Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
Cell ; 186(19): 4100-4116.e15, 2023 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-37643610

RESUMO

Nucleosomes block access to DNA methyltransferase, unless they are remodeled by DECREASE in DNA METHYLATION 1 (DDM1LSH/HELLS), a Snf2-like master regulator of epigenetic inheritance. We show that DDM1 promotes replacement of histone variant H3.3 by H3.1. In ddm1 mutants, DNA methylation is partly restored by loss of the H3.3 chaperone HIRA, while the H3.1 chaperone CAF-1 becomes essential. The single-particle cryo-EM structure at 3.2 Å of DDM1 with a variant nucleosome reveals engagement with histone H3.3 near residues required for assembly and with the unmodified H4 tail. An N-terminal autoinhibitory domain inhibits activity, while a disulfide bond in the helicase domain supports activity. DDM1 co-localizes with H3.1 and H3.3 during the cell cycle, and with the DNA methyltransferase MET1Dnmt1, but is blocked by H4K16 acetylation. The male germline H3.3 variant MGH3/HTR10 is resistant to remodeling by DDM1 and acts as a placeholder nucleosome in sperm cells for epigenetic inheritance.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Metilação de DNA , Histonas , Nucleossomos , Montagem e Desmontagem da Cromatina , DNA , Metilases de Modificação do DNA , Epigênese Genética , Histonas/genética , Nucleossomos/genética , Sêmen , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo
2.
J Biol Chem ; 300(9): 107604, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39059488

RESUMO

The HIRA histone chaperone complex is comprised of four protein subunits: HIRA, UBN1, CABIN1, and transiently associated ASF1a. All four subunits have been demonstrated to play a role in the deposition of the histone variant H3.3 onto areas of actively transcribed euchromatin in cells. The mechanism by which these subunits function together to drive histone deposition has remained poorly understood. Here we present biochemical and biophysical data supporting a model whereby ASF1a delivers histone H3.3/H4 dimers to the HIRA complex, H3.3/H4 tetramerization drives the association of two HIRA/UBN1 complexes, and the affinity of the histones for DNA drives release of ASF1a and subsequent histone deposition. These findings have implications for understanding how other histone chaperone complexes may mediate histone deposition.


Assuntos
Proteínas de Ciclo Celular , DNA , Chaperonas de Histonas , Histonas , Multimerização Proteica , Fatores de Transcrição , Histonas/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/química , Humanos , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Chaperonas de Histonas/metabolismo , Chaperonas de Histonas/química , DNA/metabolismo , DNA/química , Ligação Proteica , Proteínas Nucleares , Chaperonas Moleculares
3.
Development ; 149(5)2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35112132

RESUMO

Successful reproduction requires an oocyte competent to sustain early embryo development. By the end of oogenesis, the oocyte has entered a transcriptionally silenced state, the mechanisms and significance of which remain poorly understood. Histone H3.3, a histone H3 variant, has unique cell cycle-independent functions in chromatin structure and gene expression. Here, we have characterised the H3.3 chaperone Hira/Cabin1/Ubn1 complex, showing that loss of function of any of these subunits causes early embryogenesis failure in mouse. Transcriptome and nascent RNA analyses revealed that transcription is aberrantly silenced in mutant oocytes. Histone marks, including H3K4me3 and H3K9me3, are reduced and chromatin accessibility is impaired in Hira/Cabin1 mutants. Misregulated genes in mutant oocytes include Zscan4d, a two-cell specific gene involved in zygote genome activation. Overexpression of Zscan4 in the oocyte partially recapitulates the phenotypes of Hira mutants and Zscan4 knockdown in Cabin1 mutant oocytes partially restored their developmental potential, illustrating that temporal and spatial expression of Zscan4 is fine-tuned at the oocyte-to-embryo transition. Thus, the H3.3 chaperone Hira complex has a maternal effect function in oocyte developmental competence and embryogenesis, through modulating chromatin condensation and transcriptional quiescence.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Chaperonas de Histonas/metabolismo , Histonas/metabolismo , Oócitos/crescimento & desenvolvimento , Oócitos/metabolismo , Transdução de Sinais/genética , Fatores de Transcrição/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Proteínas de Ciclo Celular/genética , Cromatina/metabolismo , Desenvolvimento Embrionário/genética , Feminino , Técnicas de Silenciamento de Genes , Chaperonas de Histonas/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Oogênese/genética , Fatores de Transcrição/genética , Zigoto/metabolismo
4.
Genes Cells ; 29(9): 722-734, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38977420

RESUMO

Appropriate responses to environmental challenges are imperative for the survival of all living organisms. Exposure to low-dose stresses is recognized to yield increased cellular fitness, a phenomenon termed hormesis. However, our molecular understanding of how cells respond to low-dose stress remains profoundly limited. Here we report that histone variant H3.3-specific chaperone, HIRA, is required for acquired tolerance, where low-dose heat stress exposure confers resistance to subsequent lethal heat stress. We found that human HIRA activates stress-responsive genes, including HSP70, by depositing histone H3.3 following low-dose stresses. These genes are also marked with histone H3 Lys-4 trimethylation and H3 Lys-9 acetylation, both active chromatin markers. Moreover, depletion of HIRA greatly diminished acquired tolerance, both in normal diploid fibroblasts and in HeLa cells. Collectively, our study revealed that HIRA is required for eliciting adaptive stress responses under environmental fluctuations and is a master regulator of stress tolerance.


Assuntos
Proteínas de Ciclo Celular , Resposta ao Choque Térmico , Chaperonas de Histonas , Histonas , Fatores de Transcrição , Humanos , Histonas/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Chaperonas de Histonas/metabolismo , Chaperonas de Histonas/genética , Células HeLa , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Resposta ao Choque Térmico/genética , Estresse Fisiológico/genética , Acetilação , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Choque Térmico HSP70/genética , Fibroblastos/metabolismo , Adaptação Fisiológica/genética
5.
Genesis ; 61(1-2): e23507, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36656301

RESUMO

Histone variant H3.3 is encoded by two genes, H3f3a and H3f3b, which can be expressed differentially depending on tissue type. Previous work in our lab has shown that knockout of H3f3b causes some neonatal lethality and infertility in mice, and chromosomal defects in mouse embryonic fibroblasts (MEFs). Studies of H3f3a and H3f3b null mice by others have produced generally similar phenotypes to what we found in our H3f3b nulls, but the relative impacts of the loss of either H3f3a or H3f3b have varied depending on the approach and genetic background. Here we used a knockout-first approach to target the H3f3a gene for inactivation in C57BL6 mice. Homozygous H3f3a targeting produced a lethal phenotype at or before birth. E13.5 null embryos had some potential morphological differences from WT littermates including smaller size and reduced head size. An E18.5 null embryo was smaller than its control littermates with several potential defects including small head and brain size as well as small lungs, which would be consistent with a late gestation lethal phenotype. Despite a reduction in H3.3 and total H3 protein levels, the only histone H3 post-translational modification in the small panel assessed that was significantly altered was the unique H3.3 mark phospho-Serine31, which was consistently increased in null neurospheres. H3f3a null neurospheres also exhibited consistent gene expression changes including in protocadherins. Overall, our findings are consistent with the model that there are differential, cell-type-specific contributions of H3f3a and H3f3b to H3.3 functions in epigenetic and developmental processes.


Assuntos
Fibroblastos , Histonas , Animais , Feminino , Camundongos , Gravidez , Embrião de Mamíferos/metabolismo , Fibroblastos/metabolismo , Marcação de Genes , Histonas/genética , Histonas/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mutação
6.
Bioessays ; 43(10): e2100038, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34423467

RESUMO

Although the promyelocytic leukemia (PML) protein is renowned for regulating a wide range of cellular processes and as an essential component of PML nuclear bodies (PML-NBs), the mechanisms through which it exerts its broad physiological impact are far from fully elucidated. Here, we review recent studies supporting an emerging view that PML's pleiotropic effects derive, at least partially, from its role in regulating histone H3.3 chromatin assembly, a critical epigenetic mechanism. These studies suggest that PML maintains heterochromatin organization by restraining H3.3 incorporation. Examination of PML's contribution to H3.3 chromatin assembly in the context of the cell cycle and PML-NB assembly suggests that PML represses heterochromatic H3.3 deposition during S phase and that transcription and SUMOylation regulate PML's recruitment to heterochromatin. Elucidating PML' s contributions to H3.3-mediated epigenetic regulation will provide insight into PML's expansive influence on cellular physiology and open new avenues for studying oncogenesis linked to PML malfunction.


Assuntos
Montagem e Desmontagem da Cromatina , Histonas , Montagem e Desmontagem da Cromatina/genética , Epigênese Genética/genética , Histonas/genética , Histonas/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteína da Leucemia Promielocítica/genética , Proteína da Leucemia Promielocítica/metabolismo
7.
Genes Dev ; 29(13): 1377-92, 2015 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-26159997

RESUMO

Histone H3.3 is a highly conserved histone H3 replacement variant in metazoans and has been implicated in many important biological processes, including cell differentiation and reprogramming. Germline and somatic mutations in H3.3 genomic incorporation pathway components or in H3.3 encoding genes have been associated with human congenital diseases and cancers, respectively. However, the role of H3.3 in mammalian development remains unclear. To address this question, we generated H3.3-null mouse models through classical genetic approaches. We found that H3.3 plays an essential role in mouse development. Complete depletion of H3.3 leads to developmental retardation and early embryonic lethality. At the cellular level, H3.3 loss triggers cell cycle suppression and cell death. Surprisingly, H3.3 depletion does not dramatically disrupt gene regulation in the developing embryo. Instead, H3.3 depletion causes dysfunction of heterochromatin structures at telomeres, centromeres, and pericentromeric regions of chromosomes, leading to mitotic defects. The resulting karyotypical abnormalities and DNA damage lead to p53 pathway activation. In summary, our results reveal that an important function of H3.3 is to support chromosomal heterochromatic structures, thus maintaining genome integrity during mammalian development.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Instabilidade Genômica/genética , Crescimento e Desenvolvimento/genética , Histonas/metabolismo , Animais , Morte Celular/genética , Linhagem Celular , Proliferação de Células/genética , Células Cultivadas , Fertilidade/genética , Genes Letais/genética , Heterocromatina/genética , Heterocromatina/metabolismo , Histonas/genética , Camundongos , Mutação
8.
Biophys J ; 121(9): 1738-1752, 2022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-35364106

RESUMO

Chromatin remodelers actively target arrays of acetylated nucleosomes at select enhancers and promoters to facilitate or shut down the repeated recruitment of RNA polymerase II during transcriptional bursting. It is poorly understood how chromatin remodelers such as PBAF dynamically target different chromatin states inside a live cell. Our live-cell single-molecule fluorescence microscopy study reveals chromatin hubs throughout the nucleus where PBAF rapidly cycles on and off the genome. Deletion of PBAF's bromodomains impairs targeting and stable engagement of chromatin in hubs. Dual color imaging reveals that PBAF targets both euchromatic and heterochromatic hubs with distinct genome-binding kinetic profiles that mimic chromatin stability. Removal of PBAF's bromodomains stabilizes H3.3 binding within chromatin, indicating that bromodomains may play a direct role in remodeling of the nucleosome. Our data suggests that PBAF's dynamic bromodomain-mediated engagement of a nucleosome may reflect the chromatin-remodeling potential of differentially bound chromatin states.


Assuntos
Cromatina , Nucleossomos , Acetilação , Montagem e Desmontagem da Cromatina , Proteínas de Ligação a DNA/metabolismo , Histonas/metabolismo , Fatores de Transcrição/metabolismo
9.
Proc Natl Acad Sci U S A ; 116(27): 13311-13319, 2019 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-31209047

RESUMO

Cellular senescence defines an irreversible cell growth arrest state linked to loss of tissue function and aging in mammals. This transition from proliferation to senescence is typically characterized by increased expression of the cell-cycle inhibitor p16INK4a and formation of senescence-associated heterochromatin foci (SAHF). SAHF formation depends on HIRA-mediated nucleosome assembly of histone H3.3, which is regulated by the serine/threonine protein kinase Pak2. However, it is unknown if Pak2 contributes to cellular senescence. Here, we show that depletion of Pak2 delayed oncogene-induced senescence in IMR90 human fibroblasts and oxidative stress-induced senescence of mouse embryonic fibroblasts (MEFs), whereas overexpression of Pak2 accelerated senescence of IMR90 cells. Importantly, depletion of Pak2 in BubR1 progeroid mice attenuated the onset of aging-associated phenotypes and extended life span. Pak2 is required for expression of genes involved in cellular senescence and regulated the deposition of newly synthesized H3.3 onto chromatin in senescent cells. Together, our results demonstrate that Pak2 is an important regulator of cellular senescence and organismal aging, in part through the regulation of gene expression and H3.3 nucleosome assembly.


Assuntos
Envelhecimento , Senescência Celular , Quinases Ativadas por p21/fisiologia , Envelhecimento/metabolismo , Animais , Linhagem Celular , Imunoprecipitação da Cromatina , Regulação da Expressão Gênica , Histonas/metabolismo , Longevidade , Camundongos Knockout , Estresse Oxidativo , Reação em Cadeia da Polimerase em Tempo Real , Quinases Ativadas por p21/metabolismo
10.
Int J Mol Sci ; 23(2)2022 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-35055156

RESUMO

To validate the reliability and implementation of an objective diagnostic method for giant cell tumour of bone (GCTB). H3-3A gene mutation testing was performed using two different methods, Sanger sequencing and immunohistochemical (IHC) assays. A total of 214 patients, including 120 with GCTB and 94 with other giant cell-rich bone lesions, participated in the study. Sanger sequencing and IHC with anti-histone H3.3 G34W and G34V antibodies were performed on formalin-fixed, paraffin-embedded tissues, which were previously decalcified in EDTA if needed. The sensitivity and specificity of the molecular method was 100% (95% CI: 96.97-100%) and 100% (95% CI: 96.15-100%), respectively. The sensitivity and specificity of IHC was 94.32% (95% CI: 87.24-98.13%) and 100% (95% CI: 93.94-100.0%), respectively. P.G35 mutations were discovered in 2/9 (22.2%) secondary malignant GCTBs and 9/13 (69.2%) GCTB after denosumab treatment. We confirmed in a large series of patients that evaluation of H3-3A mutational status using direct sequencing is a reliable tool for diagnosing GCTB, and it should be incorporated into the diagnostic algorithm. Additionally, we discovered IHC can be used as a screening tool. Proper tissue processing and decalcification are necessary. The presence of the H3-3A mutation did not exclude malignant GCTB. Denosumab did not eradicate the neoplastic cell population of GCTB.


Assuntos
Neoplasias Ósseas/diagnóstico , Tumor de Células Gigantes do Osso/diagnóstico , Histonas/genética , Histonas/metabolismo , Mutação , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/genética , Neoplasias Ósseas/metabolismo , Criança , Denosumab/uso terapêutico , Diagnóstico Diferencial , Detecção Precoce de Câncer , Feminino , Tumor de Células Gigantes do Osso/tratamento farmacológico , Tumor de Células Gigantes do Osso/genética , Tumor de Células Gigantes do Osso/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade , Inclusão em Parafina , Sensibilidade e Especificidade , Análise de Sequência de DNA , Fixação de Tecidos , Adulto Jovem
11.
J Cell Sci ; 132(6)2019 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-30796101

RESUMO

The incorporation of the histone H3 variant, H3.3, into chromatin by the H3.3-specific chaperone DAXX and the ATP-dependent chromatin remodeling factor ATRX is a critical mechanism for silencing repetitive DNA. DAXX and ATRX are also components of promyelocytic nuclear bodies (PML-NBs), which have been identified as sites of H3.3 chromatin assembly. Here, we use a transgene array that can be visualized in single living cells to investigate the mechanisms that recruit PML-NB proteins (i.e. PML, DAXX, ATRX, and SUMO-1, SUMO-2 and SUMO-3) to heterochromatin and their functions in H3.3 chromatin assembly. We show that DAXX and PML are recruited to the array through distinct SUMOylation-dependent mechanisms. Additionally, PML is recruited during S phase and its depletion increases H3.3 deposition. Since this effect is abrogated when PML and DAXX are co-depleted, it is likely that PML represses DAXX-mediated H3.3 chromatin assembly. Taken together, these results suggest that, at heterochromatin, PML-NBs coordinate H3.3 chromatin assembly with DNA replication, which has important implications for understanding how transcriptional silencing is established and maintained.


Assuntos
Proteínas Correpressoras/metabolismo , Histonas/metabolismo , Chaperonas Moleculares/metabolismo , Proteína da Leucemia Promielocítica/metabolismo , Fase S/fisiologia , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular , Replicação do DNA/fisiologia , Inativação Gênica/fisiologia , Células HeLa , Heterocromatina/metabolismo , Chaperonas de Histonas/metabolismo , Humanos , Nucleossomos/metabolismo
12.
Clin Genet ; 100(4): 412-429, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34216016

RESUMO

ZMYND11 is the critical gene in chromosome 10p15.3 microdeletion syndrome, a syndromic cause of intellectual disability. The phenotype of ZMYND11 variants has recently been extended to autism and seizures. We expand on the epilepsy phenotype of 20 individuals with pathogenic variants in ZMYND11. We obtained clinical descriptions of 16 new and nine published individuals, plus detailed case history of two children. New individuals were identified through GeneMatcher, ClinVar and the European Network for Therapies in Rare Epilepsy (NETRE). Genetic evaluation was performed using gene panels or exome sequencing; variants were classified using American College of Medical Genetics (ACMG) criteria. Individuals with ZMYND11 associated epilepsy fell into three groups: (i) atypical benign partial epilepsy or idiopathic focal epilepsy (n = 8); (ii) generalised epilepsies/infantile epileptic encephalopathy (n = 4); (iii) unclassified (n = 8). Seizure prognosis ranged from spontaneous remission to drug resistant. Neurodevelopmental deficits were invariable. Dysmorphic features were variable. Variants were distributed across the gene and mostly de novo with no precise genotype-phenotype correlation. ZMYND11 is one of a small group of chromatin reader genes associated in the pathogenesis of epilepsy, and specifically ABPE. More detailed epilepsy descriptions of larger cohorts and functional studies might reveal genotype-phenotype correlation. The epileptogenic mechanism may be linked to interaction with histone H3.3.


Assuntos
Proteínas de Ciclo Celular/genética , Proteínas Correpressoras/genética , Proteínas de Ligação a DNA/genética , Epilepsia/diagnóstico , Epilepsia/genética , Variação Genética , Transtornos do Neurodesenvolvimento/diagnóstico , Transtornos do Neurodesenvolvimento/genética , Fenótipo , Adolescente , Adulto , Alelos , Substituição de Aminoácidos , Criança , Pré-Escolar , Bases de Dados Factuais , Eletroencefalografia , Epilepsia/terapia , Epilepsia Generalizada/diagnóstico , Epilepsia Generalizada/genética , Feminino , Estudos de Associação Genética , Predisposição Genética para Doença , Testes Genéticos , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade , Mutação , Adulto Jovem
13.
EMBO Rep ; 20(5)2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30914409

RESUMO

Notch signaling plays a key role in many cell fate decisions during development by directing different gene expression programs via the transcription factor CSL, known as Su(H) in Drosophila Which target genes are responsive to Notch signaling is influenced by the chromatin state of enhancers, yet how this is regulated is not fully known. Detecting a specific increase in the histone variant H3.3 in response to Notch signaling, we tested which chromatin remodelers or histone chaperones are required for the changes in enhancer accessibility to Su(H) binding. We show a crucial role for the Brahma SWI/SNF chromatin remodeling complex, including the actin-related BAP55 subunit, in conferring enhancer accessibility and enabling the transcriptional response to Notch activity. The Notch-responsive regions have high levels of nucleosome turnover which depend on the Brahma complex, increase in magnitude with Notch signaling, and primarily involve histone H3.3. Together these results highlight the importance of SWI/SNF-mediated nucleosome turnover in rendering enhancers responsive to Notch.


Assuntos
Montagem e Desmontagem da Cromatina/genética , Cromatina/genética , Proteínas de Drosophila/genética , Receptores Notch/genética , Sequências Reguladoras de Ácido Nucleico/genética , Acetilação , Animais , Proteínas Cromossômicas não Histona/genética , Drosophila/genética , Regulação da Expressão Gênica , Histonas/genética , Nucleossomos/genética , Fatores de Transcrição/genética , Transcrição Gênica/genética
14.
Proc Natl Acad Sci U S A ; 115(39): E9162-E9171, 2018 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-30201712

RESUMO

Epigenetic memory for signal-dependent transcription has remained elusive. So far, the concept of epigenetic memory has been largely limited to cell-autonomous, preprogrammed processes such as development and metabolism. Here we show that IFNß stimulation creates transcriptional memory in fibroblasts, conferring faster and greater transcription upon restimulation. The memory was inherited through multiple cell divisions and led to improved antiviral protection. Of ∼2,000 IFNß-stimulated genes (ISGs), about half exhibited memory, which we define as memory ISGs. The rest, designated nonmemory ISGs, did not show memory. Surprisingly, mechanistic analysis showed that IFN memory was not due to enhanced IFN signaling or retention of transcription factors on the ISGs. We demonstrated that this memory was attributed to accelerated recruitment of RNA polymerase II and transcription/chromatin factors, which coincided with acquisition of the histone H3.3 and H3K36me3 chromatin marks on memory ISGs. Similar memory was observed in bone marrow macrophages after IFNγ stimulation, suggesting that IFN stimulation modifies the shape of the innate immune response. Together, external signals can establish epigenetic memory in mammalian cells that imparts lasting adaptive performance upon various somatic cells.


Assuntos
Células da Medula Óssea/imunologia , Divisão Celular/imunologia , Epigênese Genética/imunologia , Imunidade Inata , Interferon beta/imunologia , Macrófagos/imunologia , Transdução de Sinais/imunologia , Transcrição Gênica/imunologia , Animais , Células da Medula Óssea/citologia , Divisão Celular/genética , Cromatina/genética , Cromatina/imunologia , Histonas/genética , Histonas/imunologia , Interferon beta/genética , Macrófagos/citologia , Camundongos , Camundongos Mutantes , RNA Polimerase II/genética , RNA Polimerase II/imunologia , Transdução de Sinais/genética , Fatores de Transcrição/genética , Fatores de Transcrição/imunologia
15.
EMBO J ; 35(13): 1452-64, 2016 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-27220848

RESUMO

Immunoglobulin diversification is driven by activation-induced deaminase (AID), which converts cytidine to uracil within the Ig variable (IgV) regions. Central to the recruitment of AID to the IgV genes are factors that regulate the generation of single-stranded DNA (ssDNA), the enzymatic substrate of AID Here, we report that chicken DT40 cells lacking variant histone H3.3 exhibit reduced IgV sequence diversification. We show that this results from impairment of the ability of AID to access the IgV genes due to reduced formation of ssDNA during IgV transcription. Loss of H3.3 also diminishes IgV R-loop formation. However, reducing IgV R-loops by RNase HI overexpression in wild-type cells does not affect IgV diversification, showing that these structures are not necessary intermediates for AID access. Importantly, the reduction in the formation of AID-accessible ssDNA in cells lacking H3.3 is independent of any effect on the level of transcription or the kinetics of RNAPII elongation, suggesting the presence of H3.3 in the nucleosomes of the IgV genes increases the chances of the IgV DNA becoming single-stranded, thereby creating an effective AID substrate.


Assuntos
DNA de Cadeia Simples/metabolismo , Histonas/metabolismo , Região Variável de Imunoglobulina/metabolismo , Animais , Linhagem Celular , Galinhas , Citidina Desaminase/metabolismo
16.
Development ; 144(3): 519-528, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-27993980

RESUMO

During development from oocyte to embryo, genetic programs in mouse germ cells are reshaped by chromatin remodeling to orchestrate the onset of development. Epigenetic modifications of specific amino acid residues of core histones and their isoforms can dramatically alter activation and suppression of gene expression. H3.3 is a histone H3 variant that plays essential roles in mouse oocytes and early embryos, but the functional role of individual amino acid residues has been unclear because of technical hurdles. Here, we describe two strategies that successfully investigated the functions of three individual H3.3 residues in oogenesis, cleavage-stage embryogenesis and early development. We first generated genetic mosaic ovaries and blastocysts with stochastic expression of wild-type or mutant H3.3 alleles and showed dominant negative effects of H3.3R26 and H3.3K27 in modulating oogenesis and partitioning cells to the inner cell mass of the early embryo. Time-lapse imaging assays also revealed the essential roles of H3.3K56 in efficient H2B incorporation and paternal pronuclei formation. Application of these strategies can be extended to investigate roles of additional H3.3 residues and has implications for use in other developmental systems.


Assuntos
Blastocisto/metabolismo , Histonas/metabolismo , Oócitos/metabolismo , Animais , Blastocisto/citologia , Massa Celular Interna do Blastocisto/citologia , Massa Celular Interna do Blastocisto/metabolismo , Blastômeros/citologia , Blastômeros/metabolismo , Linhagem da Célula , Montagem e Desmontagem da Cromatina , Epigênese Genética , Feminino , Histonas/química , Histonas/genética , Masculino , Camundongos , Camundongos Transgênicos , Mosaicismo , Oogênese , Imagem com Lapso de Tempo , Zigoto/citologia , Zigoto/metabolismo
17.
Med Mol Morphol ; 53(1): 1-6, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31748824

RESUMO

Giant cell tumor of bone (GCTB) is a locally aggressive bone tumor that frequently shows local recurrence and occasionally shows malignant transformation to high-grade sarcoma. Histologically, conventional GCTB is composed mainly of three types of cells: mononuclear neoplastic cells with an osteoblastic precursor phenotype, mononuclear histiocytic cells, and osteoclast-like multinucleated giant cells. These cells interact with each other via the RANKL-RANK axis and other mechanisms for tumor formation. The vast majority of GCTBs were recently revealed to harbor H3F3A p.G34W mutation, and a minor subset have H3F3A p.G34L, p.G34M, p.G34R, or p.G34V mutation. H3.3 G34W mutant-specific immunohistochemistry is a highly sensitive and specific surrogate marker for H3F3A p.G34W mutation in GCTB and thus useful for differential diagnoses of histological mimics. H3.3 mutant-specific immunohistochemistry has also contributed to the understanding of the bone-forming ability of neoplastic cells of GCTB and the remarkable new bone formation after treatment with denosumab, an inhibitor of RANKL. In primary and secondary malignant GCTBs, the H3F3A gene allele can be preserved or lost with malignant transformation.


Assuntos
Neoplasias Ósseas/diagnóstico , Regulação Neoplásica da Expressão Gênica , Tumor de Células Gigantes do Osso/diagnóstico , Histonas/genética , Mutação , Recidiva Local de Neoplasia/diagnóstico , Sarcoma/diagnóstico , Conservadores da Densidade Óssea/uso terapêutico , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/genética , Neoplasias Ósseas/patologia , Denosumab/uso terapêutico , Progressão da Doença , Tumor de Células Gigantes do Osso/tratamento farmacológico , Tumor de Células Gigantes do Osso/genética , Tumor de Células Gigantes do Osso/patologia , Histiócitos/metabolismo , Histiócitos/patologia , Histonas/metabolismo , Humanos , Imuno-Histoquímica , Gradação de Tumores , Recidiva Local de Neoplasia/tratamento farmacológico , Recidiva Local de Neoplasia/genética , Recidiva Local de Neoplasia/patologia , Osteoblastos/metabolismo , Osteoblastos/patologia , Osteoclastos/metabolismo , Osteoclastos/patologia , Ligante RANK/genética , Ligante RANK/metabolismo , Receptor Ativador de Fator Nuclear kappa-B/genética , Receptor Ativador de Fator Nuclear kappa-B/metabolismo , Sarcoma/tratamento farmacológico , Sarcoma/genética , Sarcoma/patologia
18.
J Pak Med Assoc ; 70(9): 1596-1600, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33040116

RESUMO

OBJECTIVE: To determine the role of serum histone H3.3 and H4 in patients with chronic hepatitis B to explore any relationship between the two. METHODS: The prospective controlled clinical pilot study was conducted in the Gastroenterology Clinic of Bezmialem Vakif University, Istanbul, Turkey, from January to October 2017, and comprised biopsy-proven patients with chronic hepatitis B and healthy controls. Demographics, hepatitis B virus deoxyribonucleic acid quantity, hepatitis B e-antigen, aspartate aminotransferase, alanine transaminase, international normalized ratio, total/direct bilirubin, albumin and thrombocyte counts as well as histological activity index and fibrosis scores were noted. Data was analysed using SPSS 22. RESULTS: Of the 140 subjects, 70(50%) each were cases and controls. The overall mean age of the sample was 43.38±15.07 years (range: 18-70 years). There was positive correlation of histone H3.3 with hepatitis B virus deoxyribonucleic acid, aspartate aminotransferase, alanine transaminase and international normalized ratio levels. Histone H4 levels only correlated with hepatitis B virus deoxyribonucleic acid and international normalized ratio. Hepatitis B e-antigen positivity was present in 14(20%) of the cases. CONCLUSIONS: Histone H3.3 levels appeared to be associated with pathophysiological changes in chronic hepatitis B patients, suggesting that future treatments should target H3.3.


Assuntos
Hepatite B Crônica , Histonas , Adolescente , Adulto , Idoso , Alanina Transaminase , DNA Viral , Histonas/sangue , Humanos , Fígado , Pessoa de Meia-Idade , Projetos Piloto , Estudos Prospectivos , Turquia , Adulto Jovem
19.
J Biol Chem ; 293(32): 12360-12377, 2018 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-29921582

RESUMO

The histone H3 variant H3.3 is a highly conserved and dynamic regulator of chromatin organization. Therefore, fully elucidating its nucleosome incorporation mechanisms is essential to understanding its functions in epigenetic inheritance. We previously identified the RNase P protein subunit, Rpp29, as a repressor of H3.3 chromatin assembly. Here, we use a biochemical assay to show that Rpp29 interacts with H3.3 through a sequence element in its own N terminus, and we identify a novel interaction with histone H2B at an adjacent site. The fact that archaeal Rpp29 does not include this N-terminal region suggests that it evolved to regulate eukaryote-specific functions. Oncogenic H3.3 mutations alter the H3.3-Rpp29 interaction, which suggests that they could dysregulate Rpp29 function in chromatin assembly. We also used KNS42 cells, an H3.3(G34V) pediatric high-grade glioma cell line, to show that Rpp29 1) represses H3.3 incorporation into transcriptionally active protein-coding, rRNA, and tRNA genes; 2) represses mRNA, protein expression, and antisense RNA; and 3) represses euchromatic post-translational modifications (PTMs) and promotes heterochromatic PTM deposition (i.e. histone H3 Lys-9 trimethylation (H3K9me3) and H3.1/2/3K27me3). Notably, we also found that K27me2 is increased and K36me1 decreased on H3.3(G34V), which suggests that Gly-34 mutations dysregulate Lys-27 and Lys-36 methylation in cis The fact that Rpp29 represses H3.3 chromatin assembly and sense and antisense RNA and promotes H3K9me3 and H3K27me3 suggests that Rpp29 regulates H3.3-mediated epigenetic mechanisms by processing a transcribed signal that recruits H3.3 to its incorporation sites.


Assuntos
Montagem e Desmontagem da Cromatina , Epigênese Genética , Glioma/metabolismo , Histonas/metabolismo , Nucleossomos/metabolismo , Ribonucleases/metabolismo , Ribonucleoproteínas/metabolismo , Transcrição Gênica , Glioma/genética , Glioma/patologia , Histonas/genética , Humanos , Metilação , Mutação , Nucleossomos/genética , Ribonucleases/genética , Ribonucleoproteínas/genética , Células Tumorais Cultivadas
20.
Proc Natl Acad Sci U S A ; 113(23): E3213-20, 2016 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-27217568

RESUMO

The histone chaperone HIRA complex, consisting of histone cell cycle regulator (HIRA), Ubinuclein1 (UBN1), and calcineurin binding protein 1 (CABIN1), deposits histone variant H3.3 to genic regions and regulates gene expression in various cellular processes, including cellular senescence. How HIRA-mediated nucleosome assembly of H3.3-H4 is regulated remains not well understood. Here, we show that O-linked N-acetylglucosamine (GlcNAc) transferase (OGT), an enzyme that catalyzes O-GlcNAcylation of serine or threonine residues, interacts with UBN1, modifies HIRA, and promotes nucleosome assembly of H3.3. Depletion of OGT or expression of the HIRA S231A O-GlcNAcylation-deficient mutant compromises formation of the HIRA-H3.3 complex and H3.3 nucleosome assembly. Importantly, OGT depletion or expression of the HIRA S231A mutant delays premature cellular senescence in primary human fibroblasts, whereas overexpression of OGT accelerates senescence. Taken together, these results support a model in which OGT modifies HIRA to regulate HIRA-H3.3 complex formation and H3.3 nucleosome assembly and reveal the mechanism by which OGT functions in cellular senescence.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Senescência Celular/fisiologia , Chaperonas de Histonas/metabolismo , Histonas/metabolismo , N-Acetilglucosaminiltransferases/metabolismo , Fatores de Transcrição/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas de Ciclo Celular/genética , Células HEK293 , Chaperonas de Histonas/genética , Humanos , N-Acetilglucosaminiltransferases/genética , Proteínas Nucleares/metabolismo , Nucleossomos/metabolismo , Ligação Proteica , Domínios Proteicos , Fatores de Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa