Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 441
Filtrar
1.
Development ; 151(4)2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38270401

RESUMO

A model organism in developmental biology is defined by its experimental amenability and by resources created for the model system by the scientific community. For the most powerful invertebrate models, the combination of both has already yielded a thorough understanding of developmental processes. However, the number of developmental model systems is still limited, and their phylogenetic distribution heavily biased. Members of one of the largest animal lineages, the Spiralia, for example, have long been neglected. In order to remedy this shortcoming, we have produced a detailed developmental transcriptome for the bivalve mollusk Mytilus galloprovincialis, and have expanded the list of experimental protocols available for this species. Our high-quality transcriptome allowed us to identify transcriptomic signatures of developmental progression and to perform a first comparison with another bivalve mollusk: the Pacific oyster Crassostrea gigas. To allow co-labelling studies, we optimized and combined protocols for immunohistochemistry and hybridization chain reaction to create high-resolution co-expression maps of developmental genes. The resources and protocols described here represent an enormous boost for the establishment of Mytilus galloprovincialis as an alternative model system in developmental biology.


Assuntos
Crassostrea , Mytilus , Animais , Mytilus/genética , Filogenia , Crassostrea/genética , Transcriptoma/genética , Perfilação da Expressão Gênica
2.
Nano Lett ; 24(37): 11590-11598, 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39225632

RESUMO

As a nonenzymatic DNA signal amplification technique, localized hybridization chain reaction (LHCR) was designed to improve the limitations in response speed and low sensitivity of conventional free diffusional HCR (hybridization chain reaction). However, it is still confronted with the challenges of complicated DNA scaffolds with low loading capacity and a time-consuming process of diffusion. Herein, we introduced modular assembly of a DNA minimal scaffold for coassembly of DNA hairpins for amplified fluorescence imaging of mRNA in situ. DNA hairpins were spatially bound to two Y-shaped modules to form H-shaped DNA modules, and then multiple H-shaped DNA modules can further assemble into an H-module-based hairpin scaffold (HHS). Benefiting from highly spatial localization and high loading capacity, the HHS system showed higher sensitivity and faster speed. It has also been proven to work perfectly in vitro and in vivo, which could provide a promising bioanalysis system for low abundance biomolecule detection.


Assuntos
DNA , Hibridização de Ácido Nucleico , RNA Mensageiro , RNA Mensageiro/genética , RNA Mensageiro/análise , DNA/química , DNA/genética , Humanos , Técnicas de Amplificação de Ácido Nucleico/métodos , Imagem Óptica/métodos
3.
Nano Lett ; 24(8): 2603-2610, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38349971

RESUMO

Dynamic biological structures involve the continual turnover of molecules within supramolecular assemblies such as tubulin. Inspired by dynamic biology self-organizing systems, we build an artificial dynamic structure based on DNA nanotechnology through a nonequilibrium chemical system. Herein, a metastable domain (MD), essentially a stem-loop structure, was introduced into DNA hairpins within hybridization chain reaction (HCR), thereby imparting dynamic activity to the DNA polymers. Hairpins with MD thermodynamically assemble to a high-energy polymer in the presence of trigger strands. The polymer can relax back to the stable unassembled state once the invader is added and finally relax to the activated hairpin by an anti-invader. Reversible assembly/disassembly of the HCR is achieved through invader/anti-invader cycles. We accomplished kinetic modulation, reversible conformational switching, cascading regulation, and enzyme activity control through the MD-HCR. We believe that the design of the MD-HCR could inspire the development of autonomous biological functions within artificial systems.


Assuntos
DNA , Tubulina (Proteína) , Tubulina (Proteína)/genética , DNA/química , Hibridização de Ácido Nucleico , Nanotecnologia
4.
J Biol Chem ; 299(6): 104751, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37100287

RESUMO

As a typical biomarker, the expression of microRNA is closely related to the occurrence of cancer. However, in recent years, the detection methods have had some limitations in the research and application of microRNAs. In this paper, an autocatalytic platform was constructed through the combination of a nonlinear hybridization chain reaction and DNAzyme to achieve efficient detection of microRNA-21. Fluorescently labeled fuel probes can form branched nanostructures and new DNAzyme under the action of the target, and the newly formed DNAzyme can trigger a new round of reactions, resulting in enhanced fluorescence signals. This platform is a simple, efficient, fast, low-cost, and selective method for the detection of microRNA-21, which can detect microRNA-21 at concentrations as low as 0.004 nM and can distinguish sequence differences by single-base differences. In tissue samples from patients with liver cancer, the platform shows the same detection accuracy as real-time PCR but with better reproducibility. In addition, through the flexible design of the trigger chain, our method could be adapted to detect other nucleic acid biomarkers.


Assuntos
Técnicas Biossensoriais , DNA Catalítico , MicroRNAs , Humanos , MicroRNAs/genética , MicroRNAs/análise , DNA Catalítico/química , Reprodutibilidade dos Testes , Limite de Detecção , Hibridização de Ácido Nucleico , Biomarcadores , Técnicas Biossensoriais/métodos
5.
Small ; : e2404641, 2024 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-39152925

RESUMO

Nucleic acid nanotechnology has become a promising strategy for disease diagnosis and treatment, owing to remarkable programmability, precision, and biocompatibility. However, current biosensing and biotherapy approaches by nucleic acids exhibit limitations in sensitivity, specificity, versatility, and real-time monitoring. DNA amplification reactions present an advantageous strategy to enhance the performance of biosensing and biotherapy platforms. Non-enzymatic DNA amplification reaction (NEDAR), such as hybridization chain reaction and catalytic hairpin assembly, operate via strand displacement. NEDAR presents distinct advantages over traditional enzymatic DNA amplification reactions, including simplified procedures, milder reaction conditions, higher specificity, enhanced controllability, and excellent versatility. Consequently, research focusing on NEDAR-based biosensing and biotherapy has garnered significant attention. NEDAR demonstrates high efficacy in detecting multiple types of biomarkers, including nucleic acids, small molecules, and proteins, with high sensitivity and specificity, enabling the parallel detection of multiple targets. Besides, NEDAR can strengthen drug therapy, cellular behavior control, and cell encapsulation. Moreover, NEDAR holds promise for constructing assembled diagnosis-treatment nanoplatforms in the forms of pure DNA nanostructures and hybrid nanomaterials, which offer utility in disease monitoring and precise treatment. Thus, this paper aims to comprehensively elucidate the reaction mechanism of NEDAR and review the substantial advancements in NEDAR-based diagnosis and treatment over the past five years, encompassing NEDAR-based design strategies, applications, and prospects.

6.
Anal Bioanal Chem ; 416(10): 2515-2525, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38436691

RESUMO

The ultrasensitive detection of hepatitis C virus (HCV) nucleic acid is crucial for the early diagnosis of hepatitis C. In this study, by combining Ag@Au core/shell nanoparticle (Ag@AuNP)-based surface-enhanced Raman scattering (SERS) tag with hybridization chain reaction (HCR), a novel SERS-sensing method was developed for the ultrasensitive detection of HCV nucleic acid. This SERS-sensing system comprised two different SERS tags, which were constructed by modifying Ag@AuNP with a Raman reporter molecule of 4-ethynylbezaldehyde, two different hairpin-structured HCR sequences (H1 or H2), and a detection plate prepared by immobilizing a capture DNA sequence onto the Ag@AuNP layer surface of the detection wells. When the target nucleic acid was present, the two SERS tags were captured on the surface of the Ag@AuNP-coated detection well to generate many "hot spots" through HCR, forming a strong SERS signal and realizing the ultrasensitive detection of the target HCV nucleic acid. The limit of detection of the SERS-sensing method for HCV nucleic acid was 0.47 fM, and the linear range was from 1 to 105 fM.


Assuntos
Hepatite C , Nanopartículas Metálicas , Nanopartículas , Ácidos Nucleicos , Humanos , Hepacivirus/genética , Análise Espectral Raman/métodos , Ouro
7.
Luminescence ; 39(9): e4899, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39285582

RESUMO

The sensitive detection of cancer biomarkers is crucial for early accurate diagnostics and therapy of cancer patients. Carcinoembryonic antigen (CEA) is a tumor-associated antigen derived from colon cancer and embryonic tissues. In this study, we have developed a label-free fluorescence biosensing platform for the quantification of CEA with the "turn-on" signal output. This platform employs a label-free strategy that incorporates an aptamer-modified gold nanoparticle (Apt@AuNP) probe for the recognition of CEA, in combination with hybridization chain reaction (HCR) amplification. In the presence of target CEA, Apt@AuNPs selectively capture CEA, resulting in a reduction of subsequent complementary chains (CP) binding on Apt@AuNPs. The remaining CP, acting as the initiator sequence for HCR, triggers the HCR, leading to the formation of abundant G-quadruplex structures. By employing Thioflavin T (ThT) for the formation of G-quadruplex/ThT complexes, the biosensor exhibits a significant enhancement of the fluorescence signal. Under optimized conditions, the biosensor platform demonstrates a limit of detection of 0.03 nM and a linear range from 0.1 to 2.5 nM. Additionally, the specificity investigation reveals the high selectivity of this fluorescent biosensor. Finally, the performance of this method has been validated by successfully detecting CEA in real-life samples, highlighting its potential for clinical applications.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Antígeno Carcinoembrionário , Ouro , Nanopartículas Metálicas , Hibridização de Ácido Nucleico , Ouro/química , Antígeno Carcinoembrionário/análise , Aptâmeros de Nucleotídeos/química , Nanopartículas Metálicas/química , Humanos , Espectrometria de Fluorescência , Limite de Detecção , Fluorescência
8.
Mikrochim Acta ; 191(9): 545, 2024 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-39158763

RESUMO

An electrochemical biosensor based on dual-amplified nucleic acid mode and biocatalytic silver deposition was constructed using catalytic hairpin assembly-hybrid chain reaction (CHA-HCR). The electrochemical detection of silver on the electrode by linear sweep voltammetry (LSV) can be utilized to quantitatively measure miR-205-5p since the amount of silver deposited on the electrode is proportional to the target nucleic acid. The current response values exhibit strong linearity with the logarithm of miR-205-5p concentrations ranging from 0.1 pM to 10 µM, and the detection limit is 28 fM. A consistent trend was found in the results of the qRT-PCR and electrochemical biosensor techniques, which were employed to determine the total RNA recovered from cells, respectively. Moreover, the constructed sensor was used to assess miR-205-5p on various cell counts, and the outcomes demonstrated the excellent analytical efficiency of the proposed strategy. The recoveries ranged from 97.85% to 115.3% with RSDs of 2.251% to 4.869% in human serum samples. Our electrochemical biosensor for miR-205-5p detection exhibits good specificity, high sensitivity, repeatability, and stability. It is a potentially useful sensing platform for tumor diagnosis and tumor type identification in clinical settings.


Assuntos
Técnicas Biossensoriais , Técnicas Eletroquímicas , Limite de Detecção , MicroRNAs , Prata , Técnicas Biossensoriais/métodos , Humanos , MicroRNAs/sangue , MicroRNAs/análise , Prata/química , Técnicas Eletroquímicas/métodos , Eletrodos , Técnicas de Amplificação de Ácido Nucleico/métodos
9.
Mikrochim Acta ; 191(8): 468, 2024 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-39023836

RESUMO

A highly sensitive surface-enhanced Raman scattering (SERS) biosensor has been developed for the detection of microRNA-21 (miR-21) using an isothermal enzyme-free cascade amplification method involving catalytic hairpin assembly (CHA) and hybridization chain reaction (HCR). The CHA reaction is triggered by the target miR-21, which causes hairpin DNA (C1 and C2) to self-assemble into CHA products. After AgNPs@Capture captures the resulting CHA product, the HCR reaction is started, forming long-stranded DNA on the surface of AgNPs. A strong SERS signal is generated due to the presence of a large amount of the Raman reporter methylene blue (MB) in the vicinity of the SERS "hot spot" on the surface of AgNPs. The monitoring of the SERS signal changes of MB allows for the highly sensitive and specific detection of miR-21. In optimal conditions, the biosensor exhibits a satisfactory linear range and a low detection limit for miR-21 of 42.3 fM. Additionally, this SERS biosensor shows outstanding selectivity and reproducibility. The application of this methodology to clinical blood samples allows for the differentiation of cancer patients from healthy controls. As a result, the CHA-HCR amplification strategy used in this SERS biosensor could be a useful tool for miRNA detection and early cancer screening.


Assuntos
Técnicas Biossensoriais , Limite de Detecção , Nanopartículas Metálicas , MicroRNAs , Hibridização de Ácido Nucleico , Análise Espectral Raman , MicroRNAs/sangue , MicroRNAs/análise , Técnicas Biossensoriais/métodos , Humanos , Análise Espectral Raman/métodos , Nanopartículas Metálicas/química , Prata/química , Técnicas de Amplificação de Ácido Nucleico/métodos , Azul de Metileno/química , Catálise
10.
Sensors (Basel) ; 24(7)2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38610537

RESUMO

Conventional spherical nucleic acid enzymes (SNAzymes), made with gold nanoparticle (AuNPs) cores and DNA shells, are widely applied in bioanalysis owing to their excellent physicochemical properties. Albeit important, the crowded catalytic units (such as G-quadruplex, G4) on the limited AuNPs surface inevitably influence their catalytic activities. Herin, a hybridization chain reaction (HCR) is employed as a means to expand the quantity and spaces of G4 enzymes for their catalytic ability enhancement. Through systematic investigations, we found that when an incomplete G4 sequence was linked at the sticky ends of the hairpins with split modes (3:1 and 2:2), this would significantly decrease the HCR hybridization capability due to increased steric hindrance. In contrast, the HCR hybridization capability was remarkably enhanced after the complete G4 sequence was directly modified at the non-sticky end of the hairpins, ascribed to the steric hindrance avoided. Accordingly, the improved SNAzymes using HCR were applied for the determination of AFB1 in food samples as a proof-of-concept, which exhibited outstanding performance (detection limit, 0.08 ng/mL). Importantly, our strategy provided a new insight for the catalytic activity improvement in SNAzymes using G4 as a signaling molecule.


Assuntos
Nanopartículas Metálicas , Ácidos Nucleicos , Aflatoxina B1 , Ouro , Hibridização de Ácido Nucleico
11.
Apoptosis ; 28(1-2): 222-232, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36322209

RESUMO

There are an increasing number of experiments to study programmed cell death/apoptosis, one of the characteristics of which is DNA fragmentation. The only current method for in situ detection of DNA fragmentation is Terminal deoxynucleotidyl transferase mediated-dUTP Nick End Labeling, TUNEL. In this study, a new method for in situ detection of apoptotic DNA fragments, namely In Situ Hybridization Chain Reaction, isHCR, was established. The principle of the assay is that the sticky end sequence of the apoptotic cell DNA fragment non-specifically initiates a hybridization chain reaction that specifically detects the apoptotic cell. The results of the combined TUNEL and isHCR method demonstrated that the majority of isHCR-positive cells were also labeled by TUNEL. In situ HCR often detect DNA fragments in the cytoplasm that the classical TUNEL method couldnot, and these cells may be in the early stages of apoptosis. It also indicates that DNA fragments are transferred to the cytoplasm during apoptosis. Because the staining process does not require terminal deoxynucleotidyl transferase as TUNEL staining does, isHCR staining cost low and can be performed on a large number of tissue specimens. It is believed that isHCR has the potential to detect DNA fragmentation of apoptotic cells in situ.


Assuntos
Apoptose , DNA Nucleotidilexotransferase , Apoptose/genética , DNA Nucleotidilexotransferase/genética , Marcação In Situ das Extremidades Cortadas , Fragmentação do DNA , DNA , Hibridização In Situ
12.
Small ; 19(26): e2207117, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36960666

RESUMO

African swine fever virus (ASFV) is a severe and persistent threat to the global swine industry. As there are no vaccines against ASFV, there is an immense need to develop easy-to-use, cost-effective, and rapid point-of-care (POC) diagnostic platforms to detect and prevent ASFV outbreaks. Here, a novel POC diagnostic system based on affinity column chromatography for the optical detection of ASFV is presented. This system employs an on-particle hairpin chain reaction to sensitize magnetic nanoclusters with long DNA strands in a target-selective manner, which is subsequently fed into a column chromatography device to produce quantitatively readable and colorimetric signals. The detection approach does not require expensive analytical apparatus or immobile instrumentation. The system can detect five genes constituting the ASFV whole genome with a detection limit of ≈19.8 pm in swine serum within 30 min at laboratory room temperature. With an additional pre-amplification step using polymerase chain reaction (PCR), the assay is successfully applied to detect the presence of ASFV in 30 suspected swine samples with 100% sensitivity and specificity, similar to quantitative PCR. Thus, this simple, inexpensive, portable, robust, and customizable platform for the early detection of ASFV can facilitate the timely surveillance and implementation of control measures.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Suínos , Animais , Vírus da Febre Suína Africana/genética , Febre Suína Africana/diagnóstico , Reação em Cadeia da Polimerase/métodos , Cromatografia de Afinidade , Sensibilidade e Especificidade , Fenômenos Magnéticos
13.
Anal Bioanal Chem ; 415(20): 4911-4921, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37326832

RESUMO

Traditional methods for detecting antibiotic and mycotoxin residues rely on large-scale instruments, which are expensive and require complex sample pretreatment processes and professional operators. Although aptamer-based electrochemical sensors have the advantages of simplicity, speed, low cost, and high sensitivity, most aptamer-based sensors lack a signal amplification strategy due to their direct use of aptamers as probes, resulting in insufficient sensitivity. To solve the sensitivity problem in the electrochemical detection process, a novel electrochemical sensing strategy was established for ultrasensitive zearalenone (ZEN) detection on the basis of exonuclease I (Exo I) and branched hybridization chain reaction (bHCR) to amplify the signal. The amplification strategy showed excellent analytical performance towards ZEN with a low detection limit at 3.1×10-12 mol/L and a wide linear range from 10-11 to 10-6 mol/L. Importantly, the assay was utilized in the corn powder samples with satisfactory results, holding promising applications in food safety detection and environmental monitoring.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Zearalenona , Zearalenona/análise , Técnicas Eletroquímicas/métodos , Aptâmeros de Nucleotídeos/química , Antibacterianos , Técnicas Biossensoriais/métodos , Limite de Detecção
14.
Mikrochim Acta ; 190(9): 368, 2023 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-37620673

RESUMO

A dual-targeting nanobiosensor has been developed for the simultaneous detection of AMELX and AMELY genes based on the different fluorescence signals emitted from gold and silver nanoclusters, AuNCs and AgNCs respectively. In our design, both catalytic hairpin assembly (CHA) and hybridization chain reaction (HCR) have been used as isothermal, enzyme-free and simple methods for signal's amplification. The working principle is based on the initiation of a cascade of CHA-HCR reactions when AMELX is present, in which AuNCs, synthesized on the third hairpin, are aggregated on the surface of the dsDNA product, performing the phenomenon of aggregation induced emission (AIE) and enhancing their fluorescence signal. On the other hand, the presence of the second target, AMELY, is responsible for the enhancement of the fluorescence signal corresponding to AgNCs by the same phenomenon, via hybridizing to the free end of the dsDNA formed and at the same time to the probe of silver nanoclusters fixing it closer to the surface of the dsDNA product. Such a unique design has the merits of being simple, inexpensive, specific and stable and presents rapid results. The detection limits of this assay for AMELX and AMELY are as low as 3.16 fM and 23.6 fM respectively. Moreover, this platform showed great performance in real samples. The design has great promise for the application of dual-targeting nanobiosensors to other biomarkers.


Assuntos
Bioensaio , Prata , Catálise , Fluorometria , Ouro
15.
Mikrochim Acta ; 190(10): 393, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37712989

RESUMO

The great selectivity and trans-cleavage activity of clustered regularly interspaced short palindromic repeats (CRISPR)/Cas13a had been coupled with high amplification efficiency of hybridization chain reaction (HCR) and magnetic-assisted enrichment, high sensitivity of electrochemiluminescence (ECL) detection to develop an ultra-sensitive biosensor for microRNA-21 (miRNA-21). The CRISPR/Cas13a was used to recognize target RNA with high specificity and performed the trans-cleavage activity. An initiation strand was generated to bind to the probe on the surface of nanomagnetic beads and then trigged HCR to produce long double-strand DNAs (dsDNAs) to realize signal amplification. Ru(phen)32+ can be inserted in the groove of the dsDNAs and acts as the ECL indicator, which can be separated through magnetic enrichment and allowed the platform to reduce the signal background. Under the optimized conditions, there is a good linear correlation between the ECL intensity and the logarithm of miRNA-21 concentration in the range 1 fM-10 nM; the limit of detection (LOD) was 0.53 fM. The proposed system was applied to detect miRNA-21 from the urine of acute kidney injury (AKI) patients with good results.


Assuntos
Líquidos Corporais , MicroRNAs , Humanos , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Hibridização de Ácido Nucleico , Fenômenos Magnéticos
16.
Mikrochim Acta ; 191(1): 32, 2023 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-38102528

RESUMO

A novel and highly sensitive colorimetric DNA sensor for determination of miRNA-155 at attomolar levelsis presented that combines the peroxidase-like activity of copper nanoparticles (CuNPs) with the hybridization chain reaction (HCR) . The utilization of CuNPs offers advantages such as strong interaction with double-stranded DNA, excellent molecular recognition, and mimic catalytic activity. Herein, a capture probe DNA (P1) was immobilized on carboxylated magnetic beads (MBs), allowing for amplified immobilization due to the 3D surface. Subsequently, the presence of the target microRNA-155 led to the formation of a sandwich structure (P2/microRNA-155/P1/MBs) when P2 was introduced to the modified P1/MBs. The HCR reaction was then triggered by adding H1 and H2 to create a super sandwich (H1/H2)n. Following this, Cu2+ ions were attracted to the negatively charged phosphate groups of the (H1/H2)n and reduced by ascorbic acid, resulting in the formation of CuNPs, which were embedded into the grooves of the (H1/H2)n. The peroxidase-like activity of CuNPs catalyzed the oxidation reaction of 3,3',5,5'-Tetramethylbenzidine (TMB), resulting in a distinct blue color measured at 630 nm. Under optimal conditions, the colorimetric biosensor exhibited a linear response to microRNA-155 concentrations ranging from 80 to 500 aM, with a detection limit of 22 aM, and discriminate against other microRNAs. It was also successfully applied to the determination of microRNA-155 levels in spiked human serum.


Assuntos
Nanopartículas Metálicas , MicroRNAs , Humanos , Cobre/química , Colorimetria/métodos , Limite de Detecção , DNA/genética , DNA/química , Nanopartículas Metálicas/química , Peroxidases
17.
Mikrochim Acta ; 190(4): 152, 2023 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-36959354

RESUMO

A ratiometric electrochemical aptasensor based on gold nanoparticles (AuNPs) functionalization and hybridization chain reaction (HCR) assisted signal amplification has been for the first time designed for the detection of streptomycin (STR). The double-stranded DNA (dsDNA) formed by the hybridization of ferrocene (Fc)-labeled STR aptamer (Apt) and capture probe (CP) is first immobilized on the gold electrode (GE) surface via Au-S reaction. The specific binding of the target and Apt results in numerous Fc detachment from the sensing interface. Then, the remaining single-stranded CP is combined with AuNPs modified with initiator DNA (iDNA) by auxiliary DNA (aDNA). Among them, the iDNA triggers HCR between two hairpin probes (H1/H2), thus capturing a large number of methylene blue (MB) electrochemical probe, which generates a strong electrochemical signal of MB and a weak electrochemical signal of Fc. Signals are collected by square wave voltammetry (the potential window ranging from -0.5 V to 0.6 V, vs. Ag/AgCl ), and the oxidation peak currents at -0.200 V (MB) and 0.416 V (Fc) are recorded. The use of the ratiometric method has effectively improved the accuracy and reliability of the analysis. The successful application of AuNPs and HCR greatly improves the sensitivity of the sensor, and the detection limit is as low as 0.08 pM. It can sensitively determine STR in the range 0.1 pM to 10 nM. In addition, the designed aptasensor has been successfully applied to the detection of STR in milk and honey samples.


Assuntos
Aptâmeros de Nucleotídeos , Nanopartículas Metálicas , Ouro , Reprodutibilidade dos Testes , Técnicas Eletroquímicas/métodos , DNA/genética
18.
Nano Lett ; 22(8): 3410-3416, 2022 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-35389660

RESUMO

Cell membrane proteins play a pivotal role in regulating intracellular signal transductions and cell behaviors. Many membrane proteins form clusters in order to initiate downstream signaling pathways for the modulation of cell behaviors. Developing rational methods to program the in situ clustering of designated membrane proteins on the cell surface to form large assemblies remains challenging. Here we use the membrane-anchored DNA hybridization chain reaction (HCR) to induce DNA self-assembly on the live cell surface and drive the unidirectional clustering of membrane proteins for the modulation of cell behaviors. Reactive DNA strands are specifically anchored onto the membrane proteins of interest by using DNA aptamers. Upon activation, the chain reaction between the protein-anchored DNA strands drives the assembly of membrane proteins forming one-dimensional clusters. We demonstrate both homogeneous and heterogeneous clustering of membrane proteins on multiple cell types that exhibit a potent capability for modulating cell behaviors including migration, proliferation, and survival.


Assuntos
Aptâmeros de Nucleotídeos , Proteínas de Membrana , Aptâmeros de Nucleotídeos/genética , Análise por Conglomerados , DNA/genética , Proteínas de Membrana/genética , Hibridização de Ácido Nucleico
19.
Fish Physiol Biochem ; 49(4): 751-767, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37464181

RESUMO

The Na+/K+-ATPase (NKA) α1-isoforms were examined by in situ hybridization chain reaction (ISHCR) using short hairpin DNAs, and we showed triple staining of NKA α1a, α1b, and α1c transcripts in the gill of chum salmon acclimated to freshwater (FW) and seawater (SW). The NKA α1-isoforms have closely resembled nucleotide sequences, which could not be differentiated by conventional in situ hybridization. The ISHCR uses a split probe strategy to allow specific hybridization using regular oligo DNA, resulting in high specificity at low cost. The results showed that NKA α1c was expressed ubiquitously in gill tissue and no salinity effects were observed. FW lamellar ionocytes (type-I ionocytes) expressed cytoplasmic NKA α1a and nuclear NKA α1b transcripts. However, both transcripts of NKA α1a and α1b were present in the cytoplasm of immature type-I ionocytes. The developing type-I ionocytes increased the cytoplasmic volume and migrated to the distal region of the lamellae. SW filament ionocytes (type-II ionocytes) expressed cytoplasmic NKA α1b transcripts as the major isoform. Results from morphometric analysis and nonmetric multidimensional scaling indicated that a large portion of FW ionocytes was NKA α1b-rich, suggesting that isoform identity alone cannot mark the ionocyte types. Both immature or residual type-II ionocytes and type-I ionocytes were found on the FW and SW gills, suggesting that the chum salmon retains the potential to switch the ionocyte population to fit the ion-transporting demands, which contributes to their salinity tolerance and osmoregulatory plasticity.


Assuntos
Brânquias , Oncorhynchus keta , Animais , Brânquias/metabolismo , Oncorhynchus keta/genética , Oncorhynchus keta/metabolismo , ATPase Trocadora de Sódio-Potássio/genética , ATPase Trocadora de Sódio-Potássio/metabolismo , Isoformas de Proteínas/genética , Água do Mar , Água Doce , Sódio , Hibridização In Situ
20.
Angew Chem Int Ed Engl ; 62(17): e202301083, 2023 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-36792529

RESUMO

Unlike plant and microbial cells having cell walls, the outermost layer of mammalian cell is a delicate, two-layered structure of phospholipids with proteins embedded, which is susceptible to environmental changes. It is necessary to create an "armor" on cell surface to protect cell integrity. Here, we propose an Auto-assembled Resilient bioMimetic calcified ORnaments (ARMOR) strategy driven by dual-aptamer-based hybridization chain reaction (HCR) and Ca2+ assisted calcification for selective cell protection. This co-recognition design enhances the selectivity and leverages robust in situ signal amplification by HCR to improve the sensitivity. The calcified shell is cogenerated by crosslinking the alginate-HCR product with Ca2+ ion. ARMOR has high efficiency for shielding cells from environmental assaults, which can be applied to circulating tumor cell (CTC) protection, isolation, and identification, maintaining the native state and intact genetic information for downstream analysis.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Animais , Citoproteção , Biomimética , Hibridização de Ácido Nucleico , Proteínas/genética , Aptâmeros de Nucleotídeos/química , Mamíferos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa