Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
1.
Biochem Biophys Res Commun ; 722: 150152, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-38795452

RESUMO

MicroRNAs (miRNAs) can positively regulate gene expression through an unconventional RNA activation mechanism involving direct targeting 3' untranslated regions (UTRs). Our prior study found miR-93-5p activates mitogen-activated protein kinase kinase kinase 2 (MAP3K2) in hepatocellular carcinoma (HCC) via its 3'UTR. However, the underlying mechanism remains elusive. Here, we identified two candidate AU-rich element (ARE) motifs (ARE1 and ARE2) adjacent to the miR-93-5p binding site located within the MAP3K2 3'UTR using AREsite2. Luciferase reporter and translation assays validated that only ARE2 participated in MAP3K2 activation. Integrative analysis revealed that human antigen R (HuR), an ARE2-associated RNA-binding protein (RBP), physically and functionally interacted with the MAP3K2 3'UTR. Consequently, an HuR-ARE2 complex was shown to facilitate miR-93-5p-mediated upregulation of MAP3K2 expression. Furthermore, bioinformatics analysis and studies of HCC cells and specimens highlighted an oncogenic role for HuR and positive HuR-MAP3K2 expression correlation. HuR is also an enhancing factor in the positive feedback circuit comprising miR-93-5p, MAP3K2, and c-Jun demonstrated in our prior study. The newly identified HuR-ARE2 involvement enriches the mechanism of miR-93-5p-driven MAP3K2 activation and suggests new therapeutic strategies warranted for exploration in HCC.


Assuntos
Regiões 3' não Traduzidas , Carcinoma Hepatocelular , Proteína Semelhante a ELAV 1 , Regulação Neoplásica da Expressão Gênica , Neoplasias Hepáticas , MAP Quinase Quinase Quinase 2 , MicroRNAs , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Regiões 3' não Traduzidas/genética , MAP Quinase Quinase Quinase 2/metabolismo , MAP Quinase Quinase Quinase 2/genética , Proteína Semelhante a ELAV 1/metabolismo , Proteína Semelhante a ELAV 1/genética , Linhagem Celular Tumoral , Biossíntese de Proteínas
2.
J Transl Med ; 22(1): 178, 2024 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-38369471

RESUMO

BACKGROUND: Castration-resistant prostate cancer (CRPC) is refractory to hormone treatment, and the underlying mechanism has not been fully elucidated. This study aimed to clarify the role and mechanism of Human antigen R (HuR) as a therapeutic target for CRPC progression. METHODS: HuR was knocked out by Cas9 or inhibited by the HuR-specific inhibitor KH-3 in CRPC cell lines and in a mouse xenograft model. The effects of HuR inhibition on tumour cell behaviors and signal transduction were examined by proliferation, transwell, and tumour xenograft assays. Posttranscriptional regulation of BCAT1 by HuR was determined by half-life and RIP assays. RESULTS: HuR knockout attenuated the proliferation, migration, and invasion of PC3 and DU145 cells in vitro and inhibited tumour progression in vivo. Moreover, BCAT1 was a direct target gene of HuR and mediated the oncogenic effect of HuR on CRPC. Mechanistically, HuR directly interacted with BCAT1 mRNA and upregulated BCAT1 expression by increasing the stability and translation of BCAT1, which activated ERK5 signalling. Additionally, the HuR-specific inhibitor KH-3 attenuated CRPC progression by disrupting the HuR-BCAT1 interaction. CONCLUSIONS: We confirmed that the HuR/BCAT1 axis plays a crucial role in CRPC progression and suggest that inhibiting the HuR/BCAT1 axis is a promising therapeutic approach for suppressing CRPC progression.


Assuntos
Neoplasias de Próstata Resistentes à Castração , Masculino , Humanos , Animais , Camundongos , Neoplasias de Próstata Resistentes à Castração/genética , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/patologia , Linhagem Celular Tumoral , Transdução de Sinais , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Transaminases/genética
3.
J Mol Cell Cardiol ; 174: 38-46, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36372279

RESUMO

Cardiac fibrosis is regulated by the activation and phenotypic switching of quiescent cardiac fibroblasts to active myofibroblasts, which have extracellular matrix (ECM) remodeling and contractile functions which play a central role in cardiac remodeling in response to injury. Here, we show that expression and activity of the RNA binding protein HuR is increased in cardiac fibroblasts upon transformation to an active myofibroblast. Pharmacological inhibition of HuR significantly blunts the TGFß-dependent increase in ECM remodeling genes, total collagen secretion, in vitro scratch closure, and collagen gel contraction in isolated primary cardiac fibroblasts, suggesting a suppression of TGFß-induced myofibroblast activation upon HuR inhibition. We identified twenty-four mRNA transcripts that were enriched for HuR binding following TGFß treatment via photoactivatable ribonucleoside-enhanced crosslinking and immunoprecipitation (PAR-CLIP). Eleven of these HuR-bound mRNAs also showed significant co-expression correlation with HuR, αSMA, and periostin in primary fibroblasts isolated from the ischemic-zone of infarcted mouse hearts. Of these, WNT1-inducible signaling pathway protein-1 (Wisp1; Ccn4), was the most significantly associated with HuR expression in fibroblasts. Accordingly, we found Wisp1 expression to be increased in cardiac fibroblasts isolated from the ischemic-zone of mouse hearts following ischemia/reperfusion, and confirmed Wisp1 expression to be HuR-dependent in isolated fibroblasts. Finally, addition of exogenous recombinant Wisp1 partially rescued myofibroblast-induced collagen gel contraction following HuR inhibition, demonstrating that HuR-dependent Wisp1 expression plays a functional role in HuR-dependent MF activity downstream of TGFß. In conclusion, HuR activity is necessary for the functional activation of primary cardiac fibroblasts in response to TGFß, in part through post-transcriptional regulation of Wisp1.


Assuntos
Proteínas de Sinalização Intercelular CCN , Proteína Semelhante a ELAV 1 , Miofibroblastos , Fator de Crescimento Transformador beta , Animais , Camundongos , Colágeno/metabolismo , Fibroblastos/metabolismo , Coração , Miofibroblastos/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Proteína Semelhante a ELAV 1/metabolismo , Proteínas de Sinalização Intercelular CCN/metabolismo
4.
FASEB J ; 36(11): e22590, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36208289

RESUMO

Many circular RNAs (circRNAs) involved in the osteogenesis of human bone marrow mesenchymal stem cells (hBMSCs) have recently been discovered. The role of circHIPK3 in osteogenesis has yet to be determined. Cell transfection was conducted using small-interfering RNAs (siRNAs). Expression of osteogenic markers were detected by quantitative reverse transcription-polymerase chain reaction, western blotting analysis, and immunofluorescence staining. Ectopic bone formation models in nude mice were used to examined the bone formation ability in vivo. The autophagy flux was examined via western blotting analysis, immunofluorescence staining and transmission electron microscopy analysis. RNA immunoprecipitation (RIP) analysis was carried out to analyze the binding between human antigen R (HUR) and circHIPK3 or autophagy-related 16-like 1 (ATG16L1). Actinomycin D was used to determine the mRNA stability. Our results demonstrated that silencing circHIPK3 promoted the osteogenesis of hBMSCs while silencing the linear mHIPK3 did not affect osteogenic differentiation, both in vivo and in vitro. Moreover, we found that knockdown of circHIPK3 activated autophagy flux. Activation of autophagy enhanced the osteogenesis of hBMSCs and inhibition of autophagy reduced the osteogenesis through using autophagy regulators chloroquine and rapamycin. We also discovered that circHIPK3 and ATG16L1 both bound to HUR. Knockdown of circHIPK3 released the binding sites of HUR to ATG16L1, which stabilized the mRNA expression of ATG16L1, resulting in the upregulation of ATG16L1 and autophagy activation. CircHIPK3 functions as an osteogenesis and autophagy regulator and has the potential for clinical application in the future.


Assuntos
Células-Tronco Mesenquimais , Osteogênese , Animais , Autofagia/genética , Células da Medula Óssea , Diferenciação Celular/fisiologia , Células Cultivadas , Cloroquina , Dactinomicina , Humanos , Células-Tronco Mesenquimais/metabolismo , Camundongos , Camundongos Nus , Osteogênese/genética , RNA Circular/genética , RNA Mensageiro/metabolismo , Sirolimo/metabolismo
5.
Int J Mol Sci ; 24(17)2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37685931

RESUMO

The RNA-binding protein human antigen R (HuR) regulates stability, translation, and nucleus-to-cytoplasm shuttling of its target mRNAs. This protein has been progressively recognized as a relevant therapeutic target for several pathologies, like cancer, neurodegeneration, as well as inflammation. Inhibitors of mRNA binding to HuR might thus be beneficial against a variety of diseases. Here, we present the rational identification of structurally novel HuR inhibitors. In particular, by combining chemoinformatic approaches, high-throughput virtual screening, and RNA-protein pulldown assays, we demonstrate that the 4-(2-(2,4,6-trioxotetrahydropyrimidin-5(2H)-ylidene)hydrazineyl)benzoate ligand exhibits a dose-dependent HuR inhibition effect in binding experiments. Importantly, the chemical scaffold is new with respect to the currently known HuR inhibitors, opening up a new avenue for the design of pharmaceutical agents targeting this important protein.


Assuntos
Benzoatos , Bioensaio , Proteína Semelhante a ELAV 1 , Humanos , Núcleo Celular , Peso Molecular , Proteínas de Ligação a RNA/antagonistas & inibidores , Proteína Semelhante a ELAV 1/antagonistas & inibidores
6.
J Biol Chem ; 297(2): 100997, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34302808

RESUMO

Long noncoding RNAs (lncRNAs) have been reported to drive key cancer pathways but the functions of majority of lncRNAs are unknown making a case for comprehensive functional evaluation of lncRNAs. With an aim to identify lncRNAs dysregulated in human cancers, we analyzed the cancer patient database of lung adenocarcinoma (LUAD), which revealed an upregulated lncRNA, LINC02381 (renamed HOXC10mRNA stabilizing factor or HMS in this study), whose depletion results in proliferation defects and inhibition of colony formation of human cancer cells. In order to identify the binding targets of HMS, we screened for cis-genes and discovered that HOXC10, an oncogene, is downregulated in the absence of HMS. Depletion of HMS does not affect the HOXC10 promoter activity but inhibits the HOXC10 3'-UTR-linked luciferase reporter activity. Since lncRNAs have been known to associate with RNA-binding proteins (RBPs) to stabilize mRNA transcripts, we screened for different RBPs and discovered that HuR, an ELAV family protein, stabilizes HOXC10 mRNA. Using RNA pull-down and deletion mapping experiments, we show that HuR physically interacts with the cytosine-rich stretch of HMS and HOXC10 3'-UTR to stabilize HOXC10 mRNA. HOXC10 is overexpressed in many human cancers, and our discovery highlights that lncRNA HMS sustains the HOXC10 mRNA levels to maintain the invasive phenotypes of cancer cells.


Assuntos
Proteína Semelhante a ELAV 1/metabolismo , Regulação Neoplásica da Expressão Gênica , Proteínas de Homeodomínio/genética , Neoplasias Pulmonares/patologia , RNA Longo não Codificante/genética , Regiões 3' não Traduzidas , Linhagem Celular Tumoral , Proliferação de Células , Biologia Computacional/métodos , Bases de Dados Genéticas , Proteínas de Homeodomínio/metabolismo , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , RNA Longo não Codificante/metabolismo , Regulação para Cima
7.
J Biol Chem ; 296: 100154, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33288677

RESUMO

Posttranscriptional regulation of gene expression plays a critical role in controlling the inflammatory response. An uncontrolled inflammatory response results in chronic inflammation, often leading to tumorigenesis. Programmed cell death 4 (PDCD4) is a proinflammatory tumor-suppressor gene which helps to prevent the transition from chronic inflammation to cancer. PDCD4 mRNA translation is regulated by an interplay between the oncogenic microRNA miR-21 and the RNA-binding protein (RBP) human antigen R (HuR) in response to lipopolysaccharide stimulation, but the role of other regulatory factors remains unknown. Here, we report that the RBP lupus antigen (La) interacts with the 3'-untranslated region of PDCD4 mRNA and prevents miR-21-mediated translation repression. While lipopolysaccharide causes nuclear-cytoplasmic translocation of HuR, it enhances cellular La expression. Remarkably, La and HuR were found to bind cooperatively to the PDCD4 mRNA and mitigate miR-21-mediated translation repression. The cooperative action of La and HuR reduced cell proliferation and enhanced apoptosis, reversing the pro-oncogenic function of miR-21. Together, these observations demonstrate a cooperative interplay between two RBPs, triggered differentially by the same stimulus, which exerts a synergistic effect on PDCD4 expression and thereby helps maintain a balance between inflammation and tumorigenesis.


Assuntos
Regiões 3' não Traduzidas , Proteínas Reguladoras de Apoptose/genética , Autoantígenos/genética , Transformação Celular Neoplásica/genética , Proteína Semelhante a ELAV 1/genética , MicroRNAs/genética , Proteínas de Ligação a RNA/genética , Ribonucleoproteínas/genética , Apoptose/efeitos dos fármacos , Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Autoantígenos/metabolismo , Sequência de Bases , Sítios de Ligação , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Transformação Celular Neoplásica/efeitos dos fármacos , Transformação Celular Neoplásica/metabolismo , Transformação Celular Neoplásica/patologia , Proteína Semelhante a ELAV 1/metabolismo , Regulação da Expressão Gênica , Genes Reporter , Humanos , Lipopolissacarídeos/farmacologia , Luciferases/genética , Luciferases/metabolismo , Células MCF-7 , MicroRNAs/metabolismo , Ligação Proteica , Biossíntese de Proteínas/efeitos dos fármacos , Proteínas de Ligação a RNA/metabolismo , Ribonucleoproteínas/metabolismo , Transdução de Sinais , Antígeno SS-B
8.
J Virol ; 95(21): e0091521, 2021 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-34406862

RESUMO

Coxsackievirus B3 (CVB3) is an enterovirus belonging to the family Picornaviridae. Its 5' untranslated region (UTR) contains a cloverleaf structure followed by an internal ribosome entry site (IRES). The cloverleaf forms an RNA-protein complex known to regulate virus replication, translation, and stability of the genome, and the IRES regulates virus RNA translation. For positive-strand RNA-containing viruses, such as members of the flaviviruses or enteroviruses, the genomic RNA is used for translation, replication, and encapsidation. Only a few regulatory mechanisms which govern the accessibility of genomic RNA templates for translation or replication have been reported. Here, we report the role of human antigen R (HuR) in regulating the fate of CVB3 positive-strand RNA into the replication cycle or translation cycle. We have observed that synthesis of HuR is induced during CVB3 infection, and it suppresses viral replication by displacing PCBP-2 (a positive regulator of virus replication) at the cloverleaf RNA. Silencing of HuR increases viral RNA replication and consequently reduces viral RNA translation in a replication-dependent manner. Furthermore, we have shown that HuR level is upregulated upon CVB3 infection. Moreover, HuR limits virus replication and can coordinate the availability of genomic RNA templates for translation, replication, or encapsidation. Our study highlights the fact that the relative abundance of translation factors and replication factors in the cell decides the outcome of viral infection. IMPORTANCE A positive-strand RNA virus must balance the availability of its genomic template for different viral processes at different stages of its life cycle. A few host proteins are shown to be important to help the virus in switching the usage of a template between these processes. These proteins inhibit translation either by displacing a stimulator of translation or by binding to an alternative site. Both mechanisms lead to ribosome clearance and availability of the genomic strand for replication. We have shown that HuR also helps in maintaining this balance by inhibiting replication and subsequently promoting translation and packaging.


Assuntos
Infecções por Coxsackievirus/metabolismo , Infecções por Coxsackievirus/virologia , Proteína Semelhante a ELAV 1/fisiologia , Enterovirus Humano B/fisiologia , RNA Viral/metabolismo , Regiões 5' não Traduzidas , Animais , Regulação Viral da Expressão Gênica , Inativação Gênica , Células HeLa , Interações entre Hospedeiro e Microrganismos , Humanos , Sítios Internos de Entrada Ribossomal , Estágios do Ciclo de Vida , Proteínas de Ligação a RNA/metabolismo , Ribossomos/metabolismo , Replicação Viral
9.
Kidney Blood Press Res ; 47(1): 61-71, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34788763

RESUMO

BACKGROUND: Trimethylamine-N-oxide (TMAO) is an intestinal metabolic toxin, which is produced by gut flora via metabolizing high-choline foods. TMAO is known to increase the risk of atherosclerosis and cardiovascular events in chronic kidney disease (CKD) patients. OBJECTIVES: The objective of this study was to explore the role and mechanism of TMAO aggravating kidney injury. METHOD: We used the five-sixths nephrectomy (5/6 Nx)-induced CKD rats to investigate whether TMAO could aggravate kidney damage and its possible mechanisms. Six weeks after the operation, the two groups of 5/6 Nx rats were subjected to intraperitoneal injection with 2.5% glucose peritoneal dialysis fluid (2.5% PDF) and 2.5% PDF plus TMAO 20 mg/kg/day. RESULTS: In this study, we provided evidence showing TMAO significantly aggravated renal failure as well as inflammatory cell infiltration and in five-sixths nephrectomy-induced CKD rats. We found that TMAO could upregulate inflammatory factors including MCP-1, TNF-α, IL-6, IL-1ß, and IL-18 by activating p38 phosphorylation and upregulation of human antigen R. TMAO could aggravate oxidative stress by upregulating NOX4 and downregulating SOD. The result also confirmed that TMAO promoted NLRP3 inflammasome formation as well as cleaved caspase-1 and IL-1ß activation in the kidney tissue. CONCLUSIONS: Taken together, the present study validates TMAO as a pro-inflammatory factor that causes renal inflammatory injury and renal function impairment. Inhibition of TMAO synthesis or promoting its clearance may be a potential therapeutic approach of CKD in the future.


Assuntos
Proteína Semelhante a ELAV 1/metabolismo , Metilaminas/metabolismo , Insuficiência Renal Crônica/metabolismo , Transdução de Sinais , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Animais , Inflamação/metabolismo , Inflamação/patologia , Masculino , Ratos , Ratos Sprague-Dawley , Insuficiência Renal Crônica/patologia , Regulação para Cima
10.
J Cell Physiol ; 236(10): 6836-6851, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33855709

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a disease of progressive scarring caused by excessive extracellular matrix (ECM) deposition and activation of α-SMA-expressing myofibroblasts. Human antigen R (HuR) is an RNA binding protein that promotes protein translation. Upon translocation from the nucleus to the cytoplasm, HuR functions to stabilize messenger RNA (mRNA) to increase protein levels. However, the role of HuR in promoting ECM production, myofibroblast differentiation, and lung fibrosis is unknown. Human lung fibroblasts (HLFs) treated with transforming growth factor ß1 (TGF-ß1) showed a significant increase in translocation of HuR from the nucleus to the cytoplasm. TGF-ß-treated HLFs that were transfected with HuR small interfering RNA had a significant reduction in α-SMA protein as well as the ECM proteins COL1A1, COL3A, and FN1. HuR was also bound to mRNA for ACTA2, COL1A1, COL3A1, and FN. HuR knockdown affected the mRNA stability of ACTA2 but not that of the ECM genes COL1A1, COL3A1, or FN. In mouse models of pulmonary fibrosis, there was higher cytoplasmic HuR in lung structural cells compared to control mice. In human IPF lungs, there was also more cytoplasmic HuR. This study is the first to show that HuR in lung fibroblasts controls their differentiation to myofibroblasts and consequent ECM production. Further research on HuR could assist in establishing the basis for the development of new target therapy for fibrotic diseases, such as IPF.


Assuntos
Transdiferenciação Celular , Proteína Semelhante a ELAV 1/metabolismo , Matriz Extracelular/metabolismo , Fibroblastos/metabolismo , Fibrose Pulmonar Idiopática/metabolismo , Pulmão/metabolismo , Miofibroblastos/metabolismo , Actinas/genética , Actinas/metabolismo , Animais , Transdiferenciação Celular/efeitos dos fármacos , Células Cultivadas , Modelos Animais de Doenças , Proteína Semelhante a ELAV 1/genética , Matriz Extracelular/efeitos dos fármacos , Matriz Extracelular/patologia , Proteínas da Matriz Extracelular/genética , Proteínas da Matriz Extracelular/metabolismo , Fibroblastos/efeitos dos fármacos , Fibroblastos/patologia , Regulação da Expressão Gênica , Humanos , Fibrose Pulmonar Idiopática/genética , Fibrose Pulmonar Idiopática/patologia , Pulmão/efeitos dos fármacos , Pulmão/patologia , Camundongos , Miofibroblastos/patologia , Fator de Crescimento Transformador beta1/farmacologia
11.
Respir Res ; 22(1): 323, 2021 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-34963461

RESUMO

BACKGROUND: Pulmonary fibrosis is thought to be driven by recurrent alveolar epithelial injury which leads to the differentiation of fibroblasts into α-smooth muscle actin (α-SMA)-expressing myofibroblasts and subsequent deposition of extracellular matrix (ECM). Transforming growth factor beta-1 (TGF-ß1) plays a key role in fibroblast differentiation, which we have recently shown involves human antigen R (HuR). HuR is an RNA binding protein that also increases the translation of hypoxia inducible factor (HIF-1α) mRNA, a transcription factor critical for inducing a metabolic shift from oxidative phosphorylation towards glycolysis. This metabolic shift may cause fibroblast differentiation. We hypothesized that under hypoxic conditions, HuR controls myofibroblast differentiation and glycolytic reprogramming in human lung fibroblasts (HLFs). METHODS: Primary HLFs were cultured in the presence (or absence) of TGF-ß1 (5 ng/ml) under hypoxic (1% O2) or normoxic (21% O2) conditions. Evaluation included mRNA and protein expression of glycolytic and myofibroblast/ECM markers by qRT-PCR and western blot. Metabolic profiling was done by proton nuclear magnetic resonance (1H- NMR). Separate experiments were conducted to evaluate the effect of HuR on metabolic reprogramming using siRNA-mediated knock-down. RESULTS: Hypoxia alone had no significant effect on fibroblast differentiation or metabolic reprogramming. While hypoxia- together with TGFß1- increased mRNA levels of differentiation and glycolysis genes, such as ACTA2, LDHA, and HK2, protein levels of α-SMA and collagen 1 were significantly reduced. Hypoxia induced cytoplasmic translocation of HuR. Knockdown of HuR reduced features of fibroblast differentiation in response to TGF-ß1 with and without hypoxia, including α-SMA and the ECM marker collagen I, but had no effect on lactate secretion. CONCLUSIONS: Hypoxia reduced myofibroblasts differentiation and lactate secretion in conjunction with TGF-ß. HuR is an important protein in the regulation of myofibroblast differentiation but does not control glycolysis in HLFs in response to hypoxia. More research is needed to understand the functional implications of HuR in IPF pathogenesis.


Assuntos
Diferenciação Celular/fisiologia , Hipóxia Celular/fisiologia , Reprogramação Celular/fisiologia , Proteína Semelhante a ELAV 1/metabolismo , Pulmão/metabolismo , Fator de Crescimento Transformador beta/farmacologia , Diferenciação Celular/efeitos dos fármacos , Hipóxia Celular/efeitos dos fármacos , Células Cultivadas , Reprogramação Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Proteína Semelhante a ELAV 1/genética , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Humanos , Pulmão/citologia , Pulmão/efeitos dos fármacos
12.
FASEB J ; 33(6): 7707-7720, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30897345

RESUMO

Peroxisome proliferator-activated receptor (PPAR)-γ has been implicated as a key player in the regulation of adiponectin levels via both transcriptional and posttranscriptional mechanisms. Herein, we show that PPAR-γ interacts with human antigen R (HuR) and that the PPAR-γ-HuR complex dissociates following activation of PPAR-γ by rosiglitazone, a specific ligand of PPAR-γ. This rosiglitazone-dependent dissociation of HuR from PPAR-γ leads to nucleocytoplasmic shuttling of HuR and its binding to the 3'-UTR of adiponectin mRNA. PPAR-γ with H321A and H447A double mutation (PPAR-γH321/447A), a mutant lacking ligand-binding activity, impaired HuR dissociation from the PPAR-γ-HuR complex, resulting in reduced nucleocytoplasmic shuttling, even in the presence of rosiglitazone. Consequently, rosiglitazone up-regulated adiponectin levels by modulating the stability of adiponectin mRNA, whereas these effects were abolished by HuR ablation or blocked in cells expressing the PPAR-γH321/447A mutant, indicating that the interaction of PPAR-γ and HuR is a critical event during adiponectin expression. Taken together, the findings demonstrate a novel mechanism for regulating adiponectin expression at the posttranscriptional level and suggest that ligand-mediated activation of PPAR-γ to interfere with interaction of HuR could offer a therapeutic strategy for inflammation-associated diseases that involve decreased adiponectin mRNA stability.-Hwang, J. S., Lee, W. J., Hur, J., Lee, H. G., Kim, E., Lee, G. H., Choi, M.-J., Lim, D.-S., Paek, K. S., Seo, H. G. Rosiglitazone-dependent dissociation of HuR from PPAR-γ regulates adiponectin expression at the posttranscriptional level.


Assuntos
Adiponectina/metabolismo , Proteína Semelhante a ELAV 1/metabolismo , PPAR gama/metabolismo , Processamento Pós-Transcricional do RNA/efeitos dos fármacos , Rosiglitazona/farmacologia , Adiponectina/genética , Animais , Linhagem Celular , Humanos , Ligantes , Ligação Proteica , Transcrição Gênica
13.
Pharmacol Res ; 155: 104684, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32045667

RESUMO

Human antigen R (HuR), also known as HuA and embryonic lethal abnormal vision-like 1 (ELAVL1), is a ubiquitously expressed RNA binding protein and functions as an RNA regulator and mediates the expression of various proteins by diverse post-transcriptional mechanisms. HuR has been well characterized in the inflammatory responses and in the development of various cancers. The importance of HuR-mediated roles in cell signaling, inflammation, fibrogenesis and cancer development in the liver has attracted a great deal of attention. However, there is still a substantial gap between the current understanding of the potential roles of HuR in the progression of liver disease and whether HuR can be targeted for the treatment of liver diseases. In this review, we introduce the function and mechanistic characterization of HuR, and then focus on the physiopathological roles of HuR in the development of different liver diseases, including hepatic inflammation, alcoholic liver diseases, non-alcoholic fatty liver diseases, viral hepatitis, liver fibrosis and liver cancers. We also summarize existing approaches targeting HuR function. In conclusion, although characterizing the liver-specific HuR function and demonstrating the multi-level regulative networks of HuR in the liver are still required, emerging evidence supports the notion that HuR represents a potential therapeutic target for the treatment of chronic liver diseases.


Assuntos
Proteína Semelhante a ELAV 1/imunologia , Hepatopatias/terapia , Animais , Humanos , Hepatopatias/imunologia
14.
J Formos Med Assoc ; 119(1 Pt 2): 359-366, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31262614

RESUMO

PURPOSE: Corneal avascularity is critical for corneal transparency; therefore, a tailored process has been presumed to minimize corneal neovascularization (NV). In most cell types, the transcription of vascular endothelial growth factor (VEGF) is up-regulated, and the stability of VEGF mRNA is sustained by human antigen R (HuR) during hypoxia; however, whether such response applies to corneal epithelial cells is unclear. METHODS: Human corneal epithelial cells (HCECs) and MCF-7 cells that serves as the control were incubated under 0.5% oxygen, and the levels of VEGF and HuR were examined time-dependently. The alteration of HuR was also examined in vivo using the closed-eye contact lens-induced corneal neovascularization rabbit model and immunohistochemistry. Additionally, the expression of HuR was modulated by transfection of plasmids encoding HuR or siRNA targeting HuR to validate the role of HuR in VEGF expression. RESULTS: We found that, unlike in control cells, the level of VEGF was not up-regulated, and the HuR expression was declined in HCECs following hypoxia. The HuR immunostaining intensities were decreased in corneal epithelial cells of rabbits wearing contact lenses. In addition, HuR overexpression restored the ability of HCECs to up-regulate VEGF under hypoxia; however, knockdown of HuR suppressed hypoxia-induced VEGF in control cells but did not further decrease VEGF in HCECs. These findings suggest that HCECs may modulate HuR to suppress hypoxia-mediated up-regulation of VEGF. CONCLUSION: Our study revealed a distinct regulation of VEGF via HuR in HCECs following hypoxia, which likely contributes to minimizing corneal NV and/or maintenance of corneal avascularity.


Assuntos
Córnea/metabolismo , Neovascularização da Córnea/prevenção & controle , Proteína Semelhante a ELAV 1/metabolismo , Epitélio Corneano/citologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Animais , Hipóxia Celular , Células Cultivadas , Córnea/irrigação sanguínea , Córnea/patologia , Neovascularização da Córnea/metabolismo , Neovascularização da Córnea/patologia , Proteína Semelhante a ELAV 1/genética , Ensaio de Imunoadsorção Enzimática , Humanos , RNA Mensageiro/metabolismo , Coelhos , Transfecção , Regulação para Cima , Fator A de Crescimento do Endotélio Vascular/genética
15.
J Biol Chem ; 293(51): 19624-19632, 2018 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-30377250

RESUMO

The potassium voltage-gated channel subfamily H member 2 (KCNH2) gene encodes the Kv11.1 potassium channel, which conducts the rapidly activating delayed rectifier current in the heart. KCNH2 pre-mRNA undergoes alternative polyadenylation and forms a functional, full-length Kv11.1a isoform if exon 15 is polyadenylated or a nonfunctional, C-terminally truncated Kv11.1a-USO isoform if intron 9 is polyadenylated. The molecular mechanisms that regulate Kv11.1 isoform expression are poorly understood. In this study, using HEK293 cells and reporter gene expression, pulldown assays, and RNase protection assays, we identified the RNA-binding proteins Hu antigen R (HuR) and Hu antigen D (HuD) as regulators of Kv11.1 isoform expression. We show that HuR and HuD inhibit activity at the intron 9 polyadenylation site. When co-expressed with the KCNH2 gene, HuR and HuD increased levels of the Kv11.1a isoform and decreased the Kv11.1a-USO isoform in the RNase protection assays and immunoblot analyses. In patch clamp experiments, HuR and HuD significantly increased the Kv11.1 current. siRNA-mediated knockdown of HuR protein decreased levels of the Kv11.1a isoform and increased those of the Kv11.1a-USO isoform. Our findings suggest that the relative expression levels of Kv11.1 C-terminal isoforms are regulated by the RNA-binding HuR and HuD proteins.


Assuntos
Proteína Semelhante a ELAV 1/metabolismo , Proteína Semelhante a ELAV 4/metabolismo , Canal de Potássio ERG1/química , Canal de Potássio ERG1/metabolismo , Regulação da Expressão Gênica , Células HEK293 , Humanos , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo
16.
Mol Cancer ; 18(1): 158, 2019 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-31718709

RESUMO

BACKGROUND: Circular RNAs (circRNAs), a subclass of non-coding RNAs, play essential roles in tumorigenesis and aggressiveness. Our previous study has identified that circAGO2 drives gastric cancer progression through activating human antigen R (HuR), a protein stabilizing AU-rich element-containing mRNAs. However, the functions and underlying mechanisms of circRNAs derived from HuR in gastric cancer progression remain elusive. METHODS: CircRNAs derived from HuR were detected by real-time quantitative RT-PCR and validated by Sanger sequencing. Biotin-labeled RNA pull-down, mass spectrometry, RNA immunoprecipitation, RNA electrophoretic mobility shift, and in vitro binding assays were applied to identify proteins interacting with circRNA. Gene expression regulation was observed by chromatin immunoprecipitation, dual-luciferase assay, real-time quantitative RT-PCR, and western blot assays. Gain- and loss-of-function studies were performed to observe the impacts of circRNA and its protein partner on the growth, invasion, and metastasis of gastric cancer cells in vitro and in vivo. RESULTS: Circ-HuR (hsa_circ_0049027) was predominantly detected in the nucleus, and was down-regulated in gastric cancer tissues and cell lines. Ectopic expression of circ-HuR suppressed the growth, invasion, and metastasis of gastric cancer cells in vitro and in vivo. Mechanistically, circ-HuR interacted with CCHC-type zinc finger nucleic acid binding protein (CNBP), and subsequently restrained its binding to HuR promoter, resulting in down-regulation of HuR and repression of tumor progression. CONCLUSIONS: Circ-HuR serves as a tumor suppressor to inhibit CNBP-facilitated HuR expression and gastric cancer progression, indicating a potential therapeutic target for gastric cancer.


Assuntos
Proteína Semelhante a ELAV 1/genética , Regulação Neoplásica da Expressão Gênica , RNA Circular , Proteínas de Ligação a RNA/metabolismo , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Progressão da Doença , Proteína Semelhante a ELAV 1/metabolismo , Xenoenxertos , Humanos , Camundongos , Modelos Biológicos , Interferência de RNA , Neoplasias Gástricas/patologia , Ativação Transcricional
17.
Cell Mol Neurobiol ; 39(7): 1029-1037, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31172341

RESUMO

Previous studies reported that RNA-binding protein human antigen R (HuR) mediates changes in the stability of AChR ß-subunit mRNA after skeletal muscle denervation; also, p38 pathway regulated the stability of AChR ß-subunit mRNA in C2C12 myotubes. However, the relationship between HuR and p38 in regulating the stability of AChR ß-subunit mRNA have not been clarified. In this study, we wanted to examine the effect of inhibiting p38 on HuR in denervated skeletal muscle. Denervation model was built and 10% DMSO or SB203580 were administered respectively follow denervation. Tibialis muscles were collected in 10% DMSO-administered contralateral (undenervated) leg, 10% DMSO-administered denervated leg, SB203580-administered contralateral (undenervated) leg, and SB203580-administered denervated leg, respectively. P38 protein, ß-AChR mRNA and protein, HuR protein, ß-AChR mRNA stability, and HuR binding with AChR ß-subunit mRNAs were measured. Results demonstrated that the administration of SB203580 can inhibit the increase of ß-AChR protein expression and mRNA expression and stability, and RNA-binding protein human antigen R (HuR) expression, in cytoplasmic and nuclear fractions in skeletal muscle cells following denervation. Importantly, we observed that SB203580 also inhibited the increased level of binding activity between HuR and AChR ß-subunit mRNAs following denervation. Collectively, these results suggested that inhibition of p38 can post-transcriptionally inhibit ß-AChR upregulation via HuR in denervated skeletal muscle.


Assuntos
Proteína Semelhante a ELAV 1/metabolismo , Músculo Esquelético/inervação , Músculo Esquelético/metabolismo , Receptores Nicotínicos/metabolismo , Transcrição Gênica , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores , Animais , Ativação Enzimática/efeitos dos fármacos , Extremidades/inervação , Imidazóis/farmacologia , Masculino , Camundongos , Denervação Muscular , Fosforilação/efeitos dos fármacos , Ligação Proteica/efeitos dos fármacos , Estabilidade Proteica/efeitos dos fármacos , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Piridinas/farmacologia , Estabilidade de RNA/efeitos dos fármacos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos Sprague-Dawley , Receptores Nicotínicos/genética , Transcrição Gênica/efeitos dos fármacos , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
18.
Pharmacol Res ; 145: 104254, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31054311

RESUMO

Salvia miltiorrhiza Bunge (Danshen), a famous traditional Chinese herb, has been used clinically for the treatment of various diseases for centuries. Document data showed that tanshinones, a class of lipophilic abietane diterpenes rich in this herb, possess multiple biological effects in vitro and in vivo models. Among which, 15,16-dihydrotanshinone I (DHT) has received much attention in recent years. In this systematical review, we carefully selected, analyzed, and summarized high-quality publications related to pharmacological effects and the underlying mechanisms of DHT. DHT has anti-cancer, cardiovascular protective, anti-inflammation, anti-Alzheimer's disease, and other effects. Furthermore, several molecules such as hypoxia-inducible factor (HIF-1α), human antigen R (HuR), acetylcholinesterase (AchE), etc. have been identified as the potential targets for DHT. The diverse pharmacological activities of DHT provide scientific evidence for the local and traditional uses of Salvia miltiorrhiza Bunge. We concluded that DHT might serve as a lead compound for drug discovery in related diseases while further in-depth investigations are still needed.


Assuntos
Produtos Biológicos/farmacologia , Fenantrenos/farmacologia , Salvia miltiorrhiza , Animais , Antialérgicos/farmacologia , Anti-Inflamatórios/farmacologia , Antineoplásicos/farmacologia , Doenças Cardiovasculares/tratamento farmacológico , Furanos , Humanos , Fármacos Neuroprotetores/farmacologia , Quinonas
19.
Inflamm Res ; 68(7): 597-611, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31119302

RESUMO

OBJECTIVE: The present study was undertaken to validate whether TNF-α and calreticulin (CRT) serve as dual signaling to activate nucleotide-binding oligomerization domain-, leucine-rich repeat- and pyrin domain-containing 3 (NLRP3) inflammasome in rheumatoid arthritis (RA) fibroblast-like synoviocytes (FLS) and HUVECs. The effect of human antigen R (HuR) in NLRP3 inflammasome activation was also explored in RA FLS. METHODS: Immunofluorescence was used to determine the expression of NLRP3 and adaptor protein apoptosis associated speck-like protein containing a CARD (ASC) in RA synovial tissue and HuR location in RA FLS. Western blot and quantitative real-time PCR were employed to measure the priming effect of NLRP3 inflammasome in cells and HuR expression in synovial tissue. The concentrations of IL-1ß and IL-18 were detected by enzyme linked immunosorbent assay. Immunohistochemistry was used to visualize the expression of HuR in synovial tissue. HuR knockdown in RA FLS was achieved by siRNA-mediated gene silencing. RESULTS: Higher expression of NLRP3 and ASC in RA synovial tissue than those in osteoarthritis was detected. The staining of NLRP3, ASC and cleaved IL-1ß were observed in FLS and vascular endothelial cells in RA synovium. Expression of NLRP3 and pro-IL-1ß in RA FLS and HUVECs treated with TNF-α was increased. The pro-IL-18 expression was also enhanced in HUVECs, but not in RA FLS. TNF-α/CRT dual stimulation of cells gave rise to caspase-1 p20 expression and the secretion of IL-1ß. The secreted IL-18 was also elevated in HUVECs but not in RA FLS. HuR expression was significantly elevated in RA synovial tissue. TNF-α initiated the nucleocytoplasmic shuttling of HuR in both FLS and HUVECs. The knockdown of HuR in FLS incubated with TNF-α led to reduced caspase-1 p20 protein expression and further resulted in decreased secretion of IL-1ß in the presence of CRT. CONCLUSIONS: TNF-α/CRT dual signaling induced NLRP3 inflammasome activation, which could be suppressed by HuR knockdown presumably due to the block of HuR translocating from nucleus to cytoplasma.


Assuntos
Artrite Reumatoide/imunologia , Calreticulina/imunologia , Proteína Semelhante a ELAV 1/imunologia , Inflamassomos/imunologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/imunologia , Fator de Necrose Tumoral alfa/imunologia , Células Endoteliais da Veia Umbilical Humana/imunologia , Humanos , Transdução de Sinais , Membrana Sinovial/imunologia , Sinoviócitos/imunologia
20.
Exp Cell Res ; 369(2): 218-225, 2018 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-29807023

RESUMO

Human antigen R (HuR) is a RNA-binding protein, which binds to the AU-rich element (ARE) in the 3'-untranslated region (3'-UTR) of certain mRNA and is involved in the export and stabilization of ARE-mRNA. HuR constitutively relocates to the cytoplasm in many cancer cells, however the mechanism of intracellular HuR trafficking is poorly understood. To address this question, we examined the functional role of the cytoskeleton in HuR relocalization. We tested the effect of actin depolymerizing macrolide latrunculin A or myosin II ATPase activity inhibitor blebbistatin for HuR relocalization induced by the vasoactive hormone Angiotensin II in cancer and control normal cells. Western blot and confocal imaging data revealed that both inhibitors attenuated the cytoplasmic HuR in normal cells but no such alteration was observed in cancer cells. Concomitant with changes in intracellular HuR localization, both inhibitors markedly decreased the accumulation and half-lives of HuR target ARE-mRNAs in normal cells, whereas no change was observed in cancer cells. Furthermore, co-immunoprecipitation experiments with HuR proteins revealed clear physical interaction with ß-actin only in normal cells. The current study is the first to verify that cancer cells can implicate a microfilament independent HuR transport. We hypothesized that when cytoskeleton structure is impaired, cancer cells can acquire an alternative HuR trafficking strategy.


Assuntos
Proteína Semelhante a ELAV 1/metabolismo , Neoplasias/metabolismo , Regiões 3' não Traduzidas , Actinas/efeitos dos fármacos , Actinas/metabolismo , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Linhagem Celular Tumoral , Citoplasma/metabolismo , Citoesqueleto/metabolismo , Células HeLa , Células Hep G2 , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Humanos , Miosinas/antagonistas & inibidores , Neoplasias/genética , Ligação Proteica , Transporte Proteico/efeitos dos fármacos , Estabilidade de RNA/efeitos dos fármacos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Tiazolidinas/farmacologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa