Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 352
Filtrar
1.
Hum Mol Genet ; 33(12): 1074-1089, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38520741

RESUMO

We have generated using CRISPR/Cas9 technology a partially humanized mouse model of the neurometabolic disease phenylketonuria (PKU), carrying the highly prevalent PAH variant c.1066-11G>A. This variant creates an alternative 3' splice site, leading to the inclusion of 9 nucleotides coding for 3 extra amino acids between Q355 and Y356 of the protein. Homozygous Pah c.1066-11A mice, with a partially humanized intron 10 sequence with the variant, accurately recapitulate the splicing defect and present almost undetectable hepatic PAH activity. They exhibit fur hypopigmentation, lower brain and body weight and reduced survival. Blood and brain phenylalanine levels are elevated, along with decreased tyrosine, tryptophan and monoamine neurotransmitter levels. They present behavioral deficits, mainly hypoactivity and diminished social interaction, locomotor deficiencies and an abnormal hind-limb clasping reflex. Changes in the morphology of glial cells, increased GFAP and Iba1 staining signals and decreased myelinization are observed. Hepatic tissue exhibits nearly absent PAH protein, reduced levels of chaperones DNAJC12 and HSP70 and increased autophagy markers LAMP1 and LC3BII, suggesting possible coaggregation of mutant PAH with chaperones and subsequent autophagy processing. This PKU mouse model with a prevalent human variant represents a useful tool for pathophysiology research and for novel therapies development.


Assuntos
Modelos Animais de Doenças , Fenilalanina Hidroxilase , Fenilcetonúrias , Animais , Camundongos , Fenilcetonúrias/genética , Fenilcetonúrias/patologia , Fenilcetonúrias/metabolismo , Humanos , Fenilalanina Hidroxilase/genética , Fenilalanina Hidroxilase/metabolismo , Encéfalo/metabolismo , Encéfalo/patologia , Sistemas CRISPR-Cas , Autofagia/genética , Mutação , Fígado/metabolismo , Fígado/patologia
2.
Proc Natl Acad Sci U S A ; 120(10): e2217199120, 2023 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-36848564

RESUMO

COVID-19 remains a global pandemic of an unprecedented magnitude with millions of people now developing "COVID lung fibrosis." Single-cell transcriptomics of lungs of patients with long COVID revealed a unique immune signature demonstrating the upregulation of key proinflammatory and innate immune effector genes CD47, IL-6, and JUN. We modeled the transition to lung fibrosis after COVID and profiled the immune response with single-cell mass cytometry in JUN mice. These studies revealed that COVID mediated chronic immune activation reminiscent to long COVID in humans. It was characterized by increased CD47, IL-6, and phospho-JUN (pJUN) expression which correlated with disease severity and pathogenic fibroblast populations. When we subsequently treated a humanized COVID lung fibrosis model by combined blockade of inflammation and fibrosis, we not only ameliorated fibrosis but also restored innate immune equilibrium indicating possible implications for clinical management of COVID lung fibrosis in patients.


Assuntos
COVID-19 , Fibrose Pulmonar , Humanos , Animais , Camundongos , Fibrose Pulmonar/etiologia , Síndrome de COVID-19 Pós-Aguda , Antígeno CD47 , Interleucina-6/genética , Imunidade Inata
3.
Proc Natl Acad Sci U S A ; 120(1): e2217883120, 2023 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-36574685

RESUMO

Antibody heavy chain (HC) and light chain (LC) variable region exons are assembled by V(D)J recombination. V(D)J junctional regions encode complementarity-determining-region 3 (CDR3), an antigen-contact region immensely diversified through nontemplated nucleotide additions ("N-regions") by terminal deoxynucleotidyl transferase (TdT). HIV-1 vaccine strategies seek to elicit human HIV-1 broadly neutralizing antibodies (bnAbs), such as the potent CD4-binding site VRC01-class bnAbs. Mice with primary B cells that express receptors (BCRs) representing bnAb precursors are used as vaccination models. VRC01-class bnAbs uniformly use human HC VH1-2 and commonly use human LCs Vκ3-20 or Vκ1-33 associated with an exceptionally short 5-amino-acid (5-aa) CDR3. Prior VRC01-class models had nonphysiological precursor levels and/or limited precursor diversity. Here, we describe VRC01-class rearranging mice that generate more physiological primary VRC01-class BCR repertoires via rearrangement of VH1-2, as well as Vκ1-33 and/or Vκ3-20 in association with diverse CDR3s. Human-like TdT expression in mouse precursor B cells increased LC CDR3 length and diversity and also promoted the generation of shorter LC CDR3s via N-region suppression of dominant microhomology-mediated Vκ-to-Jκ joins. Priming immunization with eOD-GT8 60mer, which strongly engages VRC01 precursors, induced robust VRC01-class germinal center B cell responses. Vκ3-20-based responses were enhanced by N-region addition, which generates Vκ3-20-to-Jκ junctional sequence combinations that encode VRC01-class 5-aa CDR3s with a critical E residue. VRC01-class-rearranging models should facilitate further evaluation of VRC01-class prime and boost immunogens. These new VRC01-class mouse models establish a prototype for the generation of vaccine-testing mouse models for other HIV-1 bnAb lineages that employ different HC or LC Vs.


Assuntos
Infecções por HIV , Soropositividade para HIV , HIV-1 , Vacinas , Camundongos , Humanos , Animais , Anticorpos Amplamente Neutralizantes , Anticorpos Neutralizantes , HIV-1/genética , Anticorpos Anti-HIV , DNA Nucleotidilexotransferase , Regiões Determinantes de Complementaridade/genética , Infecções por HIV/prevenção & controle
4.
EMBO J ; 40(12): e107346, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-33934394

RESUMO

Mutations in the shelterin protein POT1 are associated with chronic lymphocytic leukemia (CLL), Hodgkin lymphoma, angiosarcoma, melanoma, and other cancers. These cancer-associated POT1 (caPOT1) mutations are generally heterozygous, missense, or nonsense mutations occurring throughout the POT1 reading frame. Cancers with caPOT1 mutations have elongated telomeres and show increased genomic instability, but which of the two phenotypes promotes tumorigenesis is unclear. We tested the effects of CAS9-engineered caPOT1 mutations in human embryonic and hematopoietic stem cells (hESCs and HSCs, respectively). HSCs with caPOT1 mutations did not show overt telomere damage. In vitro and in vivo competition experiments showed the caPOT1 mutations did not confer a selective disadvantage. Since DNA damage signaling is known to affect the fitness of HSCs, the data argue that caPOT1 mutations do not cause significant telomere damage. Furthermore, hESC lines with caPOT1 mutations showed no detectable telomere damage response while showing consistent telomere elongation. Thus, caPOT1 mutations are likely selected for during cancer progression because of their ability to elongate telomeres and extend the proliferative capacity of the incipient cancer cells.


Assuntos
Neoplasias/genética , Proteínas de Ligação a Telômeros/genética , Telômero , Animais , Dano ao DNA , Feminino , Humanos , Células K562 , Masculino , Camundongos , Mutação , Complexo Shelterina , Células-Tronco
5.
J Virol ; 98(6): e0057624, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38767375

RESUMO

Kaposi sarcoma-associated herpesvirus (KSHV), also known as human herpesvirus-8, is the causal agent of Kaposi sarcoma, a cancer that appears as tumors on the skin or mucosal surfaces, as well as primary effusion lymphoma and KSHV-associated multicentric Castleman disease, which are B-cell lymphoproliferative disorders. Effective prophylactic and therapeutic strategies against KSHV infection and its associated diseases are needed. To develop these strategies, it is crucial to identify and target viral glycoproteins involved in KSHV infection of host cells. Multiple KSHV glycoproteins expressed on the viral envelope are thought to play a pivotal role in viral infection, but the infection mechanisms involving these glycoproteins remain largely unknown. We investigated the role of two KSHV envelope glycoproteins, KSHV complement control protein (KCP) and K8.1, in viral infection in various cell types in vitro and in vivo. Using our newly generated anti-KCP antibodies, previously characterized anti-K8.1 antibodies, and recombinant mutant KSHV viruses lacking KCP, K8.1, or both, we demonstrated the presence of KCP and K8.1 on the surface of both virions and KSHV-infected cells. We showed that KSHV lacking KCP and/or K8.1 remained infectious in KSHV-susceptible cell lines, including epithelial, endothelial, and fibroblast, when compared to wild-type recombinant KSHV. We also provide the first evidence that KSHV lacking K8.1 or both KCP and K8.1 can infect human B cells in vivo in a humanized mouse model. Thus, these results suggest that neither KCP nor K8.1 is required for KSHV infection of various host cell types and that these glycoproteins do not determine KSHV cell tropism. IMPORTANCE: Kaposi sarcoma-associated herpesvirus (KSHV) is an oncogenic human gamma-herpesvirus associated with the endothelial malignancy Kaposi sarcoma and the lymphoproliferative disorders primary effusion lymphoma and multicentric Castleman disease. Determining how KSHV glycoproteins such as complement control protein (KCP) and K8.1 contribute to the establishment, persistence, and transmission of viral infection will be key for developing effective anti-viral vaccines and therapies to prevent and treat KSHV infection and KSHV-associated diseases. Using newly generated anti-KCP antibodies, previously characterized anti-K8.1 antibodies, and recombinant mutant KSHV viruses lacking KCP and/or K8.1, we show that KCP and K8.1 can be found on the surface of both virions and KSHV-infected cells. Furthermore, we show that KSHV lacking KCP and/or K8.1 remains infectious to diverse cell types susceptible to KSHV in vitro and to human B cells in vivo in a humanized mouse model, thus providing evidence that these viral glycoproteins are not required for KSHV infection.


Assuntos
Herpesvirus Humano 8 , Sarcoma de Kaposi , Proteínas do Envelope Viral , Proteínas Virais , Herpesvirus Humano 8/genética , Herpesvirus Humano 8/fisiologia , Humanos , Animais , Camundongos , Proteínas Virais/metabolismo , Proteínas Virais/genética , Sarcoma de Kaposi/virologia , Proteínas do Envelope Viral/metabolismo , Proteínas do Envelope Viral/genética , Linhagem Celular , Hiperplasia do Linfonodo Gigante/virologia , Hiperplasia do Linfonodo Gigante/metabolismo , Infecções por Herpesviridae/virologia , Infecções por Herpesviridae/metabolismo , Células HEK293 , Células Endoteliais/virologia
6.
J Virol ; 98(2): e0186223, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38294250

RESUMO

The primary mode of infection by human T-cell leukemia virus type 1 (HTLV-1) is cell-to-cell transmission during contact between infected cells and target cells. Cell-free HTLV-1 infections are known to be less efficient than infections with other retroviruses, and transmission of free HTLV-1 is considered not to occur in vivo. However, it has been demonstrated that cell-free HTLV-1 virions can infect primary lymphocytes and dendritic cells in vitro, and that virions embedded in biofilms on cell membranes can contribute to transmission. The establishment of an efficient cell-free HTLV-1 infection model would be a useful tool for analyzing the replication process of HTLV-1 and the clonal expansion of infected cells. We first succeeded in obtaining supernatants with high-titer cell-free HTLV-1 using a highly efficient virus-producing cell line. The HTLV-1 virions retained the structural characteristics of retroviruses. Using this cell-free infection model, we confirmed that a variety of cell lines and primary cultured cells can be infected with HTLV-1 and demonstrated that the provirus was randomly integrated into all chromosomes in the target cells. The provirus-integrated cell lines were HTLV-1-productive. Furthermore, we demonstrated for the first time that cell-free HTLV-1 is infectious in vivo using a humanized mouse model. These results indicate that this cell-free infection model recapitulates the HTLV-1 life cycle, including entry, reverse transcription, integration into the host genome, viral replication, and secondary infection. The new cell-free HTLV-1 infection model is promising as a practical resource for studying HTLV-1 infection.IMPORTANCECo-culture of infected and target cells is frequently used for studying HTLV-1 infection. Although this method efficiently infects HTLV-1, the cell mixture is complex, and it is extremely difficult to distinguish donor infected cells from target cells. In contrast, cell-free HTLV-1 infection models allow for more strict experimental conditions. In this study, we established a novel and efficient cell-free HTLV-1 infection model. Using this model, we successfully evaluated the infectivity titers of cell-free HTLV-1 as proviral loads (copies per 100 cells) in various cell lines, primary cultured cells, and a humanized mouse model. Interestingly, the HTLV-1-associated viral biofilms played an important role in enhancing the infectivity of the cell-free infection model. This cell-free HTLV-1 infection model reproduces the replication cycle of HTLV-1 and provides a simple, powerful, and alternative tool for researching HTLV-1 infection.


Assuntos
Sistema Livre de Células , Infecções por HTLV-I , Vírus Linfotrópico T Tipo 1 Humano , Animais , Humanos , Camundongos , Infecções por HTLV-I/transmissão , Infecções por HTLV-I/virologia , Vírus Linfotrópico T Tipo 1 Humano/genética , Vírus Linfotrópico T Tipo 1 Humano/crescimento & desenvolvimento , Vírus Linfotrópico T Tipo 1 Humano/patogenicidade , Vírus Linfotrópico T Tipo 1 Humano/fisiologia , Linfócitos/virologia , Provírus/genética , Provírus/metabolismo , Replicação Viral , Sistema Livre de Células/virologia , Linhagem Celular , Células Cultivadas , Internalização do Vírus , Transcrição Reversa , Biofilmes , Integração Viral
7.
Mol Ther ; 32(7): 2190-2206, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38796705

RESUMO

X-linked adrenoleukodystrophy (ALD), an inherited neurometabolic disorder caused by mutations in ABCD1, which encodes the peroxisomal ABC transporter, mainly affects the brain, spinal cord, adrenal glands, and testes. In ALD patients, very-long-chain fatty acids (VLCFAs) fail to enter the peroxisome and undergo subsequent ß-oxidation, resulting in their accumulation in the body. It has not been tested whether in vivo base editing or prime editing can be harnessed to ameliorate ALD. We developed a humanized mouse model of ALD by inserting a human cDNA containing the pathogenic variant into the mouse Abcd1 locus. The humanized ALD model showed increased levels of VLCFAs. To correct the mutation, we tested both base editing and prime editing and found that base editing using ABE8e(V106W) could correct the mutation in patient-derived fibroblasts at an efficiency of 7.4%. Adeno-associated virus (AAV)-mediated systemic delivery of NG-ABE8e(V106W) enabled robust correction of the pathogenic variant in the mouse brain (correction efficiency: ∼5.5%), spinal cord (∼5.1%), and adrenal gland (∼2%), leading to a significant reduction in the plasma levels of C26:0/C22:0. This established humanized mouse model and the successful correction of the pathogenic variant using a base editor serve as a significant step toward treating human ALD disease.


Assuntos
Membro 1 da Subfamília D de Transportadores de Cassetes de Ligação de ATP , Adrenoleucodistrofia , Dependovirus , Modelos Animais de Doenças , Edição de Genes , Terapia Genética , Animais , Adrenoleucodistrofia/terapia , Adrenoleucodistrofia/genética , Camundongos , Humanos , Membro 1 da Subfamília D de Transportadores de Cassetes de Ligação de ATP/genética , Dependovirus/genética , Terapia Genética/métodos , Vetores Genéticos/genética , Vetores Genéticos/administração & dosagem , Adenina , Mutação , Fibroblastos/metabolismo , Ácidos Graxos/metabolismo , Encéfalo/metabolismo , Encéfalo/patologia
8.
Mol Ther ; 32(4): 1000-1015, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38414243

RESUMO

Adoptive cell therapy (ACT) using T cells expressing chimeric antigen receptors (CARs) is an area of intense investigation in the treatment of malignancies and chronic viral infections. One of the limitations of ACT-based CAR therapy is the lack of in vivo persistence and maintenance of optimal cell function. Therefore, alternative strategies that increase the function and maintenance of CAR-expressing T cells are needed. In our studies using the humanized bone marrow/liver/thymus (BLT) mouse model and nonhuman primate (NHP) model of HIV infection, we evaluated two CAR-based gene therapy approaches. In the ACT approach, we used cytokine enhancement and preconditioning to generate greater persistence of anti-HIV CAR+ T cells. We observed limited persistence and expansion of anti-HIV CAR T cells, which led to minimal control of the virus. In our stem cell-based approach, we modified hematopoietic stem/progenitor cells (HSPCs) with anti-HIV CAR to generate anti-HIV CAR T cells in vivo. We observed CAR-expressing T cell expansion, which led to better plasma viral load suppression. HSPC-derived CAR cells in infected NHPs showed superior trafficking and persistence in multiple tissues. Our results suggest that a stem cell-based CAR T cell approach may be superior in generating long-term persistence and functional antiviral responses against HIV infection.


Assuntos
Infecções por HIV , HIV-1 , Receptores de Antígenos Quiméricos , Camundongos , Animais , Linfócitos T , Receptores de Antígenos Quiméricos/genética , Células-Tronco Hematopoéticas , Imunoterapia Adotiva
9.
Mol Ther ; 32(2): 384-394, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38087779

RESUMO

Hematopoietic stem/progenitor cell (HSPC)-based anti-HIV-1 gene therapy holds great promise to eradicate HIV-1 or to provide long-term remission through a continuous supply of anti-HIV-1 gene-modified cells without ongoing antiretroviral therapy. However, achieving sufficient engraftment levels of anti-HIV gene-modified HSPC to provide therapeutic efficacy has been a major limitation. Here, we report an in vivo selection strategy for anti-HIV-1 gene-modified HSPC by introducing 6-thioguanine (6TG) chemoresistance through knocking down hypoxanthine-guanine phosphoribosyl transferase (HPRT) expression using RNA interference (RNAi). We developed a lentiviral vector capable of co-expressing short hairpin RNA (shRNA) against HPRT alongside two anti-HIV-1 genes: shRNA targeting HIV-1 co-receptor CCR5 and a membrane-anchored HIV-1 fusion inhibitor, C46, for efficient in vivo selection of anti-HIV-1 gene-modified human HSPC. 6TG-mediated preconditioning and in vivo selection significantly enhanced engraftment of HPRT-knockdown anti-HIV-1 gene-modified cells (>2-fold, p < 0.0001) in humanized bone marrow/liver/thymus (huBLT) mice. Viral load was significantly reduced (>1 log fold, p < 0.001) in 6TG-treated HIV-1-infected huBLT mice compared to 6TG-untreated mice. We demonstrated that 6TG-mediated preconditioning and in vivo selection considerably improved engraftment of HPRT-knockdown anti-HIV-1 gene-modified HSPC and repopulation of anti-HIV-1 gene-modified hematopoietic cells in huBLT mice, allowing for efficient HIV-1 inhibition.


Assuntos
HIV-1 , Transplante de Células-Tronco Hematopoéticas , Humanos , Camundongos , Animais , HIV-1/fisiologia , Hipoxantina Fosforribosiltransferase/genética , Hipoxantina Fosforribosiltransferase/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Medula Óssea/metabolismo , Tioguanina/metabolismo , Tioguanina/farmacologia , RNA Interferente Pequeno/genética
10.
Proc Natl Acad Sci U S A ; 119(10): e2123002119, 2022 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-35235456

RESUMO

Therapeutic human IgG antibodies are routinely tested in mouse models of oncologic, infectious, and autoimmune diseases. However, assessing the efficacy and safety of long-term administration of these agents has been limited by endogenous anti-human IgG immune responses that act to clear human IgG from serum and relevant tissues, thereby reducing their efficacy and contributing to immune complex­mediated pathologies, confounding evaluation of potential toxicity. For this reason, human antibody treatment in mice is generally limited in duration and dosing, thus failing to recapitulate the potential clinical applications of these therapeutics. Here, we report the development of a mouse model that is tolerant of chronic human antibody administration. This model combines both a human IgG1 heavy chain knock-in and a full recapitulation of human Fc receptor (FcγR) expression, providing a unique platform for in vivo testing of human monoclonal antibodies with relevant receptors beyond the short term. Compared to controls, hIgG1 knock-in mice mount minimal anti-human IgG responses, allowing for the persistence of therapeutically active circulating human IgG even in the late stages of treatment in chronic models of immune thrombocytopenic purpura and metastatic melanoma.


Assuntos
Anticorpos Monoclonais Humanizados/administração & dosagem , Imunoglobulina G/imunologia , Animais , Anticorpos Monoclonais Humanizados/uso terapêutico , Anticorpos Monoclonais Humanizados/toxicidade , Formação de Anticorpos/genética , Doença Crônica , Humanos , Tolerância Imunológica , Imunoglobulina G/administração & dosagem , Imunoglobulina G/genética , Cadeias Pesadas de Imunoglobulinas/genética , Melanoma Experimental/imunologia , Melanoma Experimental/terapia , Camundongos , Camundongos Transgênicos , Modelos Animais , Púrpura Trombocitopênica Idiopática/imunologia , Púrpura Trombocitopênica Idiopática/terapia
11.
Proc Natl Acad Sci U S A ; 119(43): e2121077119, 2022 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-36269862

RESUMO

Mice with a functional human immune system serve as an invaluable tool to study the development and function of the human immune system in vivo. A major technological limitation of all current humanized mouse models is the lack of mature and functional human neutrophils in circulation and tissues. To overcome this, we generated a humanized mouse model named MISTRGGR, in which the mouse granulocyte colony-stimulating factor (G-CSF) was replaced with human G-CSF and the mouse G-CSF receptor gene was deleted in existing MISTRG mice. By targeting the G-CSF cytokine-receptor axis, we dramatically improved the reconstitution of mature circulating and tissue-infiltrating human neutrophils in MISTRGGR mice. Moreover, these functional human neutrophils in MISTRGGR are recruited upon inflammatory and infectious challenges and help reduce bacterial burden. MISTRGGR mice represent a unique mouse model that finally permits the study of human neutrophils in health and disease.


Assuntos
Neutrófilos , Receptores de Fator Estimulador de Colônias de Granulócitos , Humanos , Camundongos , Animais , Fator Estimulador de Colônias de Granulócitos e Macrófagos/genética , Fator Estimulador de Colônias de Granulócitos/genética , Citocinas
12.
Respir Res ; 25(1): 26, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38200596

RESUMO

BACKGROUND: Honeycomb cysts (HC) within the alveolar region are distinct histopathological features in the lungs of idiopathic pulmonary fibrosis (IPF) patients. HC are lined with a single-or stratified layer of basal cells (BC), or with a bronchiolar-like epithelium composed of basal-, ciliated- and secretory epithelial cells. By using cultured IPF patient-derived alveolar BC, we aimed to establish an in vitro- and in vivo model to mimic HC formation in IPF. We (1) optimized conditions to culture and propagate IPF patient-derived alveolar BC, (2) cultured the cells on an air liquid interface (ALI) or in a three dimensional (3D) organoid model, and (3) investigated the cells` behavior after instillation into bleomycin-challenged mice. METHODS: Alveolar BC were cultured from peripheral IPF lung tissue and grown on tissue-culture treated plastic, an ALI, or in a 3D organoid model. Furthermore, cells were instilled into bleomycin-challenged NRG mice. Samples were analyzed by TaqMan RT-PCR, immunoblotting, immunocytochemistry/immunofluorescence (ICC/IF), or immunohistochemistry (IHC)/IF. Mann-Whitney tests were performed using GraphPad Prism software. RESULTS: Cultured alveolar BC showed high expression of canonical basal cell markers (TP63, keratin (KRT)5, KRT14, KRT17), robust proliferation, and wound closure capacity. The cells could be cryopreserved and propagated for up to four passages without a significant loss of basal cell markers. When cultured on an ALI or in a 3D organoid model, alveolar BC differentiated to ciliated- and secretory epithelial cells. When instilled into bleomycin-challenged mice, human alveolar BC cells formed HC-like structures composed of human basal-, and secretory epithelial cells within the mouse parenchyma. CONCLUSION: IPF patient-derived alveolar BC on an ALI, in 3D organoids or after instillation into bleomycin-challenged mice form HC-like structures that closely resemble HC within the IPF lung. These models therefore represent powerful tools to study honeycomb formation, and its potential therapeutic inhibition in IPF.


Assuntos
Fibrose Pulmonar Idiopática , Humanos , Animais , Camundongos , Fibrose Pulmonar Idiopática/induzido quimicamente , Células Epiteliais Alveolares , Células Epiteliais , Bleomicina/toxicidade , Epitélio
13.
FASEB J ; 37(6): e22995, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37219526

RESUMO

Immuno-oncology (IO)-based therapies such as checkpoint inhibitors, bi-specific antibodies, and CAR-T-cell therapies have shown significant success in the treatment of several cancer indications. However, these therapies can result in the development of severe adverse events, including cytokine release syndrome (CRS). Currently, there is a paucity of in vivo models that can evaluate dose-response relationships for both tumor control and CRS-related safety issues. We tested an in vivo PBMC humanized mouse model to assess both treatment efficacy against specific tumors and the concurrent cytokine release profiles for individual human donors after treatment with a CD19xCD3 bispecific T-cell engager (BiTE). Using this model, we evaluated tumor burden, T-cell activation, and cytokine release in response to bispecific T-cell-engaging antibody in humanized mice generated with different PBMC donors. The results show that PBMC engrafted NOD-scid Il2rgnull mice lacking expression of mouse MHC class I and II (NSG-MHC-DKO mice) and implanted with a tumor xenograft predict both efficacy for tumor control by CD19xCD3 BiTE and stimulated cytokine release. Moreover, our findings indicate that this PBMC-engrafted model captures variability among donors for tumor control and cytokine release following treatment. Tumor control and cytokine release were reproducible for the same PBMC donor in separate experiments. The PBMC humanized mouse model described here is a sensitive and reproducible platform that identifies specific patient/cancer/therapy combinations for treatment efficacy and development of complications.


Assuntos
Leucócitos Mononucleares , Linfócitos T , Humanos , Animais , Camundongos , Camundongos Endogâmicos NOD , Resultado do Tratamento , Síndrome da Liberação de Citocina , Citocinas , Modelos Animais de Doenças , Camundongos Knockout , Camundongos SCID
14.
Biotechnol Bioeng ; 121(3): 835-852, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38151887

RESUMO

Animal models are routinely employed to assess the treatments for human cancer. However, due to significant differences in genetic backgrounds, traditional animal models are unable to meet bioresearch needs. To overcome this restriction, researchers have generated and optimized immunodeficient mice, and then engrafted human genes, cells, tissues, or organs in mice so that the responses in the model mice could provide a more reliable reference for treatments. As a bridge connecting clinical application and basic research, humanized mice are increasingly used in the preclinical evaluation of cancer treatments, particularly after gene interleukin 2 receptor gamma mutant mice were generated. Human cancer models established in humanized mice support exploration of the mechanism of cancer occurrence and provide an efficient platform for drug screening. However, it is undeniable that the further application of humanized mice still faces multiple challenges. This review summarizes the construction approaches for humanized mice and their existing limitations. We also report the latest applications of humanized mice in preclinical evaluation for the treatment of cancer and point out directions for future optimization of these models.


Assuntos
Neoplasias , Camundongos , Humanos , Animais , Modelos Animais de Doenças , Neoplasias/terapia
15.
Pharmacol Res ; 200: 107046, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38159783

RESUMO

In the current article the aims for a constructive way forward in Drug-Induced Liver Injury (DILI) are to highlight the most important priorities in research and clinical science, therefore supporting a more informed, focused, and better funded future for European DILI research. This Roadmap aims to identify key challenges, define a shared vision across all stakeholders for the opportunities to overcome these challenges and propose a high-quality research program to achieve progress on the prediction, prevention, diagnosis and management of this condition and impact on healthcare practice in the field of DILI. This will involve 1. Creation of a database encompassing optimised case report form for prospectively identified DILI cases with well-characterised controls with competing diagnoses, biological samples, and imaging data; 2. Establishing of preclinical models to improve the assessment and prediction of hepatotoxicity in humans to guide future drug safety testing; 3. Emphasis on implementation science and 4. Enhanced collaboration between drug-developers, clinicians and regulatory scientists. This proposed operational framework will advance DILI research and may bring together basic, applied, translational and clinical research in DILI.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Humanos , Europa (Continente) , Previsões , Bases de Dados Factuais
16.
EMBO Rep ; 23(6): e54275, 2022 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-35437924

RESUMO

Our understanding of human hepatocellular carcinoma (HCC) development and progression has been hampered by the lack of in vivo models. We performed a genetic screen of 10 oncogenes and genetic mutations in Fah-ablated immunodeficient mice in which primary human hepatocytes (PHHs) are used to reconstitute a functional human liver. We identified that MYC, TP53R249S , and KRASG12D are highly expressed in induced HCC (iHCC) samples. The overexpression of MYC and TP53R249S transform PHHs into iHCC in situ, though the addition of KRASG12D significantly increases the tumorigenic efficiency. iHCC, which recapitulate the histological architecture and gene expression characteristics of clinical HCC samples, reconstituted HCC after serial transplantations. Transcriptomic analysis of iHCC and PHHs showed that MUC1 and FAP are expressed in iHCC but not in normal livers. Chimeric antigen receptor (CAR) T cells against these two surface markers efficiently lyse iHCC cells. The properties of iHCC model provide a biological basis for several clinical hallmarks of HCC, and iHCC may serve as a model to study HCC initiation and to identify diagnostic biomarkers and targets for cellular immunotherapy.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animais , Carcinoma Hepatocelular/genética , Hepatócitos , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Camundongos , Proteínas Proto-Oncogênicas p21(ras)
17.
Mol Cell Proteomics ; 21(10): 100406, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36030044

RESUMO

Latent liver stages termed hypnozoites cause relapsing Plasmodium vivax malaria infection and represent a major obstacle in the goal of malaria elimination. Hypnozoites are clinically undetectable, and presently, there are no biomarkers of this persistent parasite reservoir in the human liver. Here, we have identified parasite and human proteins associated with extracellular vesicles (EVs) secreted from in vivo infections exclusively containing hypnozoites. We used P. vivax-infected human liver-chimeric (huHEP) FRG KO mice treated with the schizonticidal experimental drug MMV048 as hypnozoite infection model. Immunofluorescence-based quantification of P. vivax liver forms showed that MMV048 removed schizonts from chimeric mice livers. Proteomic analysis of EVs derived from FRG huHEP mice showed that human EV cargo from infected FRG huHEP mice contain inflammation markers associated with active schizont replication and identified 66 P. vivax proteins. To identify hypnozoite-specific proteins associated with EVs, we mined the proteome data from MMV048-treated mice and performed an analysis involving intragroup and intergroup comparisons across all experimental conditions followed by a peptide compatibility analysis with predicted spectra to warrant robust identification. Only one protein fulfilled this stringent top-down selection, a putative filamin domain-containing protein. This study sets the stage to unveil biological features of human liver infections and identify biomarkers of hypnozoite infection associated with EVs.


Assuntos
Vesículas Extracelulares , Malária Vivax , Parasitos , Humanos , Camundongos , Animais , Malária Vivax/tratamento farmacológico , Malária Vivax/parasitologia , Plasmodium vivax , Proteômica , Proteoma , Filaminas , Fígado , Biomarcadores , Espectrometria de Massas
18.
Cancer Sci ; 114(1): 115-128, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36114822

RESUMO

Vascular endothelial growth factor receptor 2 (VEGFR2)/KDR plays a critical role in tumor growth, diffusion, and invasion. The amino acid sequence homology of KDR between mouse and human in the VEGF ligand-binding domain was low, thus the WT mice could not be used to evaluate Abs against human KDR, and the lack of a suitable mouse model hindered both basic research and drug developments. Using the CRISPR/Cas9 technique, we successfully inserted different fragments of the human KDR coding sequence into the chromosomal mouse Kdr exon 4 locus to obtain an hKDR humanized mouse that can be used to evaluate the marketed Ab ramucirumab. In addition, the humanized mAb VEGFR-HK19 was developed, and a series of comparative assays with ramucirumab as the benchmark revealed that VEGFR-HK19 has higher affinity and superior antiproliferation activity. Moreover, VEGFR-HK19 selectively inhibited tumor growth in the hKDR mouse model but not in WT mice. The most important binding epitopes of VEGFR2-HK19 are D257, L313, and T315, located in the VEGF binding region. Therefore, the VEGFR2-HK19 Ab inhibits tumor growth by blocking VEGF-induced angiogenesis, inflammation, and promoting apoptosis. To our best knowledge, this novel humanized KDR mouse fills the gaps both in an animal model and the suitable in vivo evaluation method for developing antiangiogenesis therapies in the future, and the newly established humanized Ab is expected to be a drug candidate possibly benefitting tumor patients.


Assuntos
Anticorpos Neutralizantes , Receptor 2 de Fatores de Crescimento do Endotélio Vascular , Humanos , Camundongos , Animais , Anticorpos Neutralizantes/farmacologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fosforilação , Ligação Proteica , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Receptores de Fatores de Crescimento do Endotélio Vascular
19.
Antimicrob Agents Chemother ; 67(6): e0157422, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37133382

RESUMO

The development of new combinations of antimalarial drugs is urgently needed to prevent the spread of parasites resistant to drugs in clinical use and contribute to the control and eradication of malaria. In this work, we evaluated a standardized humanized mouse model of erythrocyte asexual stages of Plasmodium falciparum (PfalcHuMouse) for the selection of optimal drug combinations. First, we showed that the replication of P. falciparum was robust and highly reproducible in the PfalcHuMouse model by retrospective analysis of historical data. Second, we compared the relative value of parasite clearance from blood, parasite regrowth after suboptimal treatment (recrudescence), and cure as variables of therapeutic response to measure the contributions of partner drugs to combinations in vivo. To address the comparison, we first formalized and validated the day of recrudescence (DoR) as a new variable and found that there was a log-linear relationship with the number of viable parasites per mouse. Then, using historical data on monotherapy and two small cohorts of PfalcHuMice evaluated with ferroquine plus artefenomel or piperaquine plus artefenomel, we found that only measurements of parasite killing (i.e., cure of mice) as a function of drug exposure in blood allowed direct estimation of the individual drug contribution to efficacy by using multivariate statistical modeling and intuitive graphic displays. Overall, the analysis of parasite killing in the PfalcHuMouse model is a unique and robust experimental in vivo tool to inform the selection of optimal combinations by pharmacometric pharmacokinetic and pharmacodynamic (PK/PD) modeling.


Assuntos
Antimaláricos , Malária Falciparum , Animais , Camundongos , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Plasmodium falciparum , Estudos Retrospectivos , Peróxidos , Malária Falciparum/tratamento farmacológico , Malária Falciparum/parasitologia , Combinação de Medicamentos
20.
Eur J Immunol ; 52(10): 1640-1647, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35976660

RESUMO

There is an urgent need for animal models of coronavirus disease 2019 to study immunopathogenesis and test therapeutic intervenes. In this study, we showed that NOD/SCID IL2rg-/- (NSG) mice engrafted with human lung (HL) tissue (NSG-L mice) could be infected efficiently by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and that live virus capable of infecting Vero cells was found in the HL grafts and multiple organs from infected NSG-L mice. RNA-Sequencing identified a series of differentially expressed genes, which are enriched in viral defense responses, chemotaxis, IFN stimulation and pulmonary fibrosis, between HL grafts from infected and control NSG-L mice. Furthermore, when infected with SARS-CoV-2, humanized mice with both human immune system (HIS) and autologous HL grafts (HISL mice) had bodyweight loss and hemorrhage and immune cell infiltration in HL grafts, which were not observed in immunodeficient NSG-L mice, indicating the development of anti-viral immune responses in these mice. In support of this possibility, the infected HISL mice showed bodyweight recovery and lack of detectable live virus at the later time. These results demonstrate that NSG-L and HISL mice are susceptible to SARS-CoV-2 infection, offering a useful in vivo model for studying SARS-CoV-2 infection and the associated immune response and immunopathology, and testing anti-SARS-CoV-2 therapies.


Assuntos
COVID-19 , Animais , Chlorocebus aethiops , Modelos Animais de Doenças , Humanos , Imunidade , Pulmão , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , RNA , SARS-CoV-2 , Células Vero
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa