Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
J Sex Med ; 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38979774

RESUMO

BACKGROUND: Chlorhexidine gluconate (CHG) (0.05%) has recently been suggested as both a dip for the hydrophilic surface and an irrigation solution in the setting of penile prosthesis (PP) surgery. AIM: The study sought to compare the antimicrobial efficacy of 0.05% CHG with vancomycin and gentamicin (VG) antibiotics as dip and/or irrigation solutions in the setting of a hydrophilic PP surface in vitro. METHODS: Sterile PPs with a hydrophilic coating were obtained. A series of experiments were performed to evaluate the efficacy of normal saline (NS), 0.05% CHG, or VG as dip and/or irrigation solutions to reduce methicillin-sensitive Staphylococcus aureus adhesion to PP surfaces. The 8-mm discs from PPs were incubated in 105 colony-forming units/mL of methicillin-sensitive S aureus for 48 hours, plated, and counted. Disc-diffusion tests were conducted by suspending 6-mm discs for 2 minutes in NS, 0.05% CHG, or VG, then placing them coated side down onto plates streaked with the following organisms: methicillin-sensitive S aureus, S epidermidis, Enterococcus, and Escherichia coli. After 24 hours of growth, zones of inhibition were measured. OUTCOMES: We found average bacterial counts (colony-forming units/mL) and zones of inhibition (mm) following a series of treatment protocols of PP discs. RESULTS: PP discs dipped in VG reduced bacterial adhesion to the implant surface >0.05% CHG (~5.5 log vs ~1.5 log; P < .01). Discs irrigated with either 0.05% CHG or NS removed all dip solution adsorbed to the hydrophilic surface, allowing bacterial growth. VG irrigation adsorbed to the hydrophilic surface even after 0.05% CHG or NS dips, reducing bacterial adherence (~3 log). Dipping and irrigating discs with VG was most effective in reducing adherent bacteria (~5.5 log) and was the only irrigation that showed antimicrobial activity. CLINICAL TRANSLATION: VG, when used both as a prophylactic dip and as an intraoperative irrigation solution for hydrophilic penile implant surfaces, has improved efficacy to 0.05% CHG and NS. STRENGTHS AND LIMITATIONS: This is the first study to compare the use of VG, 0.05% CHG, and NS as prophylactic dips and intraoperative irrigations for hydrophilic penile implant surfaces. Limitations include the use of in vitro studies, which serve as a proxy for in vivo practices and may not be entirely accurate nor translatable clinically. CONCLUSION: We demonstrated the superior efficacy of VG as a combined dip and irrigation solution for hydrophilic penile implant surfaces compared with 0.05% CHG.

2.
Clin Oral Implants Res ; 35(5): 534-546, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38366692

RESUMO

AIMS: To investigate the clinical and radiographic outcomes of a chemically modified sandblasted large-grit acid-etched implant (hydrophilic) in lateral sinus floor elevation (LSFE), compared with a conventional one (hydrophobic). MATERIALS AND METHODS: A retrospective study design was adopted. Patients who received LSFE with simultaneous implant placement were recruited. According to different types of implant surfaces, patients were divided into two groups (the hydrophilic group and the hydrophobic group). Implant survival rate (SR), endo-sinus bone stability on the radiographs, mean probing depths, percentage of bleeding on probing, marginal bone loss, and patient satisfaction were evaluated. RESULTS: A total of 106 patients with 180 implants (hydrophilic:101, hydrophobic:79) in 119 maxillary sinuses were included. The follow-up period ranged from 2 to 5 years. Three hydrophobic implants and one hydrophilic implant in four different patients failed. The SR of the hydrophilic group was higher than that of the hydrophobic group but without a significant difference (p > .05). The change and change rate of endo-sinus bone height (ΔESBH and RΔESBH) and bone volume (ΔESBV and RΔESBV) in the hydrophilic group were less than those in the hydrophobic group, with a significant difference at 6 months after implantation. No other significant difference was found between the two groups. CONCLUSION: Within the limitations of this study, both hydrophilic and hydrophobic implants were suitable for LSFE with predictable clinical outcomes. Meanwhile, hydrophilic implants could contribute to the grafted endo-sinus bone stability during healing time.


Assuntos
Implantes Dentários , Levantamento do Assoalho do Seio Maxilar , Humanos , Estudos Retrospectivos , Masculino , Feminino , Levantamento do Assoalho do Seio Maxilar/métodos , Pessoa de Meia-Idade , Resultado do Tratamento , Implantação Dentária Endóssea/métodos , Idoso , Adulto , Propriedades de Superfície , Interações Hidrofóbicas e Hidrofílicas , Planejamento de Prótese Dentária
3.
J Environ Manage ; 345: 118833, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37639910

RESUMO

In the present study, through the laboratory-to-field scale experiments and trials, we report the development and evaluation of an integrated oil-spill response system capable of oil collection, recovery (separation), and storage, for a timely and effective response to the initial stage of oil-spill accidents. With the laboratory-scale experiments, first, we evaluate that the water-surface waves tend to abate the oil recovery rate below 80% (it is above 95% for the optimized configuration without the waves), which is overcome by installing the hydrophilic (and oleophobic) porous structures at the inlet and/or near the water outlet of the separator. In the follow-up meso-scale towing tank tests with a scaled-up prototype, (i) we optimize the maneuverability of the assembled system depending on the speed and existence of waves, and (ii) evaluate the oil recovery performance (more than 80% recovery for the olive oil and Bunker A fuel oil). Although more thorough investigations and improvements are needed, a recovery rate of over 50% can be achieved for the newly enforced marine fuel oil (low sulfur fuel oil, LSFO) that was not targeted at the time of development. Finally, we perform a series of field tests with a full-scale system, to evaluate the rapid deployment and operational stability in the real marine environment. The overall floating balance and coordination of each functional part are sustained to be stable during the straight and rotary maneuvers up to the speed of 5 knots. Also, the collection of the floating debris (mimicking the spilled oil) is demonstrated in the field test. The present system is now being tested by the Korea Coast Guard and we believe that it will be very powerful to prevent the environmental damage due to the oil spills.


Assuntos
Óleos Combustíveis , Poluição por Petróleo , Baías , Laboratórios , Água
4.
Clin Oral Investig ; 25(10): 5867-5878, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33765194

RESUMO

OBJECTIVES: To evaluate peri-implant bone formation of titanium implants using an in vivo rat model with and without uncontrolled diabetes mellitus (DM) to evaluate osseointegration of hydrophobic (Neoporos®) and hydrophilic (Acqua®) surfaces. MATERIALS AND METHODS: 54 rats were divided into two groups: DM group (DMG) (streptozotocin-induced diabetes) and a control group (CG). Implants with hydrophobic (Neoporos®) and hydrophilic surfaces (Acqua®) were placed in the left or right tibia of animals. Animals were further divided into three groups (n = 9) euthanized after 7, 14, or 28 days. Bone-to-implant contact (BIC) and bone area fraction occupancy (BAFO) were assessed in total, cortical, and medullary areas. RESULTS: The DMG group, after a 7-day healing period, yielded with the Acqua implants presented significantly higher total BIC (+37.9%; p=0.03) and trabecular BIC (%) (+46.3%; p=0.02) values in comparison to the Neoporos implants. After 28 days of healing, the CG yielded that the cortical BAFO of Acqua implants to be significantly, 14%, higher (p=0.04) than Neoporos implants. CONCLUSION: The positive effects of the Acqua surface were able to counteract the adverse impact of uncontrolled DM at early osseointegration periods. After 28 days in vivo, the metabolic systemic impairment caused by DM overcame the surface treatment effect, leading to impaired osseointegration in both hydrophilic and hydrophobic implants. CLINICAL RELEVANCE: The adverse effects of diabetes mellitus with respect to bone healing may be minimized by deploying implants with strategically modified surfaces. This study evaluated the effects of implants with Acqua® and Neoporos® surfaces in both diabetic and healthy animals. During the initial healing period in diabetic animals, the hydrophilic surface was demonstrated to have beneficial effect on osseointegration in comparison to the hydrophobic surface. The results provide an insight into early healing, but the authors suggest that a future short-term and long-term clinical study is needed to assess the possible benefit of the Acqua® implant as well as in increasing the predictability of implant osseointegration.


Assuntos
Implantes Dentários , Diabetes Mellitus Experimental , Animais , Osseointegração , Ratos , Propriedades de Superfície , Tíbia/cirurgia , Titânio
5.
Clin Oral Implants Res ; 30(2): 139-149, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30584682

RESUMO

OBJECTIVES: To follow-up the radiographic bone level changes and the clinical outcomes of immediately provisionalized and conventionally restored implants with a hydrophilic surface following 5 years of function. MATERIALS AND METHODS: This was a 5-year follow-up of a prospective, randomized, single-blind controlled study involving 16 of the 24 originally recruited patients in need of a single-tooth replacement in the esthetic area. Implants were either immediately provisionalized with a non-occluding temporary crown (test group, n = 7), or left without a crown (control group, n = 9). In both groups, the definitive restoration was placed 16 weeks after implant placement. Radiographic and clinical parameters were evaluated at 36, 48, and 60 months post-implant placement, together with implant survival and success rates. The esthetic outcomes were measured with the Papilla Fill Index (PFI) and the Pink Esthetic Score (PES). RESULTS: At 60 months, similar peri-implant bone loss was observed in the test (-0.42 mm ±0.17 mm) and in the control (-0.37 mm ±0.35 mm) groups. A tendency for an improved esthetic outcome from implant loading to the subsequent follow-ups was noticed in both groups. Both groups presented with high levels of long-term implant survival and success. CONCLUSIONS: This study supports non-functional immediate provisionalization as a viable long-term option for the management of single-tooth implants in the esthetic area. However, the small sample size does not allow statistical inference at 60 months of follow-up and future adequately powered studies are warranted.


Assuntos
Implantes Dentários , Estética Dentária , Seguimentos , Humanos , Interações Hidrofóbicas e Hidrofílicas , Estudos Prospectivos
6.
Int J Mol Sci ; 20(3)2019 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-30744023

RESUMO

BACKGROUND: The process of osseointegration of dental implants is characterized by healing phenomena at the level of the interface between the surface and the bone. Implant surface modification has been introduced in order to increase the level of osseointegration. The purpose of this study is to evaluate the influence of biofunctional coatings for dental implants and the bone healing response in a rabbit model. The implant surface coated with collagen type I was analyzed through X-ray Photoelectron Spectroscopy (XPS), Atomic Force Microscopy (AFM), micro-CT and histologically. METHODS: The sandblasted and double acid etched surface coated with collagen type I, and uncoated sandblasted and double acid etched surface were evaluated by X-ray Photoelectron Spectroscopy (XPS) and Atomic Force Microscopy (AFM) analysis in order evaluate the different morphology. In vivo, a total of 36 implants were positioned in rabbit articular femoral knee-joint, 18 fixtures for each surface. Micro-CT scans, histological and histomorphometrical analysis were conducted at 15, 30 and 60 days. RESULTS: A histological statistical differences were evident at 15, 30 and 60 days (p < 0.001). Both implant surfaces showed a close interaction with newly formed bone. Mature bone appeared in close contact with the surface of the fixture. The AFM outcome showed a similar roughness for both surfaces. CONCLUSION: However, the final results showed that a coating of collagen type I on the implant surface represents a promising procedure able to improve osseointegration, especially in regions with a low bone quality.


Assuntos
Materiais Biomiméticos , Biomimética , Materiais Revestidos Biocompatíveis , Colágeno Tipo I , Animais , Materiais Biomiméticos/química , Biomimética/métodos , Materiais Revestidos Biocompatíveis/química , Colágeno Tipo I/química , Histocitoquímica , Microscopia de Força Atômica , Espectroscopia Fotoeletrônica , Coelhos , Propriedades de Superfície , Fatores de Tempo , Microtomografia por Raio-X
7.
Clin Oral Implants Res ; 29(1): 55-66, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28833613

RESUMO

OBJECTIVES: To compare the radiographic bone changes, clinical parameters and aesthetic outcomes of immediately provisionalised and conventionally restored implants at 12- and 24-months post-implant placement. MATERIAL AND METHODS: In 24 patients, 24 bone level implants with a hydrophilic (SLActive) surface were placed in healed sites and they were either immediately provisionalised with a non-occluding temporary crown (test group) or left without a crown (control group). In both groups, the definitive restoration was placed 16 weeks after implant placement. Clinical and radiographic parameters were calculated at 12- and 24-months post-implant placement, together with implant success/survival rates according to three different sets of criteria. The aesthetic outcome was evaluated through the Papilla Fill Index and the Pink Aesthetic Score. RESULTS: The mean marginal bone loss at 1 year was -0.73 mm (SD 0.83 mm) in the test group and -0.22 mm (SD 0.46 mm) in the control group (p > .05). Whilst 100% survival rate and positive aesthetic outcomes were recorded in both groups, three patients of the test group did not fulfil all success criteria. CONCLUSIONS: Immediate provisionalisation may represent a viable option for the replacement of single missing teeth, with radiographic, clinical and aesthetic results comparable to those of conventionally loaded implants at 2 years of follow-up.


Assuntos
Implantação Dentária Endóssea/métodos , Implantes Dentários para Um Único Dente , Carga Imediata em Implante Dentário , Adulto , Idoso , Perda do Osso Alveolar/diagnóstico por imagem , Análise de Variância , Coroas , Estética Dentária , Feminino , Humanos , Interações Hidrofóbicas e Hidrofílicas , Carga Imediata em Implante Dentário/métodos , Masculino , Pessoa de Meia-Idade , Radiografia Dentária , Método Simples-Cego
8.
Materials (Basel) ; 17(13)2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38998134

RESUMO

Polytetrafluoroethylene (PTFE) is prized for its unique properties in electrical applications, but its natural hydrophobicity poses challenges as it repels water and can cause electrical short circuits, shortening equipment lifespan. In this work, the mentioned issue has been tackled by using two different fluorinated compounds, such as perfluorooctanoic acid (PFOA)/perfluorooctanol (PFOL), along with plasma processing to enhance the surface hydrophilicity (water attraction) of PTFE. This method, demonstrated on Teflon membrane, quickly transformed their surfaces from hydrophobic to hydrophilic in less than 30 s. The treated films achieved a water contact angle saturation of around 80°, indicating a significant increase in water affinity. High-resolution C 1s X-ray photoelectron spectroscopy (XPS) confirmed the formation of new bonds, such as -COOH and -OH, on the surface, responsible for enhanced hydrophilicity. Extended plasma treatment led to further structural changes, evidenced by increased intensity in infrared (IR) and Raman spectra, particularly sensitive to vibrations associated with the C-F bond. Moreover, Attenuated Total Reflectance Fourier-Transform Infrared Spectroscopy (ATR-FTIR) showed the formation of surface-linked functional groups, which contributed to the improved water attraction. These findings decisively show that treatment with fluoro-compound along with plasma processing can be considered as a highly effective and rapid method for converting PTFE surfaces from hydrophobic to hydrophilic, facilitating its broader use in various electrical applications.

9.
J Colloid Interface Sci ; 662: 637-652, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38367581

RESUMO

Liquid marbles are droplets coated by hydrophobic particles. At low Weber numbers (We), when impacting a hydrophilic surface, the marble may bounce on the substrate repeatedly without any rupturing until the quiescence condition is achieved. The marble bouncing has gained far less attention, although its rich underlying physics is due to the interaction between liquid core, hydrophobic grain, and surrounding air. Accordingly, this research experimentally scrutinizes the marble impact and subsequent bouncing on a hydrophilic surface for the first time. Additionally, the conversion of kinetic, gravitational potential, inertial, and surface energies occurring regularly during the impact is exhaustively surveyed. Moreover, the effect of Weber and gravitational Bond numbers (Bo) on the bouncing time, maximum spreading time, maximum spreading ratio, maximum elongation ratio, and maximum restitution are investigated, which characterize the marble impact and bouncing dynamics. This study is one of the limited investigations exploring the effects of the gravitational Bond number on the results. Dimensionless correlations are proposed for the mentioned parameters based on the experimental data. Furthermore, utilizing the simplifying theoretical presumptions, correlations are suggested based on the scale analysis for the spreading time and maximum spreading ratio. The results imply that the mentioned parameters behave differently at low and moderate Weber numbers, though the distinction is more pronounced in the case of the bouncing time, maximum spreading time and maximum spreading ratio. Although increasing with the Weber number when WeWecr. In addition, the maximum elongation ratio linearly grows with the Weber number.

10.
Chemosphere ; 351: 141191, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38218238

RESUMO

Seawater reserves about 4.5 billion tons of uranium, if properly extracted, could be a sustainable green energy resource for hundreds of years, alternating its limited terrestrial ore and reducing the CO2 emitted from fossil fuels. The current seawater uranium adsorbents suffer neither economically viable nor adsorption efficiency, requiring more development to harvest satisfactorily uranium from seawater. Amidoxime-based fibrous adsorbents are the most promising adsorbents of seawater uranium due to abundant chelating sites. However, they suffer from severe shrinkage and stiffness once they dry, losing porous architecture and mechanical properties. Herein, an economical and scalable two-nozzle electrospinning technology was applied to produce poly amidoxime nanofibers (PAO NFs) supported by Poly acrylonitrile nanofibers (PAN NFs) as composite PAO/PAN nanofibrous mats with high structure stability. These PAO/PAN mats, with rapid wettability and excellent mechanical strength, show promising uranium adsorption capacities of 369.8 mg/g at seawater pH level, much higher than PAO and PAN NFs. The uranium adsorption capacity of the PAO/PAN mat reached 5.16 mg/g after 7 days of circulating (10 ppm uranium) spiked natural seawater. Importantly, the composite mat maintained its fibrous structure after five adsorption-desorption cycles with more than 80 % of its adsorption capacity, confirming its recyclability and stability. Therefore, the composite PAO/PAN mat fulfills the basic requirements for effectively and economically trapping uranium from seawater, which could be a matrix for further development.


Assuntos
Acrilonitrila , Nanofibras , Oximas , Urânio , Urânio/química , Nanofibras/química , Água do Mar/química , Adsorção
11.
Sci Rep ; 14(1): 15268, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38961084

RESUMO

This paper reports the fabrication, characterization, and environmental impact analysis of a super-oleophobic (under water) and super-hydrophilic mesh membrane for oily water treatment. In order to prepare mesh membrane, Titania nanoparticles (NPs) were spray coated on mesh stainless steel followed by calcination at 500 °C. After that, the Titania-coated mesh membrane was characterized using contact angle goniometry (CA), XRD, FE-SEM, EDX and elemental mapping. The FE-SEM, EDX, elemental mapping and XRD results confirmed that the Titania NPs were successfully coated on the surface of mesh membrane. CA results demonstrated that the prepared mesh membrane is super-hydrophilic and super-oleo phobic under water conditions, making it suitable for oil/water separation. Subsequently, life cycle assessment (LCA) was performed to determine the environmental impacts of Titania NPs-coated mesh membrane fabrication process. LCA results indicate that electricity and nitrogen contributed the most toward the eighteen environmental impact categories considered for this study.

12.
Materials (Basel) ; 16(17)2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37687631

RESUMO

The processes of interaction of liquid droplets with solid surfaces have become of interest to many researchers. The achievements of world science should be used for the development of technologies for spray cooling, metal hardening, inkjet printing, anti-icing surfaces, fire extinguishing, fuel spraying, etc. Collisions of drops with surfaces significantly affect the conditions and characteristics of heat transfer. One of the main areas of research into the interaction of drops with solid surfaces is the modification of the latter. Changes in the hydrophilic and hydrophobic properties of surfaces give the materials various functional properties-increased heat transfer, resistance to corrosion and biofouling, anti-icing, etc. This review paper describes methods for obtaining hydrophilic and hydrophobic surfaces. The features of the interaction of liquid droplets with such surfaces are considered. The existing and possible applications of modified surfaces are discussed, as well as topical areas of research.

13.
ACS Appl Mater Interfaces ; 15(20): 24788-24797, 2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37184306

RESUMO

Spraying is a common way to coat solutions onto surfaces evenly. Improving spraying effectiveness can avoid wasting solutions and reduce pollution. In this study, a trace amount of natural polysaccharide, konjac glucomannan (KGM), was added into solutions to regulate the spraying performances including the breakup of liquid jets, size of produced droplets, and collision and spreading of droplets on both superhydrophobic and hydrophilic surfaces. The shear viscosity, extensive viscosity, and surface tension of the KGM solutions were tested. The results of spraying experiments showed that adding KGM inhibited the liquid jet from breaking into small droplets, avoided the breakage of droplets on superhydrophobic surfaces, and promoted the spreading of liquid films on hydrophilic surfaces. The numerical simulation showed the stretching of single macromolecules and quantified the energy stored in molecular chains in a shear-dominated flow field during the spreading of droplets on surfaces and an elongational-dominated flow field during the breakage of a liquid bridge. The storage and dissipation of energy during the stretching and relaxing of KMG macromolecules were important origins of the increase in the colloid viscosity and molecular mechanisms of the effect of the KGM additive on spraying performances. This study provided an understanding and a strategy for optimization and application of spraying additives.

14.
J Colloid Interface Sci ; 640: 809-819, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-36905890

RESUMO

HYPOTHESIS: The degree of polymerization of amphiphilic di-block co-polymers, which can be varied with ease in computer simulations, provides a means to control self-assembling di-block co-polymer coatings on hydrophilic substrates. SIMULATIONS: We examine self-assembly of linear amphiphilic di-block co-polymers on hydrophilic surface via dissipative particle dynamics simulations. The system models a glucose based polysaccharide surface on which random co-polymers of styrene and n-butyl acrylate, as the hydrophobic block, and starch, as the hydrophilic block, forms a film. Such setups are common in e.g. hygiene, pharmaceutical, and paper product applications. FINDINGS: Variation of the block length ratio (35 monomers in total) reveals that all examined compositions readily coat the substrate. However, strongly asymmetric block co-polymers with short hydrophobic segments are best in wetting the surface, whereas approximately symmetric composition leads to most stable films with highest internal order and well-defined internal stratification. At intermediate asymmetries, isolated hydrophobic domains form. We map the sensitivity and stability of the assembly response for a large variety of interaction parameters. The reported response persists for a wide polymer mixing interactions range, providing general means to tune surface coating films and their internal structure, including compartmentalization.

15.
J Colloid Interface Sci ; 639: 333-342, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36812850

RESUMO

HYPOTHESIS: Electrochemical manufacture of H2O2 through the two-electron oxygen reduction reaction (2e- ORR), providing prospects of the distributed production of H2O2 in remote regions, is considered a promising alternative to the energy-intensive anthraquinone oxidation process. EXPERIMENTS: In this study, one glucose-derived oxygen-enriched porous carbon material (labeled as HGC500) is developed through a porogen-free strategy integrating structural and active site modification. FINDINGS: The superhydrophilic surface and porous structure together promote the mass transfer of reactants and accessibility of active sites in the aqueous reaction, while the abundant CO species (e.g., aldehyde groups) are taken for the main active site to facilitate the 2e- ORR catalytic process. Benefiting from the above merits, the obtained HGC500 possesses superior performance with a selectivity of 92 % and mass activity of 43.6 A gcat-1 at 0.65 V (vs. RHE). Besides, the HGC500 can operate steadily for 12 h with the accumulation of H2O2 reaching up to 4090±71 ppm and a Faradic efficiency of 95 %. The H2O2 generated from the electrocatalytic process in 3 h can degrade a variety of organic pollutants (10 ppm) in 4-20 min, displaying the potential in practical applications.

16.
PNAS Nexus ; 1(2): pgac027, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-36713314

RESUMO

Droplet spreading and transport phenomenon is ubiquitous and has been studied by engineered surfaces with a variety of topographic features. To obtain a directional bias in dynamic wetting, hydrophobic surfaces with a geometrical asymmetry are generally used, attributing the directionality to one-sided pinning. Although the pinning may be useful for directional wetting, it usually limits the droplet mobility, especially for small volumes and over wettable surfaces. Here, we demonstrate a pinning-less approach to rapidly transport millimeter sized droplets on a partially wetting surface. Placing droplets on an asymmetrically structured surfaces with micron-scale roughness and applying symmetric horizontal vibration, they travel rapidly in one direction without pinning. The key, here, is to generate capillary-driven rapid contact-line motion within the time-scale of period of vibration. At the right regime where a friction factor local at the contact line dominates the rapid capillary motion, the asymmetric surface geometry can induce smooth and continuous contact-line movement back and forth at different speed, realizing directional motion of droplets even with small volumes over the wettable surface. We found that the translational speed is selective and strongly dependent on the droplet volume, oscillation frequency, and surface pattern properties, and thus droplets with a specific volume can be efficiently sorted out.

17.
J Hazard Mater ; 434: 128898, 2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35460994

RESUMO

Inspired by Namib Desert beetle's back which is patterned with different wetting properties, hydrophobic porous polystyrene microspheres embedded with hydrophilic surface micro-regions (HPHs) were designed and fabricated by the radical copolymerization in the W1/O/W2 double Pickering emulsions with high internal water phase. The synergistic effect of the hydrophobic surface and the hydrophilic surface micro-regions results in HPHs exhibiting superior performances for separating both surfactant-free and surfactant-stabilized O/W emulsions. After 60 s hand-shaking, the oil was absorbed and stored within HPHs which could be separated from the water using a 600-mesh sieve, and the TOC values of purified water could be reduced to 2.06 ± 0.06-67.38 ± 2.02 ppm when the initial oil content was 1 vol%. Meanwhile, HPHs could be recovered and reused through a simple treatment. The excellent oil removal efficiency was kept even after 50 cycles. High oil removal efficiency, general applicability, easy operation and excellent recyclability endow HPHs with great potential for practical applications. And this work provides a facile and general way to prepare porous polymer microspheres with wettability contrast surfaces.


Assuntos
Poliestirenos , Água , Emulsões/química , Microesferas , Porosidade , Água/química
18.
Polymers (Basel) ; 13(4)2021 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-33669695

RESUMO

We investigated the enhancement of the capillary effect in a plastic capillary tube using only a nanostructured surface. Since plastic is a hydrophobic material, the capillary effect does not emerge without an additional coating or plasma treatment process. Therefore, capillary effect enhancement by the nanostructure fabrication method is expected to reduce the cost and minimise the contamination produced in the human body. By combining a hydrophilic nylon resin and a nanostructure at the tip of the plastic pipette, we could confirm that the capillary effect was produced solely by the tube fabrication process. The produced capillary effect increased linearly with increasing nanostructure height when a standard solution with a surface tension of 70 mN·m-1 was used. Thus, we can conclude that including the plastic part with nanostructure can be useful for biomedical applications. In addition, we suggest that the proposed method is highly effective in controlling the wetting properties of plastic surfaces, compared to the typical coating or plasma treatment processes.

19.
J Colloid Interface Sci ; 598: 455-463, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-33930749

RESUMO

With the growing demand for nuclear energy, uranium extraction from seawater (UES) is becoming increasingly important due to the ocean reserves 4.5 billion tons for uranium(VI) [U(VI)]. Herein, two kinds of amidoxime modified bamboo charcoal (AOOBCS and AOOBCH) with porous structure, anti-bacterial, and super-hydrophilic properties were successfully synthetized by two etching methods (soaking and hydrothermal). The super-hydrophilic property of AOOBCH accelerated the contact between the amidoxime group and uranyl ions (UO22+), and promoted the action of anti-bacterial substances (bamboo-quinone) on bacteria to restrain the form of bacterial membrane. In addition, the amidoxime groups not only didn't destroy the super-hydrophilic surface, but also adjusted the adsorbents' pKa by changing the amidoxime grafting rate. Under PH = 7, the adsorption capacity of AOOBCH was about 1.97 times that of AOOBCS and 2.95 times that of BC. Importantly, the AOOBCH exhibited ultra-high uptake capacity (6.37 mg g-1) and exceptional selectivity for U(VI) in 100-fold interfering ions simulated seawater system due to the chelation between C(NH2)NOH and UO22+ to form a more stable coordination structure (Eads = -36.56 eV). Benefiting from the superior performance and selectivity, the AOOBCH is a potential candidate for UES.


Assuntos
Urânio , Bactérias , Carvão Vegetal , Oximas , Água do Mar
20.
Nanomaterials (Basel) ; 11(3)2021 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-33800886

RESUMO

In this study, we observed the Geyser phenomenon that occurs in a small-diameter two-phase closed thermosyphon (confinement number of 0.245). This phenomenon interferes with the natural circulation of the internal working fluid and increases the thermal resistance of the system. This study attempts to improve the thermal performance of the system using cellulose nanofiber as the working fluid and hydrophilic surface modification at the inner surface of the evaporator section. As a result, the total thermal resistance showed average reduction rates of 47.51%, 36.69%, and 22.56% at filling ratios of 0.25, 0.5, and 0.75, respectively.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa