Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Small ; 17(33): e2102660, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34288406

RESUMO

Highly hydrated silk materials (HHSMs) have been the focus of extensive research due to their usefulness in tissue engineering, regenerative medicine, and soft devices, among other fields. However, HHSMs have weak mechanical properties that limit their practical applications. Inspired by the mechanical training-driven structural remodeling strategy (MTDSRS) in biological tissues, herein, engineered MTDSRS is developed for self-reinforcement of HHSMs to improve their inherent mechanical properties and broaden potential utility. The MTDSRS consists of repetitive mechanical training and solvent-induced conformation transitions. Solvent-induced conformation transition enables the formation of ß-sheet physical crosslinks among the proteins, while the repetitive mechanical loading allows the rearrangement of physically crosslinked proteins along the loading direction. Such synergistic effects produce strong and stiff mechanically trained-HHSMs (MT-HHSMs). The fracture strength and Young's modulus of the resultant MT-HHSMs (water content of 43 ± 4%) reach 4.7 ± 0.9 and 21.3 ± 2.1 MPa, respectively, which are 8-fold stronger and 13-fold stiffer than those of the as-prepared HHSMs, as well as superior to most previously reported HHSMs with comparable water content. In addition, the animal silk-like highly oriented molecular crosslinking network structure also provides MT-HHSMs with fascinating physical and functional features, such as stress-birefringence responsibility, humidity-induced actuation, and repeatable self-folding deformation.


Assuntos
Fibroínas , Seda , Animais , Hidrogéis , Conformação Proteica em Folha beta , Engenharia Tecidual
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa