Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Bratisl Lek Listy ; 125(7): 414-418, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38943501

RESUMO

OBJECTIVE: Astrocytes undergo morphological and molecular changes in response to numerous pathological conditions. BACKROUND: Increased expression of glial fibrillary acidic protein (GFAP) has been reported as a characteristic feature of reactive astrocytes. However, GFAP-positive cells occur rarely in adult human brain cultures. These cultures are mostly composed of flat GFAP-negative "glia-like" cells, which remain poorly characterized in relation to reactive astrogliosis. METHODS: We examined the cultures from macroscopically injured and normal brain tissue from patients with brain trauma, gliomas, or brain metastases. Immunofluorescence and immunohistochemical methods were used for reactive astrocytes detection. RESULTS: The intensity of GFAP-positive staining was higher in reactive astrocytes in the brain tissue surrounding gliomas or metastases and lower in brain tissue damaged by traumatic injury. We did not observe any correlation between GFAP-positive reactive astrocytes in cultures and brain tissue. However, we found rapidly proliferating spindle-shaped cells in cultures prepared from injured brain tissue. CONCLUSION: Present data demonstrate the unexplained phenomenon of disparate cell morphologies in cultures when prepared either from macroscopically normal or injured human brain tissue. While normal cultures are mainly comprised of flat cells, the cultures from severely damaged brain tissue may be entirely composed of spindle-shaped cells usually classified as fibroblasts. We suggest that this spindle-shaped cellular morphology is not specific for fibroblasts, but it rather can be interpreted as the most favorable shape for rapid cell proliferation under culture conditions. After brain trauma, unknown processes may be triggered, such as induced cell proliferation which can be revealed under culture condition. Accordingly, we conclude that spindle-shaped cells are activated precursors of glial cells (Fig. 3, Ref. 15).


Assuntos
Astrócitos , Fibroblastos , Proteína Glial Fibrilar Ácida , Humanos , Fibroblastos/patologia , Fibroblastos/metabolismo , Proteína Glial Fibrilar Ácida/metabolismo , Astrócitos/patologia , Astrócitos/metabolismo , Lesões Encefálicas/patologia , Lesões Encefálicas/metabolismo , Feminino , Pessoa de Meia-Idade , Masculino , Adulto , Células Cultivadas , Idoso , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/metabolismo , Encéfalo/patologia , Encéfalo/citologia , Glioma/patologia , Glioma/metabolismo , Neuroglia/patologia , Neuroglia/metabolismo
2.
Acta Neuropathol Commun ; 11(1): 84, 2023 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-37217978

RESUMO

The myelinated white matter tracts of the central nervous system (CNS) are essential for fast transmission of electrical impulses and are often differentially affected in human neurodegenerative diseases across CNS region, age and sex. We hypothesize that this selective vulnerability is underpinned by physiological variation in white matter glia. Using single nucleus RNA sequencing of human post-mortem white matter samples from the brain, cerebellum and spinal cord and subsequent tissue-based validation we found substantial glial heterogeneity with tissue region: we identified region-specific oligodendrocyte precursor cells (OPCs) that retain developmental origin markers into adulthood, distinguishing them from mouse OPCs. Region-specific OPCs give rise to similar oligodendrocyte populations, however spinal cord oligodendrocytes exhibit markers such as SKAP2 which are associated with increased myelin production and we found a spinal cord selective population particularly equipped for producing long and thick myelin sheaths based on the expression of genes/proteins such as HCN2. Spinal cord microglia exhibit a more activated phenotype compared to brain microglia, suggesting that the spinal cord is a more pro-inflammatory environment, a difference that intensifies with age. Astrocyte gene expression correlates strongly with CNS region, however, astrocytes do not show a more activated state with region or age. Across all glia, sex differences are subtle but the consistent increased expression of protein-folding genes in male donors hints at pathways that may contribute to sex differences in disease susceptibility. These findings are essential to consider for understanding selective CNS pathologies and developing tailored therapeutic strategies.


Assuntos
Neuroglia , Substância Branca , Humanos , Feminino , Masculino , Camundongos , Animais , Neuroglia/metabolismo , Medula Espinal/patologia , Bainha de Mielina/metabolismo , Oligodendroglia/patologia
3.
Methods Mol Biol ; 2561: 43-62, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36399264

RESUMO

This chapter describes the core procedures that we have developed over the last two decades to isolate routinely the microglia from postmortem human brains. The method is suitable for brain slices consisting of both gray and white matter.The ability to concomitantly isolate vascular cells with glial cells provides the opportunity to investigate multiple cell types originating from the same donor. This represents a novel approach for -omics research, with the potential for discovering the shared or distinct molecular features among the glia and vascular cells from the same individual.


Assuntos
Microglia , Substância Branca , Humanos , Neuroglia , Encéfalo
4.
Front Cell Neurosci ; 13: 129, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31024259

RESUMO

With 100 billion neurons and 100 trillion synapses, the human brain is not just the most complex organ in the human body, but has also been described as "the most complex thing in the universe." The limited availability of human living brain tissue for the study of neurogenesis, neural processes and neurological disorders has resulted in more than a century-long strive from researchers worldwide to model the central nervous system (CNS) and dissect both its striking physiology and enigmatic pathophysiology. The invaluable knowledge gained with the use of animal models and post mortem human tissue remains limited to cross-species similarities and structural features, respectively. The advent of human induced pluripotent stem cell (hiPSC) and 3-D organoid technologies has revolutionised the approach to the study of human brain and CNS in vitro, presenting great potential for disease modelling and translational adoption in drug screening and regenerative medicine, also contributing beneficially to clinical research. We have surveyed more than 100 years of research in CNS modelling and provide in this review an historical excursus of its evolution, from early neural tissue explants and organotypic cultures, to 2-D patient-derived cell monolayers, to the latest development of 3-D cerebral organoids. We have generated a comprehensive summary of CNS modelling techniques and approaches, protocol refinements throughout the course of decades and developments in the study of specific neuropathologies. Current limitations and caveats such as clonal variation, developmental stage, validation of pluripotency and chromosomal stability, functional assessment, reproducibility, accuracy and scalability of these models are also discussed.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa