-exercise BFR (PreBFR), and (4) low repetition traditional training (LRTRAD). Blood pressure, muscle thickness (MT), and isometric strength (ISO) were measured before and after exercise. RESULTS: Data are displayed as means (SD). Immediately following exercise, MT in TRAD was greater compared with PreBFR (mean difference = 0.18[0.30] cm, p < 0.001) and LRTRAD (mean difference = 0.28[0.30] cm, p < 0.001). In addition, LLBFR demonstrated greater MT compared with PreBFR (mean difference = 0.24[0.30] cm, p < 0.001]. Immediately following exercise, ISO was lower in TRAD compared with PreBFR (mean difference = 33.8[46.9]N, p < 0.001) and the LRTRAD condition (mean difference = 32.8[50.4]N, p < 0.001). In addition, ISO was lower in LLBFR compared with PreBFR (mean difference = 43.9 [47.4]N, p < 0.001) and LRTRAD (mean difference = 42.9 [43.8]N, p < 0.001). Immediately following exercise, systolic blood pressure was greater in TRAD compared with PreBFR and LRTRAD. CONCLUSION: The application of BFR before engaging in high-load training does not seem to augment the muscular responses to exercise when compared with traditional high loads alone; however, it may pose less demand on the cardiovascular system.


Assuntos
Sistema Cardiovascular , Treinamento Resistido , Humanos , Músculo Esquelético/fisiologia , Força Muscular/fisiologia , Fluxo Sanguíneo Regional/fisiologia , Hemodinâmica
3.
Front Physiol ; 11: 259, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32292355

RESUMO

While high-load resistance training increases muscle hypertrophy, the intramuscular protein responses to this form of training remains largely unknown. In the current study, recreationally resistance-trained college-aged males (N = 15; mean ± SD: 23 ± 3 years old, 6 ± 5 years training) performed full-body, low-volume, high-load [68-90% of one repetition maximum (1RM)] resistance training over 10 weeks. Back squat strength testing, body composition testing, and a vastus lateralis biopsy were performed before (PRE) and 72 h after the 10-week training program (POST). Fiber type-specific cross-sectional area (fCSA), myofibrillar protein concentrations, sarcoplasmic protein concentrations, myosin heavy chain and actin protein abundances, and muscle tissue percent fluid were analyzed. The abundances of individual sarcoplasmic proteins in 10 of the 15 participants were also assessed using proteomics. Significant increases (p < 0.05) in type II fCSA and back squat strength occurred with training, although whole-body fat-free mass paradoxically decreased (p = 0.026). No changes in sarcoplasmic protein concentrations or muscle tissue percent fluid were observed. Myosin heavy chain protein abundance trended downward (-2.9 ± 5.8%, p = 0.069) and actin protein abundance decreased (-3.2 ± 5.3%, p = 0.034) with training. Proteomics indicated only 13 sarcoplasmic proteins were altered with training (12 up-regulated, 1 down-regulated, p < 0.05). Bioinformatics indicated no signaling pathways were affected, and proteins involved with metabolism (e.g., ATP-PCr, glycolysis, TCA cycle, or beta-oxidation) were not affected. These data comprehensively describe intramuscular protein adaptations that occur following 10 weeks of high-load resistance training. Although previous data from our laboratory suggests high-volume resistance training enhances the ATP-PCr and glycolytic pathways, we observed different changes in metabolism-related proteins in the current study with high-load training.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa