RESUMO
Aggressive pheochromocytomas and paragangliomas (PPGLs) are difficult to treat, and molecular targeting is being increasingly considered, but with variable results. This study investigates established and novel molecular-targeted drugs and chemotherapeutic agents for the treatment of PPGLs in human primary cultures and murine cell line spheroids. In PPGLs from 33 patients, including 7 metastatic PPGLs, we identified germline or somatic driver mutations in 79% of cases, allowing us to assess potential differences in drug responsivity between pseudohypoxia-associated cluster 1-related (n = 10) and kinase signaling-associated cluster 2-related (n = 14) PPGL primary cultures. Single anti-cancer drugs were either more effective in cluster 1 (cabozantinib, selpercatinib, and 5-FU) or similarly effective in both clusters (everolimus, sunitinib, alpelisib, trametinib, niraparib, entinostat, gemcitabine, AR-A014418, and high-dose zoledronic acid). High-dose estrogen and low-dose zoledronic acid were the only single substances more effective in cluster 2. Neither cluster 1- nor cluster 2-related patient primary cultures responded to HIF-2a inhibitors, temozolomide, dabrafenib, or octreotide. We showed particular efficacy of targeted combination treatments (cabozantinib/everolimus, alpelisib/everolimus, alpelisib/trametinib) in both clusters, with higher efficacy of some targeted combinations in cluster 2 and overall synergistic effects (cabozantinib/everolimus, alpelisib/trametinib) or synergistic effects in cluster 2 (alpelisib/everolimus). Cabozantinib/everolimus combination therapy, gemcitabine, and high-dose zoledronic acid appear to be promising treatment options with particularly high efficacy in SDHB-mutant and metastatic tumors. In conclusion, only minor differences regarding drug responsivity were found between cluster 1 and cluster 2: some single anti-cancer drugs were more effective in cluster 1 and some targeted combination treatments were more effective in cluster 2.
Assuntos
Neoplasias das Glândulas Suprarrenais , Antineoplásicos , Paraganglioma , Feocromocitoma , Neoplasias das Glândulas Suprarrenais/tratamento farmacológico , Neoplasias das Glândulas Suprarrenais/genética , Neoplasias das Glândulas Suprarrenais/metabolismo , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Everolimo/uso terapêutico , Humanos , Camundongos , Paraganglioma/tratamento farmacológico , Paraganglioma/genética , Paraganglioma/patologia , Feocromocitoma/tratamento farmacológico , Feocromocitoma/genética , Feocromocitoma/metabolismo , Ácido Zoledrônico/uso terapêuticoRESUMO
Bisphenol A (BPA) is detectable in follicular fluid. However, the effect of BPA exposure on human cumulus cells (CC) that surround the oocyte and are crucial for oocyte competence has been largely unexplored. We exposed primary cultures of CC to increasing concentrations of BPA [0,0.002, 0.02 and 20µg/mL] and tested the effects of BPA on the expression of genes associated with apoptosis using quantitative reverse-transcriptase polymerase chain reaction (qRT-PCR); we also assessed the effect of BPA on apoptosis by staining with anti-caspase 3. Exposure to 20µg/mL BPA led to significantly decreased expression of CDC20, BUB1B and HAS2 (p<0.03), increased expression of TRIB3 and LUM (p≤0.005), and increased frequency of cells positive for anti-CASP3 (p=0.03), compared to control. Our results imply that BPA may lead to ovarian toxicity by increasing CC apoptosis and provide an important molecular mechanism for the effect of BPA on human CC in vitro.