Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 156
Filtrar
1.
Brief Bioinform ; 25(1)2023 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-38048080

RESUMO

Environmental perturbations are encountered by microorganisms regularly and will require metabolic adaptations to ensure an organism can survive in the newly presenting conditions. In order to study the mechanisms of metabolic adaptation in such conditions, various experimental and computational approaches have been used. Genome-scale metabolic models (GEMs) are one of the most powerful approaches to study metabolism, providing a platform to study the systems level adaptations of an organism to different environments which could otherwise be infeasible experimentally. In this review, we are describing the application of GEMs in understanding how microbes reprogram their metabolic system as a result of environmental variation. In particular, we provide the details of metabolic model reconstruction approaches, various algorithms and tools for model simulation, consequences of genetic perturbations, integration of '-omics' datasets for creating context-specific models and their application in studying metabolic adaptation due to the change in environmental conditions.


Assuntos
Algoritmos , Simulação por Computador
2.
Biochem Genet ; 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38773043

RESUMO

In this study, we compared the occurrence, relative abundance (RA), and density (RD) of simple sequence repeats (SSRs) among the lineages of human pathogenic Cryptococcus gattii using an in-silico approach to gain a deeper understanding of the structure and evolution of their genomes. C. gattii isolate MF34 showed the highest RA and RD of SSRs in both the genomic and transcriptomic sequences, followed by isolate WM276. In both the genomic (50%) and transcriptomic (65%) sequences, trinucleotide SSRs were the most common SSR class. A motif conservation study found that the isolates had stronger conservation (56.1%) of motifs, with isolate IND107 having the most (5.7%) unique motifs. We discovered the presence of SSRs in genes that are directly or indirectly associated with disease using gene enrichment analysis. Isolate-specific unique motifs identified in this study could be utilized as molecular probes for isolate identification. To improve genetic resources among C. gattii isolates, 6499 primers were developed. These genomic resources developed in this study could help with diversity analysis and the development of isolate-specific markers.

3.
J Sci Food Agric ; 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39030951

RESUMO

BACKGROUND: The first step in the contamination of leafy vegetables by human pathogens is their attachment to the leaf surface. The success of this is influenced strongly by the physical and chemical characteristics of the surface itself (number and size of stomata, presence of trichomes and veins, epicuticular waxes, hydrophobicity, etc.). This study evaluated the attachment of Salmonella enterica to 30 baby-leaf salads and tested whether the differences found among them were related to the following leaf traits: hydrophobicity, roughness, and epicuticular waxes. RESULTS: Differences in susceptibility to contamination by S. enterica were found between the 30 baby-leaf salads investigated. The lowest attachment was found in wild lettuce (Lactuca serriola L.) and lamb's lettuce 'Trophy F1' (Valerianella locusta [L.] Laterr.), with values of 1.63 ± 0.39 Log(CFU/cm2) and 1.79 ± 0.54 Log(CFU/cm2), respectively. Attachment was correlated with hydrophobicity (measured as contact angle) (r = -0.39) and epicuticular waxes (r = -0.81) but not with roughness (r = 0.24). The most important wax components for attachment were alcohols and, in particular, the three-dimensional (3D) wax crystals of C26 alcohol, but fatty acids probably also had a role. Both these compounds increased hydrophobicity. The presence of thymol, whose antimicrobial properties are well known, was found in lamb's lettuce. CONCLUSIONS: The findings of this study can help to predict and control the attachment and contamination of leafy salads by enterobacteria. They also provide useful information for breeding programs aiming to develop cultivars that are less susceptible to human pathogens, enhancing the food safety of vegetables. © 2024 The Author(s). Journal of the Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

4.
Proc Biol Sci ; 290(2003): 20231119, 2023 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-37491967

RESUMO

Bacterial infections are often polymicrobial, leading to intricate pathogen-pathogen and pathogen-host interactions. There is increasing interest in studying the molecular basis of pathogen interactions and how such mechanisms impact host morbidity. However, much less is known about the ecological dynamics between pathogens and how they affect virulence and host survival. Here we address these open issues by co-infecting larvae of the insect model host Galleria mellonella with one, two, three or four bacterial species, all of which are opportunistic human pathogens. We found that host mortality was always determined by the most virulent species regardless of the number of species and pathogen combinations injected. In certain combinations, the more virulent pathogen simply outgrew the less virulent pathogen. In other combinations, we found evidence for negative interactions between pathogens inside the host, whereby the more virulent pathogen typically won a competition. Taken together, our findings reveal positive associations between a pathogen's growth inside the host, its competitiveness towards other pathogens and its virulence. Beyond being generalizable across species combinations, our findings predict that treatments against polymicrobial infections should first target the most virulent species to reduce host morbidity, a prediction we validated experimentally.


Assuntos
Infecções Bacterianas , Mariposas , Animais , Humanos , Virulência , Mariposas/microbiologia , Larva/microbiologia , Interações Hospedeiro-Patógeno
5.
Environ Res ; 231(Pt 1): 116040, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37150387

RESUMO

The monitoring of cities' wastewaters for the detection of potentially pathogenic viruses and bacteria has been considered a priority during the COVID-19 pandemic to monitor public health in urban environments. The methodological approaches frequently used for this purpose include deoxyribonucleic acid (DNA)/Ribonucleic acid (RNA) isolation followed by quantitative polymerase chain reaction (qPCR) and reverse transcription (RT)‒qPCR targeting pathogenic genes. More recently, the application of metatranscriptomic has opened opportunities to develop broad pathogenic monitoring workflows covering the entire pathogenic community within the sample. Nevertheless, the high amount of data generated in the process requires an appropriate analysis to detect the pathogenic community from the entire dataset. Here, an implementation of a bioinformatic workflow was developed to produce a map of the detected pathogenic bacteria and viruses in wastewater samples by analysing metatranscriptomic data. The main objectives of this work was the development of a computational methodology that can accurately detect both human pathogenic virus and bacteria in wastewater samples. This workflow can be easily reproducible with open-source software and uses efficient computational resources. The results showed that the used algorithms can predict potential human pathogens presence in the tested samples and that active forms of both bacteria and virus can be identified. By comparing the computational method implemented in this study to other state-of-the-art workflows, the implementation analysis was faster, while providing higher accuracy and sensitivity. Considering these results, the processes and methods to monitor wastewater for potential human pathogens can become faster and more accurate. The proposed workflow is available at https://github.com/waterpt/watermonitor and can be implemented in currently wastewater monitoring programs to ascertain the presence of potential human pathogenic species.


Assuntos
COVID-19 , Vírus , Humanos , Águas Residuárias , Pandemias , Vírus/genética , Bactérias/genética
6.
Int J Mol Sci ; 24(7)2023 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-37047728

RESUMO

Antimicrobial resistance (AMR) is one of the biggest threats to human health worldwide. The World Health Organization (WHO, Geneva, Switzerland) has launched the "One-Health" approach, which encourages assessment of antibiotic-resistant genes (ARGs) within environments shared by human-animals-plants-microbes to constrain and alleviate the development of AMR. Aerosols as a medium to disseminate ARGs, have received minimal attention. In the present study, we investigated the distribution and abundance of ARGs in indoor and outdoor aerosols collected from an urban location in Kuwait and the interior of three hospitals. The high throughput quantitative polymerase chain reaction (HT-qPCR) approach was used for this purpose. The results demonstrate the presence of aminoglycoside, beta-lactam, fluoroquinolone, tetracycline, macrolide-lincosamide-streptogramin B (MLSB), multidrug-resistant (MDR) and vancomycin-resistant genes in the aerosols. The most dominant drug class was beta-lactam and the genes were IMP-2-group (0.85), Per-2 group (0.65), OXA-54 (0.57), QnrS (0.50) and OXA-55 (0.55) in the urban non-clinical settings. The indoor aerosols possessed a richer diversity (Observed, Chao1, Shannon's and Pielou's evenness) of ARGs compared to the outdoors. Seasonal variations (autumn vs. winter) in relative abundances and types of ARGs were also recorded (R2 of 0.132 at p < 0.08). The presence of ARGs was found in both the inhalable (2.1 µm, 1.1 µm, 0.7 µm and < 0.3 µm) and respirable (>9.0 µm, 5.8 µm, 4.7 µm and 3.3 µm) size fractions within hospital aerosols. All the ARGs are of pathogenic bacterial origin and are hosted by pathogenic forms. The findings present baseline data and underpin the need for detailed investigations looking at aerosol as a vehicle for ARG dissemination among human and non-human terrestrial biota.


Assuntos
Antibacterianos , Genes Bacterianos , Animais , Antibacterianos/farmacologia , Antibacterianos/análise , Kuweit , Resistência a Vancomicina , beta-Lactamas
7.
Microbiology (Reading) ; 168(12)2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36748702

RESUMO

There exists an enormous diversity of bacteria capable of human infection, but no up-to-date, publicly accessible list is available. Combining a pragmatic definition of pathogenicity with an extensive search strategy, we report 1513 bacterial pathogens known to infect humans described pre-2021. Of these, 73 % were regarded as established (have infected at least three persons in three or more references) and 27 % as putative (fewer than three known cases). Pathogen species belong to 10 phyla and 24 classes scattered throughout the bacterial phylogeny. We show that new human pathogens are discovered at a rapid rate. Finally, we discuss how our results could be expanded to a database, which could provide a useful resource for microbiologists. Our list is freely available and archived on GitHub and Zenodo and we have provided walkthroughs to facilitate access and use.


Assuntos
Bactérias , Humanos , Bactérias/genética , Bases de Dados Factuais , Filogenia
8.
Food Microbiol ; 108: 104113, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36088120

RESUMO

Plants influence epiphytic bacterial associations but Salmonella enterica colonizes crop plants commensally, raising the possibility of human foodborne illness, but the factors that mediate human pathogen-plant associations remain understudied. We evaluated whether any changes in leaf tissue and surface metabolomes with kale (Brassica oleracea Acephala group) development and in response to drought modulated Salmonella leaf association. Untargeted phytochemical profiling (including primary and secondary metabolites) of kale leaf tissue extracts and leaf surface washes revealed distinct metabolite profiles that shifted with plant development. Metabolomes of juvenile plants also diverged in response to drought stress, an effect not noted in mature kale. Restricted watering in juvenile plants led to up-accumulation of 45 compounds in leaf tissue and 21 in leaf wash and the appearance of several unique peaks, with concomitant increases in phytochemical measurements. The antioxidant capacity and total flavonoid content were higher in mature than juvenile, regularly watered plant leaf extracts. Drought also elicited flavonoids and glucosinolates in juvenile plants. In mature plants, drought did not induce further prominent changes. Regularly watered juvenile kale provided a favorable substrate for inoculated Salmonella but the ability to support Salmonella declined with age and with drought stress. Salmonella growth was impaired in mature or water-stressed plant washes compared to controls and positive correlations were detected between Salmonella counts on leaves and in leaf washes. Moreover, Salmonella counts were inversely correlated with total flavonoids and phenolics in kale tissues from juvenile plants and regularly watered plants. Future studies should assess how changes in primary and secondary metabolites on the kale plant surface can modulate the Salmonella association. Regulated water restriction could be a strategy in controlled agriculture, with the dual purpose of enhancing health beneficial quality and food safety, especially when harvested at the baby kale stage.


Assuntos
Brassica , Salmonella enterica , Brassica/química , Secas , Flavonoides/análise , Flavonoides/metabolismo , Inocuidade dos Alimentos , Humanos , Metaboloma , Compostos Fitoquímicos , Salmonella enterica/metabolismo , Água/metabolismo
9.
Int J Mol Sci ; 23(4)2022 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-35216223

RESUMO

Four novel ligand-metal complexes were synthesized through the reaction of Fe(III), pleaseCo(II), Zn(II), and Zr(IV) with Schiff base gemifloxacin reacted with ortho-phenylenediamine (GMFX-o-phdn) to investigate their biological activities. Elemental analysis, FT-IR, 1H NMR, UV-visible, molar conductance, melting points, magnetic susceptibility, and thermal analyses have been carried out for insuring the chelation process. The antimicrobial activity was carried out against Monilinia fructicola, Aspergillus flavus, Penicillium italicum, Botrytis cinerea, Escherichia coli, Bacillus cereus, Pseudomonas fluorescens, and P. aeruginosa. The radical scavenging activity (RSA%) was in vitro evaluated using ABTS method. FT-IR spectra indicated that GMFX-o-phdn chelated with metal ions as a tetradentate through oxygen of carboxylate group and nitrogen of azomethine group. The data of infrared, 1H NMR, and molar conductivity indicate that GMFX-o-phdn reacted as neutral tetra dentate ligand (N2O2) with metal ions through the two oxygen atoms of the carboxylic group (oxygen containing negative charge) and two nitrogen atoms of azomethine group (each nitrogen containing a lone pair of electrons) (the absent of peak corresponding to ν(COOH) at 1715 cm-1, the shift of azomethine group peak from 1633 cm-1 to around 1570 cm-1, the signal at 11 ppm of COOH and the presence of the chloride ions outside the complex sphere). Thermal analyses (TG-DTG/DTA) exhibited that the decaying of the metal complexes exists in three steps with the final residue metal oxide. The obtained data from DTA curves reflect that the degradation processes were exothermic or endothermic. Results showed that some of the studied complexes exhibited promising antifungal activity against most of the tested fungal pathogens, whereas they showed higher antibacterial activity against E. coli and B. cereus and low activity against P. fluorescens and P. aeruginosa. In addition, GMFX-o-phdn and its metal complexes showed strong antioxidant effect. In particular, the parent ligand and Fe(III) complex showed greater antioxidant capacity at low tested concentrations than that of other metal complexes where their IC50 were 169.7 and 164.6 µg/mL, respectively.


Assuntos
Anti-Infecciosos/farmacologia , Compostos Férricos/farmacologia , Gemifloxacina/farmacologia , Metais/farmacologia , Bases de Schiff/farmacologia , Antifúngicos/farmacologia , Bactérias/efeitos dos fármacos , Complexos de Coordenação/farmacologia , Humanos , Ligantes , Testes de Sensibilidade Microbiana/métodos
10.
Int J Mol Sci ; 23(14)2022 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-35887366

RESUMO

Coumarin is highly distributed in nature, notably in higher plants. The biological features of coumarin include antibacterial, anticancer and antioxidant effects. It is well known that metal ions present in complexes accelerate the drug action and the efficacy of organic therapeutic agents. The main aim of the current study is the synthesis of different complexes of the interaction between ciprofloxacin hydrochloride (CIP) and coumarin derivative 7-hydroxy-4-methylcoumarin (HMC) with Zr(IV). The chelates of CIP with Zr(IV) were prepared and characterized by elemental analysis, melting point, conductance measurements, spectroscopic techniques involving IR, UV-Vis, 1H NMR, and thermal behavior (TG-DTG) in the presence of HMC, dimethylformamide (DMF), pyridine (Py), and triethylamine (Et3N). Results of molar conductivity tests showed that the new synthesized complexes are electrolytes with a 1:1 or 1:2 electrolyte ratio, with the chloride ions functioning as counter ions. According to IR spectra, CIP acts as a neutral bidentate ligand with Zr(IV) through one carboxylato oxygen and the carbonyl group, HMC as a monodentate through the carbonyl group, and DMF through the oxygen atom of the carbonyl group and the N atom of Py and Et3N. The thermal behavior of the complexes was carefully investigated using TG and DTG techniques. TG findings signal that water molecules are found as hydrated and coordinated. The thermal decomposition mechanisms proposed for CIP, HMC, and Zr(IV) complexes are discussed and the activation energies (Ea), Gibbs free energies (∆G*), entropies (∆S*), and enthalpies (∆H*) of thermal decomposition reactions have been calculated using Coats-Redfern (CR) and Horowitz-Metzeger (HM) methods. The studied complexes were tested against some human pathogens and phytopathogens, including three Gram-positive bacteria (Bacillus subtilis, B. cereus, Brevibacterium otitidis) and three Gram-negative bacteria (Escherichiacoli, Pseudomonas aeruginosa and Klebsiella pneumoniae), and compared to the free CIP and HMC parent compounds.


Assuntos
Ciprofloxacina , Complexos de Coordenação , Antibacterianos/química , Antibacterianos/farmacologia , Bactérias , Ciprofloxacina/farmacologia , Complexos de Coordenação/química , Cumarínicos/farmacologia , Humanos , Íons/farmacologia , Ligantes , Testes de Sensibilidade Microbiana , Oxigênio/farmacologia , Espectrofotometria Infravermelho
11.
Curr Issues Mol Biol ; 43(3): 1226-1242, 2021 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-34698084

RESUMO

Plant cysteine-rich peptides (CRPs) represent a diverse group of molecules involved in different aspects of plant physiology. Antimicrobial peptides, which directly suppress the growth of pathogens, are regarded as promising templates for the development of next-generation pharmaceuticals and ecologically friendly plant disease control agents. Their oligopeptide fragments are even more promising because of their low production costs. The goal of this work was to explore the antimicrobial activity of nine short peptides derived from the γ-core-containing regions of tomato CRPs against important plant and human pathogens. We discovered antimicrobial activity in peptides derived from the defensin-like peptides, snakins, and MEG, which demonstrates the direct involvement of these CRPs in defense reactions in tomato. The CRP-derived short peptides appeared particularly active against the gram-positive bacterium Clavibacter michiganensis, which causes bacterial wilt-opening up new possibilities for their use in agriculture to control this dangerous disease. Furthermore, high inhibitory potency of short oligopeptides was demonstrated against the yeast Cryptococcus neoformans, which causes serious diseases in humans, making these peptide molecules promising candidates for the development of next-generation pharmaceuticals. Studies of the mode of action of the two most active peptides indicate fungal membrane permeabilization as a mechanism of antimicrobial action.


Assuntos
Peptídeos Antimicrobianos/síntese química , Peptídeos Antimicrobianos/farmacologia , Cisteína/química , Oligopeptídeos/síntese química , Oligopeptídeos/farmacologia , Solanum lycopersicum/química , Sequência de Aminoácidos , Bactérias/efeitos dos fármacos , Técnicas de Química Sintética , Relação Dose-Resposta a Droga , Solanum lycopersicum/imunologia , Testes de Sensibilidade Microbiana , Modelos Moleculares , Oligopeptídeos/química , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Conformação Proteica , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Relação Estrutura-Atividade , Leveduras/efeitos dos fármacos
12.
Mar Drugs ; 19(12)2021 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-34940674

RESUMO

Lipids are one of the primary metabolites of microalgae and cyanobacteria, which enrich their utility in the pharmaceutical, feed, cosmetic, and chemistry sectors. This work describes the isolation, structural elucidation, and the antibiotic and antibiofilm activities of diverse lipids produced by different microalgae and cyanobacteria strains from two European collections (ACOI and LEGE-CC). Three microalgae strains and one cyanobacteria strain were selected for their antibacterial and/or antibiofilm activity after the screening of about 600 strains carried out under the NoMorFilm European project. The total organic extracts were firstly fractionated using solid phase extraction methods, and the minimum inhibitory concentration and minimal biofilm inhibitory concentration against an array of human pathogens were determined. The isolation was carried out by bioassay-guided HPLC-DAD purification, and the structure of the isolated molecules responsible for the observed activities was determined by HPLC-HRESIMS and NMR methods. Sulfoquinovosyldiacylglycerol, monogalactosylmonoacylglycerol, sulfoquinovosylmonoacylglycerol, α-linolenic acid, hexadeca-4,7,10,13-tetraenoic acid (HDTA), palmitoleic acid, and lysophosphatidylcholine were found among the different active sub-fractions selected. In conclusion, cyanobacteria and microalgae produce a great variety of lipids with antibiotic and antibiofilm activity against the most important pathogens causing severe infections in humans. The use of these lipids in clinical treatments alone or in combination with antibiotics may provide an alternative to the current treatments.


Assuntos
Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Cianobactérias , Lipídeos/farmacologia , Microalgas , Animais , Antibacterianos/química , Organismos Aquáticos , Lipídeos/química , Testes de Sensibilidade Microbiana , Staphylococcus aureus/efeitos dos fármacos
13.
J Environ Manage ; 297: 113315, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34298350

RESUMO

The bacterial communities are challenged with oxidative stress during their exposure to bactericidal antibiotics, metals, and different levels of dissolved oxygen (DO) encountered in diverse environmental habitats. The frequency of antibiotic resistance genes (ARGs) and metal resistance genes (MRGs) co-selection is increased by selective pressure posed by oxidative stress. Hence, study of resistance acquisition is important from an evolutionary perspective. To understand the dependence of oxidative stress on the dissemination of ARGs and MRGs through a pathogenic bacterial population, 12 metagenomes belonging to gut, water and soil habitats were evaluated. The metagenome-wide analysis showed the chicken gut to pose the most diverse pool of ARGs (30.4 ppm) and pathogenic bacteria (Simpson diversity = 0.98). The most common types of resistances found in all the environmental samples were efflux pumps (13.22 ppm) and genes conferring resistance to vancomycin (12.4 ppm), tetracycline (12.1 ppm), or beta-lactam (9.4 ppm) antibiotics. Additionally, limiting DO level in soil was observed to increase the abundance of excision nucleases (uvrA and uvrB), DNA polymerase (polA), catalases (katG), and other oxidative stress response genes (OSGs). This was further evident from major variations occurred in antibiotic efflux genes due to the effect of DO concentration on two human pathogens, namely Salmonella enterica and Shigella sonnei found in all the selected habitats. In conclusion, the microbial community, when challenged with oxidative stress caused by environmental variations in oxygen level, tends to accumulate higher amounts of ARGs with increased dissemination potential through triggering non-lethal mutagenesis. Furthermore, the genetic linkage or co-occurrence of ARGs and MRGs provides evidence for selecting ARGs under high concentrations of heavy metals.


Assuntos
Metais Pesados , Microbiota , Antibacterianos/farmacologia , Resistência Microbiana a Medicamentos/genética , Genes Bacterianos , Humanos , Metais Pesados/toxicidade , Estresse Oxidativo
14.
World J Microbiol Biotechnol ; 37(4): 67, 2021 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-33748926

RESUMO

Infectious diseases are one of the main grounds of death and disabilities in human beings globally. Lack of effective treatment and immunization for many deadly infectious diseases and emerging drug resistance in pathogens underlines the need to either develop new vaccines or sufficiently improve the effectiveness of currently available drugs and vaccines. In this review, we discuss the application of advanced tools like bioinformatics, genomics, proteomics and associated techniques for a rational vaccine design.


Assuntos
Vacinas Bacterianas , Desenvolvimento de Medicamentos , Bactérias , Biologia Computacional , Genômica , Humanos , Imunização , Proteômica
15.
Artigo em Inglês | MEDLINE | ID: mdl-33106260

RESUMO

As drug resistance continues to grow, treatment strategies that turn resistance into a disadvantage for the organism will be increasingly relied upon to treat infections and to lower the rate of multidrug resistance. The majority of work in this area has investigated how resistance evolution toward a single antibiotic effects a specific organism's collateral response to a wide variety of antibiotics. The results of these studies have been used to identify networks of drugs which can be used to drive resistance in a particular direction. However, little is known about the extent of evolutionary conservation of these responses across species. We sought to address this knowledge gap by performing a systematic resistance evolution study of the ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter cloacae) under uniform growth conditions using five clinically relevant antibiotics with diverse modes of action. Evolved lineages were analyzed for collateral effects and the molecular mechanisms behind the observed phenotypes. Fourteen universal cross-resistance and two global collateral sensitivity relationships were found among the lineages. Genomic analyses revealed drug-dependent divergent and conserved evolutionary trajectories among the pathogens. Our findings suggest that collateral responses may be preserved across species. These findings may help extend the contribution of previous collateral network studies in the development of treatment strategies to address the problem of antibiotic resistance.


Assuntos
Acinetobacter baumannii , Infecções Estafilocócicas , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Humanos , Pseudomonas aeruginosa/genética , Infecções Estafilocócicas/tratamento farmacológico , Staphylococcus aureus/genética
16.
Food Microbiol ; 91: 103535, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32539946

RESUMO

Farmed insects can offer an environmentally sustainable aquafeed or livestock feed ingredient. The value of black soldier fly (Hermetia illucens) (BSF) larvae could be improved by enrichment in omega-3 through the dietary inclusion of seaweed. However, the industry practice of drying seaweed at low temperatures to retain nutritional properties may benefit the survival of human pathogenic bacteria, particularly if the seaweed has been harvested from contaminated water. Here we have demonstrated that E. coli and E. coli O157:H7 died-off in seaweed dried at 50 °C, although both were detected in the dried powder following 72 h storage. V. parahaemolyticus fell below the level of detection in stored seaweed after drying at ≥ 50 °C, but L. monocytogenes remained detectable, and continued to grow in seaweed dried at ≤60 °C. Therefore, drying seaweed at low temperatures risks pathogen carry-over into insects destined for animal feed. BSF larvae reared on an artificially contaminated seaweed-supplemented diet also became contaminated by all four bacteria present in the supplement. Water quality at seaweed harvesting sites, seaweed desiccation, and insect rearing practices, represent critical points where development of regulatory standards could achieve targeted control of pathogenic hazards.


Assuntos
Ração Animal/microbiologia , Bactérias/isolamento & purificação , Dípteros/microbiologia , Alga Marinha/microbiologia , Ração Animal/normas , Animais , Bactérias/classificação , Bactérias/patogenicidade , Suplementos Nutricionais/microbiologia , Suplementos Nutricionais/normas , Dípteros/crescimento & desenvolvimento , Manipulação de Alimentos/métodos , Microbiologia de Alimentos/normas , Inocuidade dos Alimentos , Humanos , Larva/crescimento & desenvolvimento , Larva/microbiologia , Temperatura
17.
Environ Monit Assess ; 192(4): 238, 2020 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-32173770

RESUMO

The potential threat of both metals and antibiotics to the environment and human health has raised significant concerns in the last decade. Metal-resistant and antibiotic-resistant bacteria are found in most environments, including water, and the risk posed to humans and animals due to the spread of antibiotic-resistant bacteria and antibiotic-resistant genes in the environment is increasing. Bacteria have developed the ability to tolerate metals even at notable concentrations. This ability tends to favor the selection of antibiotic-resistant strains, even in pristine water environments, with the potential risk of spreading this resistance to human pathogens. In this mini-review, we focus on investigations performed in marine and freshwater environments worldwide, highlighting the presence of co-resistance to metals and antibiotics.


Assuntos
Antibacterianos , Bactérias/efeitos dos fármacos , Farmacorresistência Bacteriana , Metais/farmacologia , Animais , Monitoramento Ambiental , Humanos
18.
Microb Ecol ; 78(2): 286-298, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30661111

RESUMO

Ciliates are the largest group of ubiquitous aquatic bacterivorous protists, and many species are easily cultivated. However, only few studies reported prokaryotic communities naturally associated with ciliate cells. Herein, we analyzed the microbiome composition of several strains of Paramecium (Ciliophora) originating from different locations and belonging to two morpho-species by high-throughput sequencing (HTS) of the 16S rRNA gene. Possible reasons of HTS results bias were addressed comparing DNA libraries obtained using different primers and different number of ciliate cells. Microbiomes associated with ciliates and their environments were always significantly different by prokaryotic taxonomic composition and bacterial richness. There were also pronounced differences between Paramecium strains. Interestingly, potentially pathogenic bacteria were revealed in Paramecium microbiomes.


Assuntos
Bactérias/isolamento & purificação , DNA Bacteriano/genética , Microbiota , Paramecium/microbiologia , RNA Ribossômico 16S/genética , Bactérias/classificação , Bactérias/genética , Sequenciamento de Nucleotídeos em Larga Escala , Filogenia
19.
Appl Microbiol Biotechnol ; 103(1): 97-112, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30374671

RESUMO

Fungi-in being responsible for causing diseases in animals and humans as well as environmental contaminations in health and storage facilities-represent a serious concern to health security. Surfactants are a group of chemical compounds used in a broad spectrum of applications. The recently considered potential employment of cationic surfactants as antifungal or fungistatic agents has become a prominent issue in the development of antifungal strategies, especially if such surface-active agents can be synthesized in an eco-friendly manner. In this review, we describe the antifungal effect and the reported mechanisms of action of several types of cationic surfactants and also include a discussion of the contribution of these surfactants to the inhibition of yeast-based-biofilm formation. Furthermore, the putative mechanism of arginine-based tensioactive compounds as antifungal agents and their applications are also analyzed.


Assuntos
Antifúngicos/farmacologia , Desinfetantes/farmacologia , Avaliação Pré-Clínica de Medicamentos/métodos , Tensoativos/química , Tensoativos/farmacologia , Antifúngicos/química , Arginina/química , Biofilmes/efeitos dos fármacos , Cátions , Membrana Celular/efeitos dos fármacos , Desinfetantes/química
20.
Int J Mol Sci ; 20(12)2019 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-31200551

RESUMO

Tremellomycetes, a fungal class in the subphylum Agaricomycotina, contain well-known opportunistic and emerging human pathogens. The azole drug fluconazole, used in the treatment of diseases caused by some species of Tremellomycetes, inhibits cytochrome P450 monooxygenase CYP51, an enzyme that converts lanosterol into an essential component of the fungal cell membrane ergosterol. Studies indicate that mutations and over-expression of CYP51 in species of Tremellomycetes are one of the reasons for fluconazole resistance. Moreover, the novel drug, VT-1129, that is in the pipeline is reported to exert its effect by binding and inhibiting CYP51. Despite the importance of CYPs, the CYP repertoire in species of Tremellomycetes has not been reported to date. This study intends to address this research gap. Comprehensive genome-wide CYP analysis revealed the presence of 203 CYPs (excluding 16 pseudo-CYPs) in 23 species of Tremellomycetes that can be grouped into 38 CYP families and 72 CYP subfamilies. Twenty-three CYP families are new and three CYP families (CYP5139, CYP51 and CYP61) were conserved across 23 species of Tremellomycetes. Pathogenic cryptococcal species have 50% fewer CYP genes than non-pathogenic species. The results of this study will serve as reference for future annotation and characterization of CYPs in species of Tremellomycetes.


Assuntos
Basidiomycota/genética , Família 51 do Citocromo P450/genética , Proteínas Fúngicas/genética , Variação Genética , Basidiomycota/classificação , Basidiomycota/enzimologia , Filogenia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa