Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 871
Filtrar
1.
Semin Cell Dev Biol ; 148-149: 33-41, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36621443

RESUMO

Pectobacterium and Dickeya species belonging to the Soft Rot Pectobacteriaceae (SRP) are one of the most devastating phytopathogens. They degrade plant tissues by producing an arsenal of plant cell wall degrading enzymes. However, SRP-plant interactions are not restricted to the production of these "brute force" weapons. Additionally, these bacteria apply stealth behavior related to (1) manipulation of the host plant via induction of susceptible responses and (2) formation of heterogeneous populations with functionally specialized cells. Our review aims to summarize current knowledge on SRP-induced plant susceptible responses and on the heterogeneity of SRP populations. The review shows that SRP are capable of adjusting the host's hormonal balance, inducing host-mediated plant cell wall modification, promoting iron assimilation by the host, stimulating the accumulation of reactive oxygen species and host cell death, and activating the synthesis of secondary metabolites that are ineffective in limiting disease progression. By this means, SRP facilitate host plant susceptibility. During host colonization, SRP populations produce various functionally specialized cells adapted for enhanced virulence, increased resistance, motility, vegetative growth, or colonization of the vascular system. This enables SRP to perform self-contradictory tasks, which benefits a population's overall fitness in various environments, including host plants. Such stealthy tactical actions facilitate plant-SRP interactions and disease progression.


Assuntos
Bactérias , Doenças das Plantas , Doenças das Plantas/microbiologia , Virulência , Fenômenos Fisiológicos Vegetais , Plantas/microbiologia
2.
Mol Ecol ; 33(16): e17479, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39036890

RESUMO

Generalist plant-feeding insects are characterised by a broad host repertoire that can comprise several families or even different orders of plants. The genetic and physiological mechanisms underlying the use of such a wide host range are still not fully understood. Earlier studies indicate that the consumption of different host plants is associated with host-specific gene expression profiles. It remained, however, unclear if and how larvae can alter these profiles in the case of a changing host environment. Using the polyphagous comma butterfly (Polygonia c-album) we show that larvae can adjust their transcriptional profiles in response to a new host plant. The switch to some of the host plants, however, resulted in a larger transcriptional response and, thus, seems to be more challenging. At a physiological level, no correspondence for these patterns could be found in larval performance. This suggests that a high transcriptional but also phenotypic flexibility are essential for the use of a broad and diverse host range. We furthermore propose that host switch tests in the laboratory followed by transcriptomic investigations can be a valuable tool to examine not only plasticity in host use but also subtle and/or transient trade-offs in the evolution of host plant repertoires.


Assuntos
Borboletas , Larva , Transcriptoma , Borboletas/genética , Animais , Larva/genética , Herbivoria , Plantas/genética , Especificidade de Hospedeiro/genética
3.
Plant Cell Environ ; 47(5): 1543-1555, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38254306

RESUMO

Plant volatiles play an important role in intra- and interspecific plant communication, inducing direct and indirect defenses against insect pests. However, it remains unknown whether volatile interactions between undamaged cultivars alter host plant volatile emissions and their perception by insect pests. Here, we tested the effects of exposure of a spring barley, Hordeum vulgare L., cultivar, Salome, to volatiles from other cultivars: Fairytale and Anakin. We found that exposing Salome to Fairytale induced a significantly higher emission of trans-ß-ocimene and two unidentified compounds compared when exposed to Anakin. Aphids were repelled at a higher concentration of trans-ß-ocimene. Salome exposure to Fairytale had significant repulsive effects on aphid olfactory preference, yet not when Salome was exposed to Anakin. We demonstrate that volatile interactions between specific undamaged plants can induce changes in volatile emission by receiver plants enhancing certain compounds, which can disrupt aphid olfactory preferences. Our results highlight the significant roles of volatiles in plant-plant interactions, affecting plant-insect interactions in suppressing insect pests. This has important implications for crop protection and sustainable agriculture.


Assuntos
Monoterpenos Acíclicos , Afídeos , Compostos Orgânicos Voláteis , Animais , Compostos Orgânicos Voláteis/farmacologia , Plantas , Alcenos , Herbivoria
4.
Insect Mol Biol ; 2024 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-39306699

RESUMO

The olfactory system of above-ground insects is among the best described perceptual architectures. However, remarkably little is known about how below-ground insects navigate in the dark for foraging. Here, we investigated host plant preferences, olfactory sensilla and characterise olfactory proteins in below-ground larvae of the striped flea beetle (SFB) Phyllotreta striolata Fabricius (Coleoptera: Chrysomelidae). Both the adults and larvae of this coleopteran pest cause serious damage to Brassicaceous crops above and below ground, respectively. To elucidate the role of olfactory system in host location of below-ground larvae, we initially demonstrated that SFB larvae distinctly favoured Brassicaceae over other plant families by two-choice behavioural bioassay. Subsequently, scanning electron microscopy of sensilla in SFB larval head showed a significant reduction in the number of olfactory sensilla in larvae compared with adults. However, essential olfactory sensilla such as sensilla basiconica are underscoring the indispensability of the larval olfactory system. We selected four larval-specific odorant binding proteins for functional validation from our previous transcriptome data. Functional studies revealed that PstrOBP23 exhibits robust binding affinity to 24 volatiles of Brassicaceae plants, including seven isothiocyanate compounds. This suggests a pivotal role of PstrOBP23 in the foraging behaviour of the larvae below the ground. Moreover, two ligands displaying strong binding capacity exhibit apparent attractive or repellent activity towards SFB larvae. Our findings provide a crucial insight into the olfactory system of below-ground larvae in SFB, highlighting the highly selective tuning of larvae specific OBP to host plant volatiles. These results offer potential avenues for developing effective pest control strategies against SFB.

5.
Insect Mol Biol ; 33(4): 405-416, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38478920

RESUMO

Odorant-binding proteins (OBPs) initiate insect olfactory perception and mediate specific binding and selection of odorants via uncertain binding mechanisms. We characterized the binding characteristics of four OBPs from the striped flea beetle Phyllotreta striolata (SFB), a major cruciferous crop pest. Tissue expression analysis revealed that the two ABPII OBPs (PstrOBP12 and PstrOBP19) were highly expressed mainly in the antenna, whereas the two minus-C OBPs (PstrOBP13 and PstrOBP16) showed a broad expression pattern. Competitive binding assays of cruciferous plant volatiles showed that PstrOBP12, PstrOBP16 and PstrOBP19 had very strong binding capacities for only two phthalate esters (Ki < 20 µM), and PstrOBP13 specifically bound to four aromatic volatiles (Ki < 11 µM). Fluorescence quenching assays displayed that two phthalate esters bound to three PstrOBPs via different quenching mechanisms. PstrOBP12/PstrOBP16-diisobutyl phthalate and PstrOBP19-bis(6-methylheptyl) phthalate followed static quenching, while PstrOBP12/PstrOBP16-bis(6-methylheptyl) phthalate and PstrOBP19-diisobutyl phthalate followed dynamic quenching. Homology modelling and molecular docking displayed that PstrOBP12-diisobutyl phthalate was driven by H-bonding and van der Waals interactions, while PstrOBP16-diisobutyl phthalate and PstrOBP19-bis(6-methylheptyl) phthalate followed hydrophobic interactions. Finally, behavioural activity analysis demonstrated that phthalate esters exhibited different behavioural activities of SFB at different doses, with low doses attracting and high doses repelling. Overall, we thus revealed the different binding properties of the three PstrOBPs to two phthalate esters, which was beneficial in shedding light on the ligand-binding mechanisms of OBPs.


Assuntos
Besouros , Ésteres , Proteínas de Insetos , Ácidos Ftálicos , Receptores Odorantes , Animais , Receptores Odorantes/metabolismo , Receptores Odorantes/genética , Receptores Odorantes/química , Besouros/metabolismo , Ácidos Ftálicos/metabolismo , Proteínas de Insetos/metabolismo , Proteínas de Insetos/química , Proteínas de Insetos/genética , Ésteres/metabolismo , Ligantes , Simulação de Acoplamento Molecular , Filogenia
6.
Insect Mol Biol ; 33(3): 228-245, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38348538

RESUMO

Aphid genomic resources enable the study of complex life history traits and provide information on vector biology, host adaption and speciation. The currant-lettuce aphid (Nasonovia ribisnigri (Hemiptera: Aphididae) (Mosley)) is a cosmopolitan pest of outdoor lettuce (Lactuca sativa (Asterales: Asteraceae) (Linnaeus)). Until recently, the use of resistant cultivars was an effective method for managing N. ribisnigri. A resistant cultivar containing a single gene (Nr-locus), introduced in the 1980s, conferred complete resistance to feeding. Overreliance of this Nr-locus in lettuce resulted in N. ribisnigri's ability to break resistance mechanism, with first reports during 2003. Our work attempts to understand which candidate gene(s) are associated with this resistance-breaking mechanism. We present two de novo draft assembles for N. ribisnigri genomes, corresponding to both avirulent (Nr-locus susceptible) and virulent (Nr-locus resistant) biotypes. Changes in gene expression of the two N. ribisnigri biotypes were investigated using transcriptomic analyses of RNA-sequencing (RNA-seq) data to understand the potential mechanisms of resistance to the Nr-locus in lettuce. The draft genome assemblies were 94.2% and 91.4% complete for the avirulent and virulent biotypes, respectively. Out of the 18,872 differentially expressed genes, a single gene/locus was identified in N. ribisnigri that was shared between two resistant-breaking biotypes. This locus was further explored and validated in Real-Time Quantitative Reverse Transcription PCR (qRT-PCR) experiments and has predicted localisations in both the cytoplasm and nucleus. This is the first study to provide evidence that a single gene/locus is likely responsible for the ability of N. ribisnigri to overcome the Nr-locus resistance in the lettuce host.


Assuntos
Afídeos , Lactuca , Lactuca/genética , Lactuca/parasitologia , Afídeos/genética , Animais , Perfilação da Expressão Gênica , Genoma de Inseto , Transcriptoma
7.
J Evol Biol ; 37(1): 62-75, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38285658

RESUMO

Associating with plant hosts is thought to have elevated the diversification of insect herbivores, which comprise the majority of global species diversity. In particular, there is considerable interest in understanding the genetic changes that allow host-plant shifts to occur in pest insects and in determining what aspects of functional genomic diversity impact host-plant breadth. Insect chemoreceptors play a central role in mediating insect-plant interactions, as they directly influence plant detection and sensory stimuli during feeding. Although chemosensory genes evolve rapidly, it is unclear how they evolve in response to host shifts and host specialization. We investigate whether selection at chemosensory genes is linked to host-plant expansion from the buffalo burr, Solanum rostratum, to potato, Solanum tuberosum, in the super-pest Colorado potato beetle (CPB), Leptinotarsa decemlineata (Coleoptera: Chrysomelidae). First, to refine our knowledge of CPB chemosensory genes, we developed novel gene expression data for the antennae and maxillary-labial palps. We then examine patterns of selection at these loci within CPB, as well as compare whether rates of selection vary with respect to 9 closely related, non-pest Leptinotarsa species that vary in diet breadth. We find that rates of positive selection on olfactory receptors are higher in host-plant generalists, and this signal is particularly strong in CPB. These results provide strong candidates for further research on the genetic basis of variation in insect chemosensory performance and novel targets for pest control of a notorious super-pest.


Assuntos
Besouros , Solanum tuberosum , Animais , Besouros/genética , Solanum tuberosum/genética , Genômica , Dieta , Colorado
8.
Oecologia ; 204(3): 529-542, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38324065

RESUMO

Understanding the drivers of trade-offs among traits is vital for comprehending the evolution and maintenance of trait variation. Theoretical frameworks propose that evolutionary mechanisms governing trade-offs frequently exhibit a scale-dependent nature. However, empirical tests of whether trade-offs exhibited across various biological scales (i.e. individuals, populations, species, genera, etc.) remains scarce. In this study, we explore trade-off between dispersal and reproductive effort among sympatric sister species of wasps in the genus Belonocnema (Hymenoptera: Cynipini: Cynipidae) that form galls on live oaks: B. fossoria, which specializes on Quercus geminata, and B. treatae, which specializes on Q. virginiana. Specifically, our results suggest that B. fossoria has evolved reduced flight capability and smaller wings, but a larger abdomen and greater total reproductive effort than B. treatae, which has larger wings and is a stronger flier, but has a smaller abdomen and reduced total reproductive effort. These traits and the relationships among them remain unchanged when B. fossoria and B. treatae are transplanted and reared onto the alternative host plant, suggesting that trait divergence is genetically based as opposed to being a plastic response to the different rearing environments. However, when looking within species, we found no evidence of intraspecific trade-offs between wing length and reproductive traits within either B. fossoria or B. treatae. Overall, our results indicate that observed trade-offs in life history traits between the two gall former species are likely a result of independent adaptations in response to different environments as opposed to the amplified expression of within species intrinsic tradeoffs.


Assuntos
Quercus , Vespas , Humanos , Animais , Herbivoria , Reprodução , Vespas/fisiologia , Plantas
9.
J Chem Ecol ; 50(1-2): 63-70, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38062246

RESUMO

The brilliant red Lilioceris merdigera (Coleoptera, Chrysomelidae) can spend its entire life cycle on the cardenolide-containing plant Convallaria majalis (lily of the valley) and forms stable populations on this host. Yet, in contrast to many other insects on cardenolide-containing plants L. merdigera does not sequester these plant toxins in the body but rather both adult beetles and larvae eliminate ingested cardenolides with the feces. Tracer feeding experiments showed that this holds true for radioactively labeled ouabain and digoxin, a highly polar and a rather apolar cardenolide. Both compounds or their derivatives are incorporated in the fecal shields of the larvae. The apolar digoxin, but not the polar ouabain, showed a deterrent effect on the generalist predatory ant Myrmica rubra, which occurs in the habitat of L. merdigera. The deterrent effect was detected for digoxin both in choice and feeding time assays. In a predator choice assay, a fecal shield derived from a diet of cardenolide-containing C. majalis offered L. merdigera larvae better protection from M. rubra than one derived from non-cardenolide Allium schoenoprasum (chives) or no fecal shield at all. Thus, we here present data suggesting a new way how insects may gain protection by feeding on cardenolide-containing plants.


Assuntos
Cardenolídeos , Besouros , Animais , Larva , Ouabaína , Insetos , Digoxina
10.
J Chem Ecol ; 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39167251

RESUMO

The landscape plant, Cinnamomum camphora, is a broad-spectrum insect-repelling tree species, mainly due to a diversity of terpenoids, such as camphor. Despite its formidable chemical defenses, C. camphora is easily attacked and invaded by a monophagous weevil pest, Pagiophloeus tsushimanus. Deciphering the key olfactory signal components regulating host preference could facilitate monitoring and control strategies for this pest. Herein, two host volatiles, camphor and ocimene, induced GC-EAD/EAG reactions in both male and female adult antennae. Correspondingly, Y-tube olfactometer assays showed that the two compounds were attractive to both male and female adults. In field assays, a self-made trap device baited with 5 mg dose d(+)-camphor captured significantly more P. tsushimanus adults than isopropanol solvent controls without sexual bias. The trunk gluing trap device baited with bait can capture adults, but the number was significantly less than that of the self-made trap device and adults often fell after struggling. The cross baffle trap device never trapped adults. Neither ocimene nor isopropanol solvent control captured adults. When used in combination, ocimene did not enhance the attraction of d(+)-camphor to both female and male adults. These results indicate that d(+)-camphor is a key active compound of P. tsushimanus adults for host location. The combination of the host-volatile lure based on d(+)-camphor and the self-made trapping device is promising to monitor and provide an eco-friendly control strategy for this novel pest P. tsushimanus in C. camphora plantations.

11.
Pestic Biochem Physiol ; 198: 105743, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38225086

RESUMO

The alkaloid, nicotine, produced by tobacco and other Solanaceae as an anti-herbivore defence chemical is one of the most toxic natural insecticides in nature. However, some insects, such as the whitefly species, Trialeurodes vaporariorum and Bemisia tabaci show strong tolerance to this allelochemical and can utilise tobacco as a host. Here, we used biological, molecular and functional approaches to investigate the role of cytochrome P450 enzymes in nicotine tolerance in T. vaporariorum and B. tabaci. Insecticide bioassays revealed that feeding on tobacco resulted in strong induced tolerance to nicotine in both species. Transcriptome profiling of both species reared on tobacco and bean hosts revealed profound differences in the transcriptional response these host plants. Interrogation of the expression of P450 genes in the host-adapted lines revealed that P450 genes belonging to the CYP6DP subfamily are strongly upregulated in lines reared on tobacco. Functional characterisation of these P450s revealed that CYP6DP1 and CYP6DP2 of T. vaporariorum and CYP6DP3 of B. tabaci confer resistance to nicotine in vivo. These three genes, in addition to the B. tabaci P450 CYP6DP5, were also found to confer resistance to the neonicotinoid imidacloprid. Our data provide new insight into the molecular basis of nicotine resistance in insects and illustrates how divergence in the evolution of P450 genes in this subfamily in whiteflies may have impacted the extent to which different species can tolerate a potent natural insecticide.


Assuntos
Hemípteros , Inseticidas , Animais , Nicotina/farmacologia , Nicotina/metabolismo , Inseticidas/farmacologia , Inseticidas/metabolismo , Resistência a Inseticidas/genética , Neonicotinoides/farmacologia , Neonicotinoides/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Nicotiana/genética , Hemípteros/metabolismo , Nitrocompostos/farmacologia , Nitrocompostos/metabolismo
12.
Plant Dis ; 108(6): 1861-1868, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38319626

RESUMO

Strawberry phyllody has emerged as a prevalent disease affecting Chilean strawberry in recent years. The causal pathogen, 'Fragaria × ananassa' phyllody phytoplasma (StrPh), is categorized within the 16S ribosomal group XIII that is exclusively found in the Americas. In the context of economically significant crops, hemipteran insect vectors and alternative host plants play a pivotal role in their natural dissemination. This study comprehensively examined the key epidemiological facets of StrPh in the central region of Chile: the insect vector and alternative hosts. Through field surveys, we identified an abundance of an insect species, Cixiosoma sp., in an StrPh-infected strawberry field and confirmed its role as a vector of this phytoplasma through subsequent transmission assays. Moreover, we found a spontaneous weed species, Galega officinalis, to be infected with StrPh, raising the possibility of it being a potential alternative host plant for this phytoplasma. StrPh was also detected in cold-stored strawberry runners purchased from a nursery that supplies the local strawberry cultivation, suggesting a potential source of this phytoplasma in Chile. Collectively, these findings provide a significant epidemiological source of StrPh dissemination in central Chile.


Assuntos
Fragaria , Hemípteros , Insetos Vetores , Phytoplasma , Doenças das Plantas , Chile , Fragaria/microbiologia , Doenças das Plantas/microbiologia , Produtos Agrícolas/microbiologia , Hemípteros/genética , Hemípteros/microbiologia
13.
Plant Dis ; 108(9): 2760-2770, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38657079

RESUMO

The phloem-limited bacterium 'Candidatus Liberibacter asiaticus' (CLas) is the putative causal pathogen of the severe Asiatic form of huanglongbing (citrus greening) and is most commonly transmitted by the Asiatic citrus psyllid Diaphorina citri. CLas severely affects many Citrus species and hybrids and has been recorded in the Citrus relative, orange jasmine, Murraya paniculata (L.) Jack (syn. M. exotica L.). In this study, 13 accessions of three Murraya species (M. paniculata, M. sumatrana Roxb., and M. lucida [G.Forst.] Mabb.) and the Papuan form of a putative hybrid (M. omphalocarpa Hayata) were identified morphologically and molecularly based on sequence identity of the matK-5'trnK region of the chloroplast genome, and infection on these plants under field conditions was determined by PCR and quantitative real-time PCR (qPCR) on two to four occasions over 14 months. CLas was repeatedly detected in leaflet midribs by PCR and qPCR on four and three accessions of M. paniculata and M. sumatrana, respectively. It was not detected in leaflet midribs of single accessions of M. lucida and M. omphalocarpa. The species identification of the CLas-positive accessions was further confirmed using all the molecular taxonomic markers consisting of the six fragments of the maternally inherited chloroplast genome and part of the nuclear-encoded internal transcribed spacer (ITS) region. The results indicated that natural infection of M. paniculata and M. sumatrana with CLas can occur in Java. To our knowledge, this is the first demonstration of the natural infection of M. sumatrana with CLas. Further studies are required to determine whether infections persist in the absence of D. citri.


Assuntos
Murraya , Doenças das Plantas , Rhizobiaceae , Murraya/microbiologia , Doenças das Plantas/microbiologia , Rhizobiaceae/genética , Rhizobiaceae/classificação , Rhizobiaceae/isolamento & purificação , Rhizobiaceae/fisiologia , Indonésia , DNA Bacteriano/genética , Liberibacter
14.
Plant Dis ; 108(7): 2000-2005, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38213118

RESUMO

The reniform nematode (Rotylenchulus reniformis Linford and Oliveira) adversely impacts the quality and quantity of sweetpotato storage roots. Management of R. reniformis in sweetpotato remains a challenge because host plant resistance is not available, fumigants are detrimental to the environment and health, and crop rotation is not effective. We screened a core set of 24 sweetpotato plant introductions (PIs) against R. reniformis. Four PIs were resistant, and 10 were moderately resistant to R. reniformis, suggesting these PIs can serve as sources of resistance for sweetpotato resistance breeding programs. PI 595869, PI 153907, and PI 599386 suppressed 83 to 89% egg production relative to the susceptible control 'Beauregard', and these PIs were employed in subsequent experiments to determine if their efficacy against R. reniformis can be further increased by applying nonfumigant nematicides oxamyl, fluopyram, and fluensulfone. A 34 to 93% suppression of nematode reproduction was achieved by the application of nonfumigant nematicides, with oxamyl providing the best suppression followed by fluopyram and fluensulfone. Although sweetpotato cultivars resistant to R. reniformis are currently not available and there is a need for the development of safer yet highly effective nonfumigant nematicides, results from the current study suggest that complementing host plant resistance with nonfumigant nematicides can serve as an important tool for effective and sustainable nematode management.


Assuntos
Antinematódeos , Ipomoea batatas , Doenças das Plantas , Ipomoea batatas/parasitologia , Animais , Antinematódeos/farmacologia , Doenças das Plantas/parasitologia , Doenças das Plantas/prevenção & controle , Resistência à Doença , Tylenchoidea/efeitos dos fármacos , Tylenchoidea/fisiologia , Interações Hospedeiro-Parasita/efeitos dos fármacos
15.
J Insect Sci ; 24(2)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38546354

RESUMO

Painted lady butterflies (Vanessa cardui L., Nymphalidae) are generalist herbivores and serve as a model system across several fields of biology. While it has been demonstrated that V. cardui caterpillars can develop on different host plants, much of this work has been done on commercially sourced caterpillars, which could limit our understanding of wild V. cardui populations. In this study, we sought to explore possible differences in how commercial and wild V. cardui caterpillars may respond to feeding on different host plants, and subsequently, how their diet impacts immune response and survival. Here, we analyzed performance, survival, and immune response of wild and commercially sourced V. cardui caterpillars over several generations on diets that consisted of either 1 of 4 different host plant species or a mixed diet including all 4 species. Qualitatively, we observed that wild larvae had a better larval performance and hemocyte counts compared to the commercial larvae. The results demonstrate that both wild and commercially sourced caterpillars grew and survived best on the same diet treatments (mallow, narrowleaf plantain, and a mixed diet) during development across generations. Immune responses showed similar patterns across host plants between wild and commercial populations, with individuals showing lowered immune responses on dandelion and lupine and higher ones on mallow, plantain and the mixed diet; although the relative rankings on those 3 diets varied. Survival also demonstrated similar patterns, in that individuals reared on dandelion and lupine had the lowest survival.


Assuntos
Borboletas , Musa , Humanos , Animais , Herbivoria , Dieta , Alimentos , Insetos , Larva
16.
J Insect Sci ; 24(2)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38457335

RESUMO

The soybean bud borer, a soybean pest in Brazil, was initially identified as Crocidosema aporema (Walsingham 1914) (Lepidoptera: Tortricidae). Outbreaks of this species have recently increased, but identification of this pest remains uncertain, and the historical factors associated with its geographic distribution in Brazil are little known. Here, we conducted a species characterization and phylogeographic analysis based on molecular and morphological evidence. Ninety individuals of bud-borers Lepidoptera were collected in different regions of Brazil. We sequenced COI and COII mitochondrial genes and examined wing patterns and male genital morphology. DNA barcoding approach revealed that 10 individuals were Argyrotaenia sphaleropa (Meyrick 1909) (Lepidoptera: Tortricidae) and 80 were a species of the genus Crocidosema Zeller. The morphology of the adult genitalia and wings proved to be insufficient to confirm the identification of Brazilian individuals as C. aporema, a species originally described from a high-elevation site in Costa Rica. Furthermore, the genetic distance between putative C. aporema specimens from Brazil and Costa Rica (ranging from 5.2% to 6.4%) supports the hypothesis that the Brazilian specimens are not referable to C. aporema. Our analysis revealed a single genetic strain (i.e., species) with low genetic diversity on soybean crops. We found no indication that the genetic structure was related to geographic distance among populations or edaphoclimatic regions. The population expansion of the soybean bud borer coincides with the increase in the area of soybean production in Brazil, suggesting that expanded soybean farming has allowed a significant increase in the effective population size of this pest.


Assuntos
Lepidópteros , Mariposas , Masculino , Animais , Lepidópteros/genética , Brasil , Glycine max/genética , Mariposas/genética , Filogeografia , Demografia
17.
Exp Appl Acarol ; 92(2): 203-215, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38321310

RESUMO

The red palm mite Raoiella indica Hirst, 1924 (Acari: Tenuipalpidae) is an important pest of the coconut palm Cocos nucifera L. (Arecaceae) and has caused problems in coconut production worldwide. Research has been carried out aiming at controlling the mite through chemical, biological, alternative, and host plant resistance methods. Identifying coconut palm cultivars resistant to R. indica is important to reduce the problems caused to plantations. Therefore, the objective of this work was to evaluate the performance of R. indica in six dwarf coconut palm cultivars, to identify sources of resistance. The cultivars of the sub-varieties green, red, and yellow evaluated were Brazilian Green Dwarf-Jiqui (BGDJ), Brazilian Red Dwarf-Gramame (BRDG), Cameroon Red Dwarf (CRD), Malayan Red Dwarf (MRD), Brazilian Yellow Dwarf-Gramame (BYDG), and Malayan Yellow Dwarf (MYD). Confinement and free choice tests of R. indica on the cultivars were performed, in which biological parameters and preference were evaluated. Mite performance was different in the cultivars evaluated. In the confinement bioassay, R. indica had the worst performance in the cultivar BGDJ, the best performance in CRD, MRD, and BRDG, and intermediate performance in BYDG and MYD. In the free choice test, the cultivars MRD and MYD were preferred in relation to BGDJ, and CRD was less preferred in relation to BGDJ. Therefore, we considered that the cultivar BGDJ is the most resistant to R. indica, by antibiosis and antixenosis; CRD has resistance by antixenosis; and MRD, BRDG, BYDG, and MYD are susceptible.


Assuntos
Arecaceae , Ácaros , Trombiculidae , Animais , Cocos , Brasil
18.
World J Microbiol Biotechnol ; 40(7): 218, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38806849

RESUMO

The importance of microorganisms residing within the host plant for their growth and health is increasingly acknowledged, yet the significance of microbes associated with seeds, particularly seed endophytic bacteria, remains underestimated. Seeds harbor a wide range of bacteria that can boost the growth and resilience of their host plants against environmental challenges. These endophytic associations also offer advantages for germination and seedling establishment, as seed endophytic bacteria are present during the initial stages of plant growth and development. Furthermore, plants can selectively choose bacteria possessing beneficial traits, which are subsequently transmitted through seeds to confer benefits to future generations. Interestingly, even with the ongoing discovery of endophytes in seeds through high-throughput sequencing methods, certain endophytes remain challenging to isolate and culture from seeds, despite their high abundance. These challenges pose difficulties in studying seed endophytes, making many of their effects on plants unclear. In this article, a framework for understanding the assembly and function of seed endophytes, including their sources and colonization processes was outlined in detail and available research on bacterial endophytes discovered within the seeds of various plant species has also been explored. Thus, this current review aims to provide valuable insights into the mechanism of underlying seed endophytic bacteria-host plant interactions and offers significant recommendations for utilizing the seed endophytic bacteria in sustainable agriculture as plant growth promoters and enhancers of environmental stress tolerance.


Assuntos
Bactérias , Endófitos , Desenvolvimento Vegetal , Sementes , Endófitos/fisiologia , Sementes/microbiologia , Sementes/crescimento & desenvolvimento , Bactérias/genética , Bactérias/classificação , Agentes de Controle Biológico , Plantas/microbiologia , Germinação , Plântula/microbiologia , Plântula/crescimento & desenvolvimento , Agricultura/métodos , Simbiose
19.
Dokl Biochem Biophys ; 518(1): 325-345, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38955917

RESUMO

Fundamental aspects in the evolution of nematodes parasitizing woody plants are reviewed. (1) Nematode faunal lists of natural refugia are useful to predict the risks of opportunistic pathogens becoming true pathogens in the forest and park communities. (2) Nematode composition in natural refugia gives a chance to identify nematode antagonists of insect vectors of dangerous fungal and nematode infections, which can be potentially used as the biological agents for woody plants' protection. (3) Dauers in the ancestors of wood-inhabiting nematodes played a role as a survival stage in the detritus decomposition succession, and they later acquired the functions of dispersal and adaptations for transmission using insect vectors. (4) When inspecting wilted trees, it is necessary to use dauers for diagnostics, as sexually mature nematodes may be absent in tree tissues. (5) Plant parasitic nematodes originated from members of the detritus food web and retained a detritivorous phase in the life cycle as a part of the propagative generation. (6) Vectors in the life cycles of plant parasitic nematodes are inherited from the ancestral detritivorous nematode associations, rather than inserted in the dixenic life cycle of the 'nematode-fungus-plant' association. (7) Despite the significant difference in the duration of the nematode-tree and nematode-vector phases of the life cycle, the actual parasitic nematode specificity is dual: firstly to the vector and secondly to the natural host plant (as demonstrated in phytotests excluding a vector).


Assuntos
Interações Hospedeiro-Parasita , Nematoides , Filogenia , Animais , Nematoides/fisiologia , Estágios do Ciclo de Vida , Evolução Biológica , Insetos Vetores/parasitologia , Madeira/parasitologia , Adaptação Fisiológica
20.
Annu Rev Entomol ; 68: 151-167, 2023 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-36206772

RESUMO

Spotted lanternfly, Lycorma delicatula (White), invaded the eastern United States in 2014 and has since caused economic and ecological disruption. In particular, spotted lanternfly has shown itself to be a significant pest of vineyards and ornamental plants and is likely to continue to spread to new areas. Factors that have contributed to its success as an invader include its wide host range and high mobility, which allow it to infest a wide range of habitats, including agricultural, urban, suburban, and managed and natural forested areas. Management is dependent on chemical use, although no single currently available control measure alone will be sufficient.


Assuntos
Hemípteros , Estados Unidos , Animais , Florestas , Árvores , Biologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa