Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Transl Oncol ; 14(12): 101215, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34571345

RESUMO

Glioblastoma (GBM) remains the most common and malignant tumor of the human central nervous system. Increasing evidence has highlighted that tumor cells with high transferrin receptor (TFRC) expression show advantages in growth. Long noncoding RNAs (lncRNAs) are related to glioma progression by mediating microRNAs (miRNAs). However, the underlying mechanism among TFRC, miRNA and lncRNA in GBM is limited. In the current study, we identified a new lncRNA-induced signaling mechanism that regulates the TFRC levels in GBM. The TFRC level was higher in glioma cell lines, and elevated TFRC expression promoted the proliferation and survival of glioma cells. Further study showed that hsa-miR-144a-3p bound to the 3'-UTR of TFRC mRNA and inhibited its expression, preventing the malignant properties of glioma cells, such as proliferation and survival. We also found that the lncRNA RP1-86C11.7 sponges hsa-miR-144-3p to suppress its protective role in glioma. RP1-86C11.7 overexpression in glioma cells elevated TFRC expression, increased the intracellular free iron level, and deteriorated oncogenicity, with a significant reduction in hsa-miR-144-3p. By contrast, silencing RP1-86C11.7 upregulated the hsa-miR-144-3p level, resulting in decreased TFRC expression and repressed glioma progression. However, the effect of silencing RP1-86C11.7 was reversed with simultaneous hsa-miR-144-3p inhibitor treatment: the TFRC level, intracellular iron level and proliferation in glioma cells increased. Mechanistically, our data indicated that RP1-86C11.7 exacerbates the malignant behavior of glioma through the hsa-miR-144-3p/TFRC axis. RP1-86C11.7 may be a potential biomarker or target to treat glioma in the future.

2.
Mol Cells ; 39(7): 543-9, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27329039

RESUMO

MicroRNAs (miRNAs) have been reported to be involved in many neurodegenerative diseases. The present study focused on the role of hsa-miR-144-3p in one of the neurodegenerative diseases, Parkinson's disease (PD). Our study showed a remarkable down-regulation of miR-144-3p expression in 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP)-treated SH-SY5Y cells. MiR-144-3p was then overexpressed and silenced in human SH-SY5Y cells by miRNA-mimics and miRNA-inhibitor transfections, respectively. Furthermore, ß-amyloid precursor protein (APP) was identified as a target gene of miR-144-3p via a luciferase reporter assay. We found that miR-144-3p overexpression significantly inhibited the protein expression of APP. Since mitochondrial dysfunction has been shown to be one of the major pathological events in PD, we also focused on the role of miR-144-3p and APP in regulating mitochondrial functions. Our study demonstrated that up-regulation of miR-144-3p increased expression of the key genes involved in maintaining mitochondrial function, including peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α), nuclear respiratory factor 1 (NRF-1) and mitochondrial transcription factor A (TFAM). Moreover, there was also a significant increase in cellular ATP, cell viability and the relative copy number of mtDNA in the presence of miR-144-3p overexpression. In contrast, miR-144-3p silencing showed opposite effects. We also found that APP overexpression significantly decreased ATP level, cell viability, the relative copy number of mtDNA and the expression of these three genes, which reversed the effects of miR-144-3p overexpression. Taken together, these results show that miR-144-3p plays an important role in maintaining mitochondrial function, and its target gene APP is also involved in this process.


Assuntos
1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina/efeitos adversos , Precursor de Proteína beta-Amiloide/genética , MicroRNAs/genética , Mitocôndrias/fisiologia , Doença de Parkinson/genética , Precursor de Proteína beta-Amiloide/metabolismo , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , DNA Mitocondrial/genética , Proteínas de Ligação a DNA/metabolismo , Regulação para Baixo , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Mitocôndrias/genética , Proteínas Mitocondriais/metabolismo , Modelos Biológicos , Fator 1 Nuclear Respiratório/metabolismo , Doença de Parkinson/etiologia , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Regiões Promotoras Genéticas , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa