Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Materials (Basel) ; 16(8)2023 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-37110011

RESUMO

Hydraulic calcium silicate-based cements (HCSCs) have become a superior bioceramic alternative to epoxy-based root canal sealers in endodontics. A new generation of purified HCSCs formulations has emerged to address the several drawbacks of original Portland-based mineral trioxide aggregate (MTA). This study was designed to assess the physio-chemical properties of a ProRoot MTA and compare it with newly formulated RS+, a synthetic HCSC, by advanced characterisation techniques that allow for in situ analyses. Visco-elastic behaviour was monitored with rheometry, while phase transformation kinetics were followed by X-ray diffraction (XRD), attenuated total reflectance Fourier transform infrared (ATR-FTIR), and Raman spectroscopies. Scanning electron microscopy with energy-dispersive spectroscopy, SEM-EDS, and laser-diffraction analyses was performed to evaluate the compositional and morphological characteristics of both cements. While the kinetics of surface hydration of both powders, when mixed with water, were comparable, an order of magnitude finer particle size distribution of RS+ coupled with the modified biocompatible formulation proved pivotal in its ability to exert predictable viscous flow during working time, and it was more than two times faster in viscoelastic-to-elastic transition, reflecting improved handling and setting behaviour. Finally, RS+ could be completely transformed into hydration products, i.e., calcium silicate hydrate and calcium hydroxide, within 48 h, while hydration products were not yet detected by XRD in ProRoot MTA and were obviously bound to particulate surface in a thin film. Because of the favourable rheological and faster setting kinetics, synthetic, finer-grained HCSCs, such as RS+, represent a viable option as an alternative to conventional MTA-based HCSCs for endodontic treatments.

2.
Dent Mater ; 31(4): 351-70, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25662204

RESUMO

OBJECTIVE: To introduce and to examine the research progress and the investigation on hydraulic calcium silicate cements (HCSCs), well-known as MTA (mineral trioxide aggregate). METHODS: This review paper introduces the most important investigations of the last 20 years and analyze their impact on HCSCs use in clinical application. RESULTS: HCSCs were developed more than 20 years ago. Their composition is largely based on Portland cement components (di- and tri-calcium silicate, Al- and Fe-silicate). They have important properties such as the ability to set and to seal in moist and blood-contaminated environments, biocompatibility, adequate mechanical properties, etc. Their principal limitations are long setting time, low radiopacity and difficult handling. New HCSCs-based materials containing additional components (setting modulators, radiopacifying agents, drugs, etc.) have since been introduced and have received a considerable attention from laboratory researchers for their biological and translational characteristics and from clinicians for their innovative properties. HCSCs upregulate the differentiation of osteoblast, fibroblasts, cementoblasts, odontoblasts, pulp cells and many stem cells. They can induce the chemical formation of a calcium phosphate/apatite coating when immersed in biological fluids. These properties have led to a growing series of innovative clinical applications such as root-end filling, pulp capping and scaffolds for pulp regeneration, root canal sealer, etc. The capacity of HCSCs to promote calcium-phosphate deposit suggests their use for dentin remineralization and tissue regeneration. Several in vitro studies, animal tests and clinical studies confirmed their ability to nucleate apatite and remineralize and to induce the formation of (new) mineralized tissues. SIGNIFICANCE: HCSCs play a critical role in developing a new approach for pulp and bone regeneration, dentin remineralization, and bone/cementum tissue healing. Investigations of the next generation HCSCs for "Regenerative Dentistry" will guide their clinical evolution.


Assuntos
Compostos de Alumínio/química , Materiais Biocompatíveis/química , Compostos de Cálcio/química , Cimentos Dentários/química , Óxidos/química , Silicatos/química , Diferenciação Celular , Combinação de Medicamentos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa