Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(33): e2407012121, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39102537

RESUMO

Water resources are indispensable basic resources and important environmental carriers; the presence of organic contaminants in wastewater poses considerable risks to the health of both humans and ecosystems. Although the Fenton-like reactions using H2O2 as the oxidant to destroy organic pollutants are attractive, there are still challenges in improving reaction activity under neutral or even alkaline conditions. Herein, we designed a H2O2 activation pathway with O2•- as the main active species and elucidated that the spin interaction between Fe sites and coordinated O atoms effectively promotes the generation of the key intermediate Fe-*OOH. Furthermore, we successfully captured and analyzed the Fe-*OOH intermediate by in situ Raman spectroscopy. When applying FBOB to a continuous-flow reactor, CIP removal efficiency remained at around 90% within 600 min of continuous operation, achieving excellent efficiency, stability, and pH tolerance in removing pollutants.

2.
J Am Chem Soc ; 146(31): 21752-21761, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39056815

RESUMO

Organic polyradicals with a high-spin ground state and quantum magnetic properties suitable for spin manipulation are valuable materials for diverse innovative technologies, including quantum devices. However, the typically high reactivity and low stability of conventional polyradicals present a major obstacle to such applications. In this study, a highly stable carbon-centered triradical TR with a quartet ground state and excellent stability (τ1/2 of ∼90 days in air-saturated toluene at room temperature) is achieved, which shows apposite magnetic anisotropy and Zeeman splitting partition with favorable addressability. By virtue of the optimal stability, thorough structural and magnetic characterizations are realized. With X-ray crystallography unambiguously proving the molecular structure, the quartet ground state (ΔED-Q = 0.78 kcal/mol) is confirmed by the SQUID measurements, while the cw- and pulsed EPR techniques offer additional supportive evidence for the high-spin nature. Remarkably, owing to the easily attained magnetic anisotropy, selective excitations between different Zeeman splitting levels are successfully demonstrated with TR in its frozen toluene solution without the requirement for special alignment, which is unprecedented for organic polyradicals. Along with the millisecond spin-lattice relaxation and microsecond coherence time manifested by TR, this triradical is promising for potential coherent spin manipulation applications as a multienergy-level quantum information carrier.

3.
Small ; : e2403107, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39030942

RESUMO

Designing robust catalysts for increasing the sluggish kinetics of the urea oxidation reaction (UOR) is challenging. Herein, the regulation of spin states for metal active sites by photoexcitation to facilitate the adsorption of urea and intermediates is demonstrated. Mo-doped nickel sulfide nanoribbon arrays (Mo-Ni3S2@NMF) with excellent light-trapping capacity are successfully prepared. Under AM 1.5G illumination, the activity of the Mo-Ni3S2@NMF exhibits a 50% improvement in the UOR current. Compared with those under dark conditions, Mo-Ni3S2@NMF achieve 10 mA cm-2 at 1.315 VRHE for UOR and 1.32 Vcell for urea electrolysis, which are decreases of 15 and 80 mV, respectively. The electron spin resonance, in situ Fourier transform infrared spectroscopy analysis and density functional theory calculations reveal that illumination led to the formation of Ni3+ active sites in a high-spin state, which strengthens the d-p orbital hybridization of Ni-N, hence facilitating the adsorption of urea. C─N cleavage of the *CONN intermediate is further inhibited, which promotes the oxidation of urea molecules via the active N2 pathway, thereby accelerating the UOR rate.

4.
Photosynth Res ; 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38662327

RESUMO

In Photosystem II, light-induced water splitting occurs via the S state cycle of the CaMn4O5-cluster. To understand the role of various possible conformations of the CaMn4O5-cluster in this process, the temperature dependence of the S1 → S2 and S2 → S3 state transitions, induced by saturating laser flashes, was studied in spinach photosystem II membrane preparations under different conditions. The S1 → S2 transition temperature dependence was shown to be much dependent on the type of the cryoprotectant and presence of 3.5% methanol, resulting in the variation of transition half-inhibition temperature by 50 K. No similar effect was observed for the S2 → S3 state transition, for which we also show that both the low spin g = 2.0 multiline and high spin g = 4.1 EPR configurations of the S2 state advance with similar efficiency to the S3 state, both showing a transition half-inhibition temperature of 240 K. This was further confirmed by following the appearance of the Split S3 EPR signal. The results are discussed in relevance to the functional and structural heterogeneity of the water oxidizing complex intermediates in photosystem II.

5.
Chemistry ; 30(8): e202303456, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-37988241

RESUMO

High-spin organic tetraradicals with significant intramolecular exchange interactions have high potential for advanced technological applications and fundamental research, but those synthesized to date possess limited stability and processability. In this work, we have designed a tetraradical based on the Blatter's radical and nitronyl nitroxide radical moieties and successfully synthesized it by using the palladium-catalyzed cross-coupling reaction of a triiodo-derivative of the 1,2,4-benzotriazinyl radical with gold(I) nitronyl nitroxide-2-ide complex in the presence of a newly developed efficient catalytic system. The molecular and crystal structure of the tetraradical was confirmed by X-ray diffraction analysis. The tetraradical possesses good thermal stability with decomposition onset at ∼150 °C under an inert atmosphere and exhibits reversible redox waves at -0.54 and 0.45 V versus Ag/AgCl. The magnetic properties of the tetraradical were characterized by SQUID magnetometry of polycrystalline powders and EPR spectroscopy in various matrices. The collected data, analyzed by using high-level quantum chemical calculations, confirmed that the tetraradical has a triplet ground state and a nearby excited quintet state. The unique high stability of the prepared triazinyl-nitronylnitroxide tetraradical is a new milestone in the field of creating high-spin systems.

6.
Chemistry ; 30(27): e202303549, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38433097

RESUMO

3,4-Dimethylenecyclobutene (DMCB) is an unusual isomer of benzene. Motivated by recent synthetic progress to substituted derivatives of this scaffold, we carried out a theoretical and computational analysis with a particular focus on the extent of (anti)aromatic character in the lowest excited states of different multiplicities. We found that the parent DMCB is non-aromatic in its singlet ground state (S0), lowest triplet state (T1), and lowest singlet excited state (S1), while it is aromatic in its lowest quintet state (Q1) as this state is represented by a triplet multiplicity cyclobutadiene (CBD) ring and two uncoupled same-spin methylene radicals. Interestingly, the Q1 state, despite having four unpaired electrons, is placed merely 4.8 eV above S0, and there is a corresponding singlet tetraradical 0.16 eV above. The DMCB is potentially a highly useful structural motif for the design of larger molecular entities with interesting optoelectronic properties. Here, we designed macrocycles composed of fused DMCB units, and according to our computations, two of these have low-lying nonet states (i. e., octaradical states) at energies merely 2.40 and 0.37 eV above their S0 states as a result of local Hückel- and Baird-aromatic character of individual 6π- and 4π-electron monocycles.

7.
Chemistry ; 30(26): e202400336, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38438303

RESUMO

Here, we combined magnetometry, multi-frequency electronic paramagnetic resonance, and wave function based ab initio calculations to investigate magnetic properties of two high spin Co(II) complexes Co(BDPRP) (BDPRP=2,6-bis((2-(S)-di(4-R)phenylhydroxylmethyl-1-pyrrolidi-nyl)methyl)pyridine, R=H for 8; R=tBu for 9). Complexes 8 and 9 featuring effective D3h symmetry were found to possess D=24.0 and 32.0 cm-1, respectively, in their S=3/2 ground states of 1 e ' ' d x z / y z 4 1 e ' d x y / x 2 - y 2 2 1 a 1 ' d z 2 1 ${{\left(1{{\rm e}}^{{\rm { {^\prime}}}{\rm { {^\prime}}}}\right({d}_{xz/yz}\left)\right)}^{4}{\left(1{{\rm e}}^{{\rm { {^\prime}}}}\right({d}_{{xy/{x}^{2}-y}^{2}}\left)\right)}^{2}{\left(1{{\rm a}}_{1}^{{\rm { {^\prime}}}}\right({d}_{{z}^{2}}\left)\right)}^{1}}$ . Ligand field analyses revealed that the low-lying d-d excited states make either positive or vanishing contributions to D. Hence, total positive D values were measured for 8 and 9, as well as related D3h high spin Co(II) complexes. In contrast, negative D values are usually observed for C3v congeners. In-depth analyses suggested that lowering symmetry from D3h to C3v induces orbital mixing between 1 e d x z / y z ${1{\rm e}\left({d}_{xz/yz}\right)}$ and 2 e d x y / x 2 - y 2 ${2{\rm e}\left({d}_{{xy/{x}^{2}-y}^{2}}\right)}$ and admixes excited state 4 A 2 1 e → 2 e ${{}^{4}{{\rm A}}_{2}\left(1e\to 2e\right)}$ into the ground state. Both factors turn the total D value progressively negative with the increasing distance (δ) of the Co(II) center out of the equatorial plane. Therefore, δ determines the sign and magnitude of final D values of five-coordinate trigonal bipyramidal S=3/2 Co(II) complexes as measured for a series of such species with varying δ.

8.
Molecules ; 29(2)2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38257224

RESUMO

Water-soluble metalloporphyrins, depending on the metal center, possess special spectral, coordination, and photochemical features. In nickel(II) porphyrins, the Ni(II) center can occur with low-spin or high-spin electronic configuration. In aqueous solution, the cationic nickel(II) complex (Ni(II)TMPyP4+, where H2TMPyP4+ = 5,10,15,20-tetrakis(1-methylpyridinium-4-yl)porphyrin), exists in both forms in equilibrium. In this study, an equilibrium system involving the low-spin and high-spin forms of Ni(II)TMPyP4+ was investigated via application of irradiation, temperature change, and various potential axial ligands. Soret band excitation of this aqueous system, in the absence of additional axial ligands, resulted in a shift in the equilibrium toward the low-spin species due to the removal of axial solvent ligands. The kinetics and the thermodynamics of the processes were also studied via determination of the rate and equilibrium constants, as well as the ΔS, ΔH, and ΔG values. Temperature increase had a similar effect. The equilibrium of the spin isomers was also shifted by decreasing the solvent polarity (using n-propanol) as well as by the addition of a stronger coordinating axial ligand (such as ammonia). Since triethanolamine is an efficient electron donor in Ni(II)TMPyP4+-based photocatalytic systems, its interaction with this metalloporphyin was also studied. The results promote the development of efficient photocatalytic systems based on this complex.

9.
Small ; 19(32): e2206587, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37038085

RESUMO

Photoactivation of aspartic acid-based carbon dots (Asp-CDs) induces the generation of spin-separated species, including electron/hole (e- /h+ ) polarons and spin-coupled triplet states, as uniquely confirmed by the light-induced electron paramagnetic resonance spectroscopy. The relative population of the e- /h+ pairs and triplet species depends on the solvent polarity, featuring a substantial stabilization of the triplet state in a non-polar environment (benzene). The electronic properties of the photoexcited Asp-CDs emerge from their spatial organization being interpreted as multi-layer assemblies containing a hydrophobic carbonaceous core and a hydrophilic oxygen and nitrogen functionalized surface. The system properties are dissected theoretically by density functional theory in combination with molecular dynamics simulations on quasi-spherical assemblies of size-variant flakelike model systems, revealing the importance of size dependence and interlayer effects. The formation of the spin-separated states in Asp-CDs enables the photoproduction of hydrogen peroxide (H2 O2 ) from water and water/2-propanol mixture via a water oxidation reaction.

10.
Chemphyschem ; 24(2): e202200652, 2023 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-36515278

RESUMO

Metal acetylacetonates of the general formula [M(acac)3 ] (MIII =Cr, Mn, Fe, Co) are among the best investigated coordination compounds. Many of these first-row transition metal complexes are known to have unique electronic properties. Independently, photophysical research with different ß-diketonate ligands pointed towards the possibility of a special effect of the 2,4,6-trimethylphenyl substituted acetylacetonate (mesacac) on the electron distribution between ligand and metal (MLCT). We therefore synthesized and fully characterized the previously unknown octahedral title complex. Its solid-state structure shows a Jahn-Teller elongation with two Mn-O bonds of 2.12/2.15 Šand four Mn-O bonds of 1.93 Å. Thermogravimetric data show a thermal stability up to 270 °C. High-resolution mass spectroscopy helped to identify the decomposition pathways. The electronic state and spin configuration of manganese were characterized with a focus on its magnetic properties by measurement of the magnetic susceptibility and triple-zeta density functional theory (DFT) calculations. The high-spin state of manganese was confirmed by the determination of an effective magnetic moment of 4.85 µB for the manganese center.

11.
Environ Sci Technol ; 57(10): 4266-4275, 2023 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-36849443

RESUMO

Four-nitrogen-coordinated transitional metal (MN4) configurations in single-atom catalysts (SACs) are broadly recognized as the most efficient active sites in peroxymonosulfate (PMS)-based advanced oxidation processes. However, SACs with a coordination number higher than four are rarely explored, which represents a fundamental missed opportunity for coordination chemistry to boost PMS activation and degradation of recalcitrant organic pollutants. We experimentally and theoretically demonstrate here that five-nitrogen-coordinated Mn (MnN5) sites more effectively activate PMS than MnN4 sites, by facilitating the cleavage of the O-O bond into high-valent Mn(IV)-oxo species with nearly 100% selectivity. The high activity of MnN5 was discerned to be due to the formation of higher-spin-state N5Mn(IV)═O species, which enable efficient two-electron transfer from organics to Mn sites through a lower-energy-barrier pathway. Overall, this work demonstrates the importance of high coordination numbers in SACs for efficient PMS activation and informs the design of next-generation environmental catalysts.


Assuntos
Manganês , Peróxidos , Domínio Catalítico , Manganês/química , Oxirredução
12.
Angew Chem Int Ed Engl ; 62(49): e202313880, 2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-37871234

RESUMO

Atomically defined large metal clusters have applications in new reaction development and preparation of materials with tailored properties. Expanding the synthetic toolbox for reactive high nuclearity metal complexes, we report a new class of Fe clusters, Tp*4 W4 Fe13 S12 , displaying a Fe13 core with M-M bonds that has precedent only in main group and late metal chemistry. M13 clusters with closed shell electron configurations can show significant stability and have been classified as superatoms. In contrast, Tp*4 W4 Fe13 S12 displays a large spin ground state of S=13. This compound performs small molecule activations involving the transfer of up to 12 electrons resulting in significant cluster rearrangements.

13.
Angew Chem Int Ed Engl ; 62(49): e202314900, 2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-37851470

RESUMO

Stable carbon-based polyradicals exhibiting strong spin-spin coupling and slow depolarization processes are particularly attractive functional materials. A new molecular motif synthesized by a convenient method that allows the integration of stable, high-spin radicals to (hetero)aromatic polycycles has been developed, as illustrated by a non-Kekulé diradical showing a triplet ground state with long persistency (τ1/2 ≈31 h) in air. Compared to the widely used 1,3-phenylene, the newly designed (diaza)pyrene-4,10-diyl moiety is for the first time demonstrated to confer ferromagnetic (FM) spin coupling, allowing delocalized non-disjoint SOMOs. With the X-ray crystallography unambiguously proving the diradical structure, the triplet ground state was thoroughly characterized. A large ΔES-T of 1.1 kcal/mol, proving the strong FM coupling effect, was revealed consistently by superconducting quantum interference device (SQUID) measurements and variable-temperature electron paramagnetic resonance (EPR) spectroscopy, while the zero-field splitting and triplet nutation characters were examined by continuous-wave and pulsed EPR spectroscopy. A millisecond spin-lattice relaxation time was also detected. The current study not only offers a new molecular motif enabling FM coupling between carbon-based spins, but more importantly presents a general method for installing stable polyradicals into functional π-systems.

14.
Magn Reson Chem ; 60(8): 829-835, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35319115

RESUMO

The first X-band EPR spectrum containing only non-overlapping signals of septet pyridyl-2,4,6-trinitrene and triplet pyridylnitrenes is reported. This spectrum was recorded after photolysis of 2,4,6-triazidopyridine in solid argon at 5 K. The zero-field splitting (ZFS) parameters of this trinitrene as well as of intermediate triplet mononitrenes and quintet dinitrenes formed at early stages of the photolysis were determined using the combination of modern computer line-shape spectral simulations and density functional theory (DFT) calculations. It was found that septet pyridyl-2,4,6-trinitrene has the record negative parameter DS = -0.1031 cm-1 among all known to date septet pyridyl-2,4,6-trinitrenes and may be of interest as a model multi-qubit spin system for investigations of quantum computation processing.


Assuntos
Teoria Quântica , Simulação por Computador , Espectroscopia de Ressonância de Spin Eletrônica/métodos , Fotólise , Pós
15.
Molecules ; 27(15)2022 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-35956880

RESUMO

A new ground triplet biradical 2',4',6'-triisopropylbiphenyl-3,5-diyl bis(tert-butyl nitroxide) (iPr3BPBN) was prepared and characterized by means of room-temperature ESR spectroscopy displaying a zero-field splitting pattern together with a half-field signal. Complex formation with gadolinium(III) 1,1,1,5,5,5-hexafluoropentane-2,4-dionate (hfac) afforded a macrocycle [{Gd(hfac)3(µ-iPr3BPBN)}2]. As the X-ray crystallographic analysis clarified, the biradical serves as a bridging ligand, giving a 16-membered ring, where each nitroxide radical oxygen atom is directly bonded to a Gd3+ ion. The magnetic study revealed that the iPr3BPBN bridge behaved as a practically triplet biradical and that the Gd3+-radical magnetic coupling was weakly ferromagnetic. The exchange parameters were estimated as 2jrad-rad/kB > 300 K and 2JGd-rad/kB = 1.2 K in the H = −2J S1•S2 convention. The DFT calculation based on the atomic coordinates clarified the ground triplet nature in metal-free iPr3BPBN and the enhanced triplet character upon coordination. The calculation also suggests that ferromagnetic coupling would be favorable when the Gd-O-N-C(sp2) torsion comes around 100°. The present results are compatible with the proposed magneto-structure relationship on the nitroxide-Gd compounds.


Assuntos
Gadolínio , Cristalografia por Raios X , Espectroscopia de Ressonância de Spin Eletrônica , Gadolínio/química , Íons , Modelos Moleculares
16.
Angew Chem Int Ed Engl ; 61(20): e202201430, 2022 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-35253345

RESUMO

Herein, we present a stable water-soluble cobalt complex supported by a dianionic 2,2'-([2,2'-bipyridine]-6,6'-diyl)bis(propan-2-ol) ligand scaffold, which is a rare example of a high-oxidation species, as demonstrated by structural, spectroscopic and theoretical data. Electron paramagnetic resonance (EPR) spectroscopy and magnetic susceptibility measurements revealed that the CoIV center of the mononuclear complex in the solid state resides in the high spin state (sextet, S=5/2). The complex can effectively catalyze water oxidation via a single-site water nucleophilic attack pathway with an overpotential of only 360 mV in a phosphate buffer with a pH of 6. The key intermediate toward water oxidation was speculated based on theoretical calculations and was identified by in situ spectroelectrochemical experiments. The results are important regarding the accessibility of high-oxidation state metal species in synthetic models for achieving robust and reactive oxidation catalysis.


Assuntos
Cobalto , Água , Catálise , Cobalto/química , Espectroscopia de Ressonância de Spin Eletrônica , Oxirredução , Água/química
17.
Angew Chem Int Ed Engl ; 60(26): 14536-14544, 2021 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-33834580

RESUMO

Spinel zinc cobalt oxide (ZnCo2 O4 ) is not considered as a superior catalyst for the electrochemical oxygen evolution reaction (OER), which is the bottleneck reaction in water-electrolysis. Herein, taking advantage of density functional theory (DFT) calculations, we find that the existence of low-spin (LS) state cobalt cations hinders the OER activity of spinel zinc cobalt oxide, as the t2g 6 eg 0 configuration gives rise to purely localized electronic structure and exhibits poor binding affinity to the key reaction intermediate. Increasing the spin state of cobalt cations in spinel ZnCo2 O4 is found to propagate a spin channel to promote spin-selected charge transport during OER and generate better active sites for intermediates adsorption. The experiments find increasing the calcination temperature a facile approach to engineer high-spin (HS) state cobalt cations in ZnCo2 O4 , while not working for Co3 O4 . The activity of the best spin-state-engineered ZnCo2 O4 outperforms other typical Co-based oxides.

18.
Angew Chem Int Ed Engl ; 60(9): 4594-4598, 2021 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-33241615

RESUMO

High-spin conjugated radicals have great potential in magnetic materials and organic spintronics. However, to obtain high-spin conjugated radicals is still quite challenging due to their poor stability. We report the successful synthesis and isolation of a stable triplet conjugated diradical, 10,12-diaryldiindeno[1,2-b:2',1'-e]pyrazine (m-DIP). With the m-xylylene analogue skeleton containing electron-deficient sp2 -nitrogen atoms, m-DIP displays significant aromatic character within its pyrazine ring and its spin density mainly delocalizes on the meta-pyrazine unit, making it a triplet ground state conjugated diradical. Our work provides an effective "spin density tuning" strategy for stable high-spin conjugated radicals.

19.
J Comput Chem ; 41(14): 1330-1336, 2020 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-32067246

RESUMO

Tri11 (now renamed as tri22) encoded cytochrome P450 monooxygenase in Trichoderma brevicompactum catalyzes the C-4 C-H hydroxylation of 12, 13-epoxytrichothec-9-ene (EPT) to produce trichodermol in the biosynthetic pathway of trichodermin/harzianum A. The density functional theory (DFT)-quantum mechanics (QM) approach is applied to elucidate the hydroxylation of EPT by using a model active species of P450 (Cpd I). The QM calculations were performed on the active site complex, to find out transition-state structure, intermediate, and product complexes for the two spin states at different potential energy surfaces. The two state reactivity rebound-free product formation resulted from the interplay of two spin states (doublet and quartet).


Assuntos
Sistema Enzimático do Citocromo P-450/metabolismo , Hypocreales/enzimologia , Tricodermina/metabolismo , Tricotecenos/metabolismo , Biocatálise , Sistema Enzimático do Citocromo P-450/química , Teoria da Densidade Funcional , Hidroxilação , Tricodermina/química , Tricotecenos/química
20.
Chemistry ; 26(16): 3626-3632, 2020 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-31872922

RESUMO

Three 1 N-phenyl nitronyl nitroxide (NN) 4-substituted dithieno[3,2-b:2',3'-d]pyrrole (DTP) derivatives with R1=4-phenyl-, 4H-, and 4-methylthiothiophenyl- (R1 2 DTP-Ph-NN, R1 =H, Ph and MeSTh) were designed, synthesized and characterized. The electrochemical properties were studied by cyclic voltammetry (CV). All the molecules exhibited two main oxidation peaks, first for radical cation and next for dication formation. The cation and dication formation were also confirmed by UV/Vis absorption spectroscopy for Ph2 DTP-Ph-NN and MeSTh2 DTP-Ph-NN titrated with tris(4-bromophenyl)aminiumhexachloroantimonate (magic blue). In addition, the cation and dication formation were verified by EPR spectroscopy. Finally, the exchange interactions (J/kB ) of NN and radical cation were calculated by DFT studies.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa