Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
BMC Oral Health ; 24(1): 663, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38849812

RESUMO

BACKGROUND: Restorative materials are in prolonged contact with living tissues such as oral mucosa, dentin, pulp, periodontal, and periapical tissues. Therefore, the potentially harmful effects of these materials and their components on oral tissues should be evaluated before clinical use. This study aimed to compare the cell viability of different adhesive systems (ASs) on human dental pulp stem cells (hDPSCs). METHODS: Three ASs that combining methacryloyloxydecyl dihydrogen phosphate (MDP) monomer with new hydrophilic amide monomers [Clearfil Universal Bond Quick(CUBQ), Kuraray Noritake], self-reinforcing 3D monomer [Bond Force II(BFII), Tokuyama)], and dual-cure property [Futurabond DC(FBDC), VOCO] were used. Three (n = 3) samples were prepared for each group. Dental pulp stem cells were isolated from ten patients' extracted third molar teeth. Samples were incubated in Dulbecco's modified Eagle's medium (DMEM) for 24 h (h), 72 h, and 7 days (d) to obtain extracts. For the control group, cells were cultured without DBA samples. Cell viability of ASs extracts was measured using a cell proliferation detection kit (WST-1, Roche). Statistical analysis was performed using two-way ANOVA and post-hoc (Duncan) tests (p < 0.05). RESULTS: At 24 and 72 h statistically significant differences were determined between control and BFII, control and FBDC groups (p < 0.05), while no differences between control and CUBQ groups (p > 0.05). On the 7th d, statistically significant differences were found between the control and experimental groups (p < 0.05), while no differences between experimental groups (p > 0.05). A statistically significant difference was detected for the BFII group over the three-time interval (p < 0.05). The lowest cell viability was observed for the FBDC group at 24 h, and the difference was statistically significant when compared with 72 h and 7th d (p < 0.05). CONCLUSION: All ASs showed different cell viability values at various exposure times. It should be taken into consideration that pH values, as well as the contents of ASs, have a significant effect on the cell viability.


Assuntos
Sobrevivência Celular , Polpa Dentária , Adesivos Dentinários , Células-Tronco , Humanos , Polpa Dentária/citologia , Adesivos Dentinários/química , Fatores de Tempo , Células Cultivadas
2.
J Transl Med ; 21(1): 688, 2023 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-37789452

RESUMO

BACKGROUND: Systemic administration of oncolytic adenovirus for cancer therapy is still a challenge. Mesenchymal stem cells as cell carriers have gained increasing attention in drug delivery due to their excellent tumor tropism, immunosuppressive modulatory effects, and paracrine effects. However, the potential of human dental pulp stem cells (hDPSCs) loaded with oncolytic adenovirus for cancer biotherapy has not been investigated yet. METHODS: The stemness of hDPSCs was characterized by FACS analysis and Alizarin red staining, Oil Red O staining, and immunofluorescence assays. The biological fitness of hDPSCs loaded with oncolytic adenovirus YSCH-01 was confirmed by virus infection with different dosages and cell viability CCK-8 assays. Additionally, the expression of CAR receptor in hDPSCs was detected by qPCR assay. Tumor tropism of hDPSC loaded with YSCH-01 in vitro and in vivo was investigated by Transwell assays and living tumor-bearing mice imaging technology and immunohistochemistry, Panoramic scanning of frozen section slices assay analysis. Furthermore, the antitumor efficacy was observed through the different routes of YSCH-01/hPDSCs administration in SW780 and SCC152 xenograft models. The direct tumor cell-killing effect of YSCH-01/hDPSCs in the co-culture system was studied, and the supernatant of YSCH-01/hDPSCs inhibited cell growth was further analyzed by CCK-8 assays. RESULTS: hDPSCs were found to be susceptible to infection by a novel oncolytic adenovirus named YSCH-01 and were capable of transporting this virus to tumor sites at 1000 VP/cell infectious dosage in vitro and in vivo. Moreover, it was discovered that intraperitoneal injection of hDPSCs loaded with oncolytic adenovirus YSCH-01 exhibited potential anti-tumor effects in both SW780 and SCC152 xenograft models. The crucial role played by the supernatant secretome derived from hDPSCs loaded with YSCH-01 significantly exerted a specific anti-tumor effect without toxicity for normal cells, in both an active oncolytic virus and an exogenous protein-independent manner. Furthermore, the use of hDPSCs as a cell carrier significantly reduced the required dosage of virus delivery in vivo compared to other methods. CONCLUSIONS: These findings highlight the promising clinical potential of hDPSCs as a novel cell carrier in the field of oncolytic virus-based anti-cancer therapy.


Assuntos
Células-Tronco Mesenquimais , Terapia Viral Oncolítica , Vírus Oncolíticos , Humanos , Camundongos , Animais , Adenoviridae , Polpa Dentária , Sincalida , Terapia Viral Oncolítica/métodos , Ensaios Antitumorais Modelo de Xenoenxerto
3.
Stem Cells ; 40(5): 468-478, 2022 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-35294968

RESUMO

Stem cell therapies have emerged as a promising treatment strategy for various diseases characterized by ischemic injury such as ischemic stroke. Cell survival after transplantation remains a critical issue. We investigated the impact of oxidative stress, being typically present in ischemically challenged tissue, on human dental pulp stem cells (hDPSC) and human mesenchymal stem cells (hMSC). We used oxygen-glucose deprivation (OGD) to induce oxidative stress in hDPSC and hMSC. OGD-induced generation of O2•- or H2O2 enhanced autophagy by inducing the expression of activating molecule in BECN1-regulated autophagy protein 1 (Ambra1) and Beclin1 in both cell types. However, hDPSC and hMSC pre-conditioning using reactive oxygen species (ROS) scavengers significantly repressed the expression of Ambra1 and Beclin1 and inactivated autophagy. O2•- or H2O2 acted upstream of autophagy, and the mechanism was unidirectional. Furthermore, our findings revealed ROS-p38-Erk1/2 involvement. Pre-treatment with selective inhibitors of p38 and Erk1/2 pathways (SB202190 and PD98059) reversed OGD effects on the expression of Ambra1 and Beclin1, suggesting that these pathways induced oxidative stress-mediated autophagy. SIRT3 depletion was found to be associated with increased oxidative stress and activation of p38 and Erk1/2 MAPKs pathways. Global ROS inhibition by NAC or a combination of polyethylene glycol-superoxide dismutase (PEG-SOD) and polyethylene glycol-catalase (PEG-catalase) further confirmed that O2•- or H2O2 or a combination of both impacts stems cell viability by inducing autophagy. Furthermore, autophagy inhibition by 3-methyladenine (3-MA) significantly improved hDPSC viability. These findings contribute to a better understanding of post-transplantation hDPSC and hMSC death and may deduce strategies to minimize therapeutic cell loss under oxidative stress.


Assuntos
Autofagia , Peróxido de Hidrogênio , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Apoptose , Proteína Beclina-1/metabolismo , Proteína Beclina-1/farmacologia , Sobrevivência Celular , Glucose/metabolismo , Humanos , Peróxido de Hidrogênio/farmacologia , Estresse Oxidativo , Oxigênio/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Células-Tronco/metabolismo
4.
J Pak Med Assoc ; 73(11): 2214-2218, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38013531

RESUMO

Irisin is a novel adipomyokine which has extensive systemic and local effects in different tissues of the body. The scientific interest in understanding the physiological roles of irisin in the body has increased tremendously in the past few years due to its vast therapeutic potential in different fields of medicine. The current narrative review was planned to describe the molecular mechanisms by which irisin regulates oral hard and soft tissues. The information gleaned provided useful insights for future researchers to investigate newly discovered roles of irisin in craniofacial health and disease, and to explore the potential of irisin as a promising therapeutic and diagnostic agent in clinical dentistry.


Assuntos
Odontologia , Fibronectinas , Humanos
5.
Mol Biol Rep ; 49(6): 4411-4420, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35301656

RESUMO

BACKGROUND: Human Dental pulp derived-mesenchymal stem cells (hDP-MSCs) have the capability of selfrenewal, multipotency, as well as immunosuppressive properties. They are ideal candidates for regenerating damaged dental tissue and treating inflammation-related diseases. However, methods (such as genetic variation) to improve the immunomodulatory and regenerative efficiency of MSCs in different diseases still need to be developed. Curcumin (CUR) is known for its broad applications in regenerative medicine and the treatment of inflammatory disorders via its anti-inflammatory and anti-oxidant effects. This study was conducted to investigate the effect and underlying mechanisms of CUR on the immunomodulatory and regenerative function of hDP-MSCs and whether treating these cells with CUR can improve therapeutic efficacy. METHODS AND RESULTS: hDP-MSCs were isolated from dental pulp and then treated with CUR. Cell viability rate was observed in hDP-MSCs after treatment of CUR by MTT assay. Real-time quantitative (RT-PCR) was applied to estimate the expression of immunomodulatory and regenerative genes after treatment of CUR. The RT-PCR results showed that VEGF-A and STAT3 markers were up-regulated while HLA-G5 and VCAM-1 markers were down-regulated by CUR (20 µM) treatment in hDP-MSCs (P < 0.001). Besides, this research indicated that there were no significant changes in the expressions of RelA and DSPP after 48 h (P = 0.33, P = 1). CONCLUSION: Our findings demonstrate that CUR can enhance the immunomodulatory and regenerative effects of hDP-MSCs and improve their therapeutic efficacy. These findings can give an understanding of the mechanism for improving restorative and immunomodulatory activity in hDP-MSCs by curcumin.


Assuntos
Curcumina , Células-Tronco Mesenquimais , Biomarcadores , Diferenciação Celular , Curcumina/farmacologia , Polpa Dentária , Humanos , Imunomodulação
6.
Cell Tissue Bank ; 2022 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-35906514

RESUMO

Tissue engineering is an interdisciplinary field that applies the principles of engineering and life sciences toward the development of biological substitutes that restore, maintain, or improve tissue function. The aims of this work were to compare chemically and physically processed human Amniotic Membranes (hAM) and analyze the cytocompatibility and proliferation rate (PR) of two primary human mesenchymal stromal cell lines, from different sources and donor conditions seeded over these scaffolds. The evaluated hAM processes were: cold shock to obtain a frozen amniotic membrane (FEAM) with remaining dead epithelial cells, denudation of hAM with trypsin for 20/10 min (DEAM20/10) or treatment with sodium dodecyl sulfate to decellularized hAM (DAM). All samples were sterilized with gamma radiation. The selection of the treated hAM to then generate composites was performed by scanning and transmission electron microscopy and characterization by X-ray diffraction, selecting DEAM10 and FEAM as scaffolds for cell seeding. Two sources of primary human stromal cells were used, both developed by our researchers, human Dental Pulp Stem Cells (hDPSC) from living donors and human Mesenchymal Stromal Cells (hMSC) from bone marrow isolated from brain dead donors. This last line of cells conveys a novel source of human cells that, to our knowledge, have not been tested as part of this type of construct. We developed four in vitro constructs without cytotoxicity signs and with different PR depending on the scaffolds and cells. hDPSC and hMSC grew over both FEAM and DEAM10, but DEAM10 allowed higher PR.

7.
BMC Oral Health ; 22(1): 536, 2022 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-36424585

RESUMO

BACKGROUND: The preservation of biological and physiological vitality as well as the formation of dentin are among the main tasks of human dental pulp for a life time. Odontoblastic differentiation of human dental pulp stem cells (hDPSCs) exhibits the capacity of dental pulp regeneration and dentin complex rebuilding. Exploration of the mechanisms regulating differentiation and proliferation of hDPSCs may help to investigate potential clinical applications. BTB and CNC homology 1 (BACH1) is a transcription repressor engaged in the regulation of multiple cellular functions. This study aimed to investigate the effects of BACH1 on the proliferation and odontoblastic differentiation of hDPSCs in vitro. METHODS: hDPSCs and pulpal tissues were obtained from extracted human premolars or third molars. The distribution of BACH1 was detected by immunohistochemistry. The mRNA and protein expression of BACH1 were examined by qRT-PCR and Western blot analysis. BACH1 expression was regulated by stable lentivirus-mediated transfection. Cell proliferation and cell cycle were assessed by cell counting kit-8 assay, 5-Ethynyl-2'-deoxyuridine assay and flow cytometry. The expression of mineralization markers, alkaline phosphatase (ALP) activity and alizarin red S staining were conducted to assess the odontoblastic differentiation ability. RESULTS: BACH1 expression was stronger in the odontoblast layer than in the cell rich zone. The total and nuclear protein level of BACH1 during odontoblastic differentiation was downregulated initially and then upregulated gradually. Knockdown of BACH1 greatly inhibited cell proliferation, arrested cell cycle, upregulated the heme oxygenase-1 (HO-1) expression and attenuated ALP activity, decreased calcium deposits and downregulated the expression of mineralization markers. Treatment of Tin-protoporphyrin IX, an HO-1 inhibitor, failed to rescue the impaired odonto/osteogenic differentiation capacity. Overexpression of BACH1 increased cell proliferation, ALP activity and the expression of mineralization markers. CONCLUSIONS: Our findings suggest that BACH1 is an important regulator of the proliferation and odontoblastic differentiation of hDPSCs in vitro. Manipulation of BACH1 expression may provide an opportunity to promote the regenerative capacity of hDPSCs.


Assuntos
Polpa Dentária , Osteogênese , Humanos , Fatores de Transcrição de Zíper de Leucina Básica/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Proliferação de Células , Regeneração , Células-Tronco/metabolismo
8.
Biochem Biophys Res Commun ; 544: 52-59, 2021 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-33516882

RESUMO

Dental pulp stem cells (DPSCs) can differentiate into diverse cell lineages, including odontogenic cells that are responsible for dentin formation, which is important in pulp repair and tooth regeneration. While glycolysis plays a central role in various cellular activities in both physiological and pathological conditions, its role and regulation in odontogenic differentiation are unknown. Here, we show that aerobic glycolysis is induced during odontoblastic differentiation from human DPSCs. Importantly, we demonstrate that during odontoblastic differentiation, protein expression levels of phosphofructokinase 1 muscle isoform (PFKM) and PFK2, but not other glycolytic enzymes, are mainly upregulated by AKT activation, resulting in increased total PFK enzyme activity. Increased PFK activity is essential to enhance aerobic glycolysis, which plays an important role in the odontoblastic differentiation of human DPSCs. These findings underscore that PFK activation-induced aerobic glycolysis accompanies, and participates in, human DPSCs differentiation into odontogenic lineage, and could play a role in the regulation of dental pulp repair.


Assuntos
Diferenciação Celular , Polpa Dentária/citologia , Odontogênese , Fosfofrutoquinase-1 Muscular/metabolismo , Fosfofrutoquinase-2/metabolismo , Células-Tronco/citologia , Proliferação de Células , Células Cultivadas , Polpa Dentária/metabolismo , Humanos , Transdução de Sinais , Células-Tronco/metabolismo
9.
Biochem Biophys Res Commun ; 575: 28-35, 2021 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-34454177

RESUMO

Small extracellular vesicles (sEV) facilitate signaling molecule transfer among cells. We examined the therapeutic efficacy of human dental pulp stem cell-derived sEV (hDPSC-sEV) against cellular senescence in an irradiated-submandibular gland mouse model. Seven-week-old mice were exposed to 25 Gy radiation and randomly assigned to control, phosphate-buffered saline (PBS), or hDPSC-sEV groups. At 18 days post-irradiation, saliva production was measured; histological and reverse transcription-quantitative PCR analyses of the submandibular glands were performed. The salivary flow rate did not differ significantly between the PBS and hDPSC-sEV groups. AQP5-expressing acinar cell numbers and AQP5 expression levels in the submandibular glands were higher in the hDPSC-sEV group than in the other groups. Furthermore, compared with non-irradiated mice, mice in the 25 Gy + PBS group showed a high senescence-associated-ß-galactosidase-positive cell number and upregulated senescence-related gene (p16INK4a, p19Arf, p21) and senescence-associated secretory phenotypic factor (MMP3, IL-6, PAI-1, NF-κB, and TGF-ß) expression, all of which were downregulated in the hDPSC-sEV group. Superoxide dismutase levels were lower in the PBS group than in the hDPSC-sEV group. In summary, hDPSC-sEV reduced inflammatory cytokine and senescence-related gene expression and reversed oxidative stress in submandibular cells, thereby preventing irradiation-induced cellular senescence. Based on these results, we hope to contribute to the development of innovative treatment methods for salivary gland dysfunction that develops after radiotherapy for head and neck cancer.


Assuntos
Polpa Dentária/citologia , Vesículas Extracelulares/metabolismo , Inflamação/terapia , Células-Tronco/citologia , Glândula Submandibular/efeitos da radiação , Animais , Senescência Celular/efeitos da radiação , Polpa Dentária/metabolismo , Polpa Dentária/efeitos da radiação , Modelos Animais de Doenças , Vesículas Extracelulares/efeitos da radiação , Feminino , Raios gama , Humanos , Inflamação/etiologia , Inflamação/metabolismo , Inflamação/patologia , Camundongos , Camundongos Endogâmicos ICR , Estresse Oxidativo/fisiologia , Transdução de Sinais , Células-Tronco/metabolismo , Células-Tronco/efeitos da radiação , Glândula Submandibular/efeitos dos fármacos , Glândula Submandibular/patologia
10.
Cell Biochem Funct ; 39(7): 886-895, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34235754

RESUMO

Human dental pulp stem cells (hDPSCs) have significant potential of immunomodulatory for therapeutic and regenerative biomedical applications compared to other mesenchymal stem cells (MSCs). Nowadays, alteration of gene expression is an important way to improve the performance of MSCs in the clinic. MicroRNAs (miRs) and CD200 are known to modulate the immune system in MSCs. Curcumin is famous for its anti-inflammatory impacts. Phytosomal curcumin (PC) is a nanoparticle synthesized from curcumin that removes the drawbacks of curcumin. The purpose of this research was to assess the effects of PC on the expression of the CD200 and four key miRNAs in immune system. PC (30 µM) treatment of hDPSCs could ameliorate their immunoregulatory property, presented by reduced expressions of miR-21, miR-155 and miR-126, as well as enhanced expressions of miR-23 and CD200. The PC was also able to reduce PI3K\AKT1\NF-κB expressions that were target genes for these miRs and involved in inflammatory pathways. Moreover, PC was more effective than curcumin in improving the immune modulation of hDPSCs. Evidence in this study suggested that PC mediates immunoregulatory activities in hDPSC via miRs and CD200 to regulate PI3K\AKT1\NF-κB signalling pathways, which may provide a theoretical basis for PC in the treatment of many diseases. SIGNIFICANCE OF THE STUDY: Autoimmune diseases or tooth caries are partly attributed to global health problems and their common drug treatments have several side effects. The goal of this study is dentin regeneration and autoimmune diseases treatment via stem cell-based approaches with phytosomal curcumin (PC), for the first time. Because dental pulp stem cells have unique advantages (including higher immunomodulatory capacity) over other mesenchymal stem cells, we considered them the best option for treating these diseases. Using PC, we try to increase the immunomodulatory properties of these cells.


Assuntos
Antígenos CD/genética , Curcumina/farmacologia , Polpa Dentária/efeitos dos fármacos , Inflamação/tratamento farmacológico , MicroRNAs/antagonistas & inibidores , Células-Tronco/efeitos dos fármacos , Antígenos CD/imunologia , Células Cultivadas , Curcumina/química , Polpa Dentária/imunologia , Humanos , Inflamação/imunologia , MicroRNAs/genética , MicroRNAs/imunologia , Nanopartículas/química , Células-Tronco/imunologia
11.
Biochem Biophys Res Commun ; 513(2): 515-521, 2019 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-30979495

RESUMO

Previous studies showed that Nel-like molecule-1 (Nell-1) can positively regulate odontoblastic differentiation and dentin formation. Intriguingly, our group found that Nell-1 is co-expressed with neural markers. The purpose of this study was to investigate whether Nell-1 protein plays a regulatory role in the differentiation of dental pulp cells into neural-like cells by in vivo and in vitro studies. The expression patterns of Nell-1 and dental pulp neural markers were observed by double immunofluorescence staining in normal dental pulp tissue sections of Wistar rat. Collagen sponge containing Nell-1 protein was added into the pulp cavity of rat molars in order to observe the expression patterns of neural markers in rat dental pulp repair and regeneration model by immunohistochemical staining. Moreover, human dental pulp stem cells (hDPSCs) were cultured, and different concentrations of Nell-1 protein were added for 12 h, 24 h, and 72h. The expression of neural markers was detected by using quantitative real-time polymerase chain reaction and Western blot. Nell-1 was co-expressed with neural markers including substance P (SP) and Nestin in rat dental pulp tissue. The expression of neural markers including SP, neuron-specific enolase (NSE), and Nestin was increased obviously in rat dental pulp tissues stimulated with Nell-1 protein. In cultured hDPSCs induced by Nell-1 protein, the expression of neural markers including glial fibrillary acidic protein (GFAP), Nestin, and ß-III tubulin was increased. Nell-1 plays a positive role in inducing the differentiation of DPSCs into neural-like cells.


Assuntos
Proteínas de Ligação ao Cálcio/metabolismo , Polpa Dentária/citologia , Proteínas do Tecido Nervoso/metabolismo , Neurogênese , Células-Tronco/citologia , Animais , Proteínas de Ligação ao Cálcio/análise , Diferenciação Celular , Células Cultivadas , Polpa Dentária/inervação , Polpa Dentária/metabolismo , Humanos , Proteínas do Tecido Nervoso/análise , Ratos Wistar , Células-Tronco/metabolismo
12.
Clin Oral Investig ; 23(6): 2713-2721, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30357480

RESUMO

OBJECTIVES: To analyze the potential of human dental pulp stem cells (hDPSCs) for maintaining their undifferentiated status and osteogenic differentiation capacity when arranged in cell sheets (CSs) for future application in bone replacement. MATERIALS AND METHODS: CSs were formed after being induced for 10-15 days by clonogenic medium containing additional vitamin C (20 µg/ml). The cell viability of hDPSC4s in the CSs was followed until 96 h using the Live/Dead® assay. The cells of the CSs were enzymatically dissociated and then compared with the original hDPSC4s. The two cell types were characterized immunophenotypically by flow cytometry using specific mesenchymal stem cell-associated markers (CD105, CD146, CD44, STRO-1, and OCT3/4) and non-associated markers (CD34, CD45, and CD14). Osteogenic differentiation was analyzed with the Alizarin red assay. RESULTS: Living cells were observed until 96 h in the CSs. Both cell types exhibited osteogenic differentiation and expressed the specific undifferentiated MSC-associated markers. Cells spontaneously detached from the CSs attached and proliferated at the bottom of the culture dishes. CONCLUSIONS: Cells in the hDPSC4s cell sheets survived for at least 96 h. Moreover, the cells in the cell sheets retained their stemness and their osteogenic differentiation potential. CLINICAL RELEVANCE: Cell sheets of hDPSCs could be employed as natural tri-dimensional structures for treating bone loss. This technique would be useful particularly for critical bone defects or any type of bone defects in patients carrying diseases that impair bone regeneration, such as diabetes mellitus, medication-related osteonecrosis of the jaw (MRONJ), and osteoporosis.


Assuntos
Regeneração Óssea , Diferenciação Celular , Polpa Dentária/citologia , Osteogênese , Células-Tronco/citologia , Adolescente , Adulto , Sobrevivência Celular , Células Cultivadas , Humanos , Pessoa de Meia-Idade , Adulto Jovem
13.
J Cell Physiol ; 233(10): 7026-7035, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29744863

RESUMO

Photobiomodulation therapy (PBMT) can improve processes relevant to tissue regeneration, such as survival, proliferation, migration, and differentiation of cells, including stem cells. Thus, PBMT could be applied as auxiliary therapy for tissue regeneration. Cell sheets (CSs) induced by vitamin C (VC) can generate large amount of cells, which would also be useful for tissue regeneration. VC and PBMT cause opposite effects on cell metabolism (e.g., VC is antioxidative, and PBMT generates reactive oxygen species); however, hDPSC CSs were formed when VC and PBMT+VC were applied. Thus, this study showed that PBMT does not interfere with the formation of cell sheets induced by VC. Additionally, PBMT improved the functional differentiation of the cells isolated from the CSs. Thus, due to the clinical benefits of PBMT, the association of this therapy with cell sheets seems promising for future applications in tissue regeneration.


Assuntos
Ácido Ascórbico/farmacologia , Diferenciação Celular/efeitos dos fármacos , Polpa Dentária/efeitos dos fármacos , Células-Tronco/efeitos dos fármacos , Polpa Dentária/citologia , Células Epiteliais/efeitos dos fármacos , Humanos , Terapia com Luz de Baixa Intensidade/métodos , Músculo Esquelético/efeitos dos fármacos , Células-Tronco/citologia , Cicatrização/efeitos dos fármacos
14.
Int Dent J ; 2024 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-39368923

RESUMO

Human dental pulp stem cells (hDPSCs) have emerged as a promising resource in regenerative medicine due to their unique ability to secrete exosomes containing a diverse array of bioactive molecules, particularly microRNAs (miRNAs). These exosomes appear to be essential for stimulating regenerative mechanisms, especially those associated with stem cell pluripotency and tissue repair. However, several challenges such as cargo specificity and delivery efficiency need to be addressed to maximise the therapeutic potential of hDPSC-derived exosomes and miRNA-based therapies. This narrative review explores hDPSCs' potential in regenerative medicine by examining their role in tissue engineering, secretome composition, exosome function, exosomal miRNA in diverse models, and miRNA profiling. Therefore, it is imperative to sustain ongoing research on miRNA to advance clinical applications in the field of regenerative medicine and dentistry. A comprehensive understanding of the specific miRNA composition within hDPSC-derived exosomes is essential to elucidate their mechanistic roles in diverse disease states and to inform the development of innovative therapeutic strategies. These findings hold significant potential for the development of innovative regenerative therapies and emphasises the importance of establishing a strong connection between translational research discoveries and clinical applications. hDPSC-derived exosomes and miRNA-based therapies play a crucial role in immune modulation, regenerative dentistry, and tissue repair.

15.
Artigo em Inglês | MEDLINE | ID: mdl-38657655

RESUMO

An essential factor in tooth nutritional deficits and aberrant root growth is pulp necrosis. Removing inflammatory or necrotic pulp tissue and replacing it with an inert material are the most widely used therapeutic concepts of endodontic treatment. However, pulp loss can lead to discoloration, increased fracture risk, and the reinfection of the damaged tooth. It is now anticipated that the pulp-dentin complex will regenerate through a variety of application methods based on human dental pulp stem cells (hDPSC). In order to create a photo-cross-linked gelatinized methacrylate hydrogel, GelMA/EUO-CDs-E (ECE), that is biodegradable and injectable for application, we created a novel nanoassembly of ECE based on eucommia carbon dots (EUO-CDs) and epigallocatechin gallate (EGCG). We then loaded it onto gelatin methacryloyl (GelMA) hydrogel. We have evaluated the material and examined its in vivo and in vitro angiogenesis-promoting potential as well as its dentin differentiation-enabling characteristics. The outcomes of the experiment demonstrated that GelMA/ECE was favorable to cell proliferation and enhanced hDPSC's capacity for angiogenesis and dentin differentiation. The regeneration of vascular-rich pulp-like tissues was found to occur in vivo when hDPSC-containing GelMA/ECE was injected into cleaned human root segments (RS) for subcutaneous implantation in nude mice. This suggests that the injectable bioscaffold is appropriate for clinical use in pulp regenerative medicine.

16.
Cell J ; 25(12): 813-821, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-38192251

RESUMO

Neural cells are the most important components of the nervous system and have the duty of electrical signal transmission. Damage to these cells can lead to neurological disorders. Scientists have discovered different methods, such as stem cell therapy, to heal or regenerate damaged neural cells. Dental stem cells are among the different cells used in this method. This review attempts to evaluate the effect of biomaterials mentioned in the cited papers on differentiation of human dental pulp stem cells (hDPSCs) into neural cells for use in stem cell therapy of neurological disorders. We searched international databases for articles about the effect of biomaterials on neuronal differentiation of hDPSCs. The relevant articles were screened by title, abstract, and full text, followed by selection and data extraction. Totally, we identified 731 articles and chose 18 for inclusion in the study. A total of four studies employed polymeric scaffolds, four assessed chitosan scaffolds (CS), two utilised hydrogel scaffolds, one investigation utilised decellularised extracellular matrix (ECM), and six studies applied the floating sphere technique. hDPSCs could heal nerve damage in regenerative medicine. In the third iteration of nerve conduits, scaffolds, stem cells, regulated growth factor release, and ECM proteins restore major nerve damage. hDPSCs must differentiate into neural cells or neuron-like cells to regenerate nerves. Plastic-adherent cultures, floating dentosphere cultures, CS, polymeric scaffolds, hydrogels, and ECM mimics have been used to differentiate hDPSCs. According to our findings, the floating dentosphere technique and 3D-PLAS are currently the two best techniques since they result in neuroprogenitor cells, which are the starting point of differentiation and they can turn into any desired neural cell.

17.
J Mech Behav Biomed Mater ; 142: 105790, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37104899

RESUMO

Polyphenol extracts derived from plants are expected to have enhanced osteoblast proliferation and differentiation ability, which has gained much attention in tissue engineering applications. Herein, for the first time, we investigate the effects of Prunus amygdalus amara (bitter almond) (BA) extract loaded on poly (ε-caprolactone) (PCL)/gelatin (Gt) nanofibrous scaffolds on the osteoblast differentiation of human dental pulp stem cells (DPSCs). In this regard, BA (0, 5, 10, and 15% wt)-loaded PCL/Gt nanofibrous scaffolds were prepared by electrospinning with fiber diameters in the range of around 237-276 nm. Morphology, composition, porosity, hydrophilicity, and mechanical properties of the scaffolds were examined by FESEM, ATR-FTIR spectroscopy, BET, contact angle, and tensile tests, respectively. It was found that the addition of BA improved the tensile strength (up to 6.1 times), Young's modulus (up to 3 times), and strain at break (up to 3.2 times) compared to the neat PCL/Gt nanofibers. Evaluations of cell attachment, spreading, and proliferation were done by FESEM observation and MTT assay. Cytocompatibility studies support the biocompatible nature of BA loaded PCL/Gt scaffolds and free BA by demonstrating cell viability of more than 100% in all groups. The results of alkaline phosphatase activity and Alizarin Red assay revealed that osteogenic activity levels of BA loaded PCL/Gt scaffolds and free BA were significantly increased compared to the control group (p < 0.05, p < 0.01, p < 0.001). QRT-PCR results demonstrated that BA loaded PCL/Gt scaffolds and free BA led to a significant increase in osteoblast differentiation of DPSCs through the upregulation of osteogenic related genes compared to the control group (p < 0.05). Based on results, incorporation of BA extract in PCL/Gt scaffolds exhibited synergistic effects on the adhesion, proliferation, and osteogenesis differentiation of hDPSCs and was therefore assumed to be a favorable scaffold for bone tissue engineering applications.


Assuntos
Nanofibras , Prunus dulcis , Humanos , Osteogênese/fisiologia , Alicerces Teciduais/química , Nanofibras/química , Polpa Dentária , Poliésteres/química , Engenharia Tecidual/métodos , Diferenciação Celular , Células-Tronco , Proliferação de Células
18.
Materials (Basel) ; 16(11)2023 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-37297136

RESUMO

The ideal treatment option for immature necrotic permanent teeth is regeneration of the pulp-dentin complex. Mineral trioxide aggregate (MTA), the conventional cement used for regenerative endodontic procedures, induces hard tissue repair. Various hydraulic calcium silicate cements (HCSCs) and enamel matrix derivative (EMD) also promote osteoblast proliferation. The purpose of the present study was to determine the osteogenic and dentinogenic potential of commercially distributed MTA and HCSCs when applied in combination with Emdogain gel on human dental pulp stem cells (hDPSCs). The presence of Emdogain resulted in greater cell viability, and higher alkaline phosphatase activity was detected in the Emdogain-supplemented groups in the early days of cell culture. On qRT-PCR, the groups treated, respectively, with Biodentine and Endocem MTA Premixed in the presence of Emdogain showed an increased expression of the dentin formation marker DSPP, and the group treated with Endocem MTA Premixed in the presence of Emdogain showed an upregulated expression of the bone formation markers OSX and RUNX2. In an Alizarin Red-S staining assay, all of the experimental groups exhibited a greater formation of calcium nodules when treated in combination with Emdogain. Overall, the cytotoxicity and osteogenic/odontogenic potential of HCSCs were similar to that of ProRoot MTA. The addition of the EMD increased the osteogenic and dentinogenic differentiation markers.

19.
Front Cell Dev Biol ; 11: 1166934, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37287452

RESUMO

Introduction: Porphyromonas gingivalis and Enterococcus faecalis promote the development of pulpitis and periapical periodontitis. These bacteria are difficult to eliminate from the root canal systems, leading to persistent infection and poor treatment outcomes. We explored the response of human dental pulp stem cells (hDPSCs) to bacterial invasion and the mechanisms underlying the impact of residual bacteria on dental pulp regeneration. Methods: Single-cell sequencing was used to categorize the hDPSCs into clusters based on their response to P. gingivalis and E. faecalis. We depicted a single-cell transcriptome atlas of hDPSCs stimulated by P. gingivalis or E. faecalis. Results: The most differentially expressed genes in the Pg samples were THBS1, COL1A2, CRIM1, and STC1, which are related to matrix formation and mineralization, and HILPDA and PLIN2, which are related to the cellular response to hypoxia. A cell cluster characterized by high expression levels of THBS1 and PTGS2 was increased after P. gingivalis stimulation. Further signaling pathway analysis showed that hDPSCs prevented P. gingivalis infection by regulating the TGF-ß/SMAD, NF-κB, and MAPK/ERK signaling pathways. Differentiation potency and pseudotime trajectory analyses showed that hDPSCs infected by P. gingivalis undergo multidirectional differentiation, particularly to the mineralization-related cell lineage. Furthermore, P. gingivalis can create a hypoxia environment to effect cell differentiation. The Ef samples were characterized by the expression of CCL2, which is related to leukocyte chemotaxis, and ACTA2, which is related to actin. There was an increased proportion of a cell cluster that was similar to myofibroblasts and exhibited significant ACTA2 expression. The presence of E. faecalis promoted the differentiation of hDPSCs into fibroblast-like cells, which highlights the role of fibroblast-like cells and myofibroblasts in tissue repair. Discussion: hDPSCs do not maintain their stem cell status in the presence of P. gingivalis and E. faecalis. They differentiate into mineralization-related cells in the presence of P. gingivalis and into fibroblast-like cells in the presence of E. faecalis. We identified the mechanism underlying the infection of hDPSCs by P. gingivalis and E. faecalis. Our results will improve understanding of the pathogenesis of pulpitis and periapical periodontitis. Furthermore, the presence of residual bacteria can have adverse effects on the outcomes of regenerative endodontic treatment.

20.
Tissue Cell ; 76: 101766, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35286973

RESUMO

Human dental pulp stem cells (hDPSCs) are considered valuable for regenerative therapy. Although glucose transporter 1 (GLUT1) is known to play a critical role in cell differentiation, its mechanism of the odontogenic differentiation of hDPSCs remains unclear. This study was conducted to investigate the effect and underlying mechanisms of GLUT1 on odontogenic differentiation of hDPSCs. hDPSCs was treated with phloretin (Phl), a GLUT1 inhibitor. The impact of GLUT1 on the odontogenic differentiation of hDPSCs was analysed using quantitative real-time polymerase chain reaction, alizarin-red staining, and western blotting. Glucose uptake by hDPSCs was significantly inhibited by Phl treatment. Overall, inhibition of GLUT1 upregulated the expression of DSPP, DMP1, RUNX2, and OCN and increased the formation of mineralised nodules on odontogenic induction of hDPSCs. The levels of phosphorylated mTOR and ribosomal protein S6 kinase 1 (p70S6K) were increased after GLUT1 inhibition and decreased by an mTOR inhibitor (rapamycin, Rapa) during the odontogenic induction of hDPSCs. Moreover, mTOR suppression decreased the expression of the genes described above and formation of mineralised nodules. These results suggest that inhibition of GLUT1 promoted the odontogenic differentiation of hDPSCs via the mTORC1-p70S6K axis, providing a foundation for further application of hDPSCs in regenerative therapy.


Assuntos
Polpa Dentária , Transportador de Glucose Tipo 1 , Alvo Mecanístico do Complexo 1 de Rapamicina , Células-Tronco , Diferenciação Celular/fisiologia , Células Cultivadas , Polpa Dentária/citologia , Polpa Dentária/metabolismo , Transportador de Glucose Tipo 1/genética , Transportador de Glucose Tipo 1/metabolismo , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Proteínas Quinases S6 Ribossômicas 70-kDa/farmacologia , Transdução de Sinais , Células-Tronco/citologia , Células-Tronco/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa