Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.842
Filtrar
Mais filtros

Eixos temáticos
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(18): e2202382119, 2022 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-35476529

RESUMO

SignificanceSeawater is one of the most abundant resources on Earth. Direct electrolysis of seawater is a transformative technology for sustainable hydrogen production without causing freshwater scarcity. However, this technology is severely impeded by a lack of robust and active oxygen evolution reaction (OER) electrocatalysts. Here, we report a highly efficient OER electrocatalyst composed of multimetallic layered double hydroxides, which affords superior catalytic performance and long-term durability for high-performance seawater electrolysis. To the best of our knowledge, this catalyst is among the most active for OER and it advances the development of seawater electrolysis technology.

2.
Nano Lett ; 24(19): 5870-5878, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38608135

RESUMO

In the context of sustainable development, research on a biomass-based adhesive without chemical modification as a substitute for petroleum-based adhesive is now crucial. It turns out to be challenging to guarantee a simple and sustainable method to produce high-quality adhesives and subsequently manufacture multifunctional composites. Herein, the inherent properties of cellulose were exploited to generate an adhesive based on a cellulose aqueous solution. The adhesion is simple to prepare structurally and functionally complex materials in a single process. Cellulose-based daily necessities including straws, bags, and cups were prepared by adhering cellulose films, and smart devices like actuators and supercapacitors assembled by adhering hydrogels were also demonstrated. In addition, the composite boards bonded with natural biomass wastes, such as wood chips, displayed significantly stronger mechanical properties than the natural wood or commercial composite boards. Cellulose aqueous adhesives provide a straightforward, feasible, renewable, and inventive bonding technique for material shaping and the creation of multipurpose devices.

3.
Small ; 20(19): e2307975, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38098446

RESUMO

Electrochemical methanol oxidation reaction (MOR) is regarded as a promising pathway to obtain value-added chemicals and drive cathodic H2 production, while the rational design of catalyst and in-depth understanding of the structure-activity relationship remains challenging. Herein, the ultrathin NiV-LDH (u-NiV-LDH) with abundant defects is successfully synthesized, and the defect-enriched structure is finely determined by X-ray adsorption fine structure etc. When applied for MOR, the as-prepared u-NiV-LDH presents a low potential of 1.41 V versus RHE at 100 mA cm-2, which is much lower than that of bulk NiV-LDH (1.75 V vs RHE) at the same current density. The yield of H2 and formate is 98.2% and 88.1% as its initial over five cycles and the ultrathin structure of u-NiV-LDH can be well maintained. Various operando experiments and theoretical calculations prove that the few-layer stacking structure makes u-NiV-LDH free from the interlayer hydrogen diffusion process and the hydrogen can be directly detached from LDH laminate. Moreover, the abundant surface defects upshift the d-band center of u-NiV-LDH and endow a higher local methanol concentration, resulting in an accelerated dehydrogenation kinetics on u-NiV-LDH. The synergy of the proton detachment from the laminate and the methanol dehydrogenation oxidation contributes to the excellent MOR performance of u-NiV-LDH.

4.
Small ; 20(23): e2309814, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38155521

RESUMO

Active compounds based on LDH (ternary layered double hydroxide) are considered the perfect supercapacitor electrode materials on account of their superior electrochemical qualities and distinct structural characteristics, and flexible supercapacitors are an ideal option as an energy source for wearable electronics. However, the prevalent aggregation effect of LDH materials results in significantly compromised actual specific capacitance, which limits its broad practical applications. In this research, a 3D eggshell-like interconnected porous carbon (IPC) framework with confinement and isolation capability is designed and synthesized by using glucose as the carbon source to disperse the LDH active material and enhance the conductivity of the composite material. Second, by constructing NiCoMn-LDH nanocage structure based on ZIF-67 (zeolitic imidazolate framework-67) at the nanometer scale the obtained IPC/NiCoMn-LDH electrode material can expose more active sites, which allows to achieve excellent specific capacitance (2236 F g-1/ 310.6 mAh g-1 at 1 A g-1), good rate as well as the desired cycle stability (85.9% of the initial capacitance upon 5000 cycles test). The constructed IPC/NiCoMn-LDH//IPC ASC (asymmetric supercapacitor) exhibits superior capacitive property (135 F g-1/60.1 mAh g-1 at 0.5 A g-1) as well as desired energy density (40 Wh kg-1 at 800 W kg-1).

5.
Small ; 20(25): e2311101, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38234132

RESUMO

Developing novel substances to synergize with nanozymes is a challenging yet indispensable task to enable the nanozyme-based therapeutics to tackle individual variations in tumor physicochemical properties. The advancement of machine learning (ML) has provided a useful tool to enhance the accuracy and efficiency in developing synergistic substances. In this study, ML models to mine low-cytotoxicity oncolytic peptides are applied. The filtering Pipeline is constructed using a traversal design and the Autogluon framework. Through the Pipeline, 37 novel peptides with high oncolytic activity against cancer cells and low cytotoxicity to normal cells are identified from a library of 25,740 sequences. Combining dataset testing with cytotoxicity experiments, an 80% accuracy rate is achieved, verifying the reliability of ML predictions. Peptide C2 is proven to possess membranolytic functions specifically for tumor cells as targeted by Pipeline. Then Peptide C2 with CoFe hollow hydroxide nanozyme (H-CF) to form the peptide/H-CF composite is integrated. The new composite exhibited acid-triggered membranolytic function and potent peroxidase-like (POD-like) activity, which induce ferroptosis to tumor cells and inhibits tumor growth. The study suggests that this novel ML-assisted design approach can offer an accurate and efficient paradigm for developing both oncolytic peptides and synergistic peptides for catalytic materials.


Assuntos
Aprendizado de Máquina , Peptídeos , Peptídeos/química , Humanos , Linhagem Celular Tumoral , Animais , Neoplasias/terapia , Antineoplásicos/farmacologia , Antineoplásicos/química , Cobalto/química , Camundongos , Nanoestruturas/química
6.
Small ; 20(13): e2307294, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37963858

RESUMO

The pursuit of stable and efficient electrocatalysts toward seawater oxidation is of great interest, yet it poses considerable challenges. Herein, the utilization of Cr-doped CoFe-layered double hydroxide nanosheet array is reported on nickel-foam (Cr-CoFe-LDH/NF) as an efficient electrocatalyst for oxygen evolution reaction in alkaline seawater. The Cr-CoFe-LDH/NF catalyst can achieve current densities of 500 and 1000 mA cm -2 with remarkably low overpotentials of only 334 and 369 mV, respectively. Furthermore, it maintains at least 100 h stability when operated at 500 mA cm-2.

7.
Small ; 20(11): e2306473, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37926790

RESUMO

Conventional luminol co-reactant electrochemiluminescence (ECL) systems suffer from low stability and accuracy due to factors such as the ease of decomposition of hydrogen peroxide and inefficient generation of reactive oxygen species (ROS) from dissolved oxygen. Inspired by the luminol ECL mechanism mediated by oxygen evolution reaction (OER), the nickel-cobalt layered double hydroxide (NiCo-LDH) hollow nanocages with hollow structure and defect state are used as co-reaction promoters to enhance the ECL emission from the luminol-H2 O system. Thanks to the hollow structure and defect state, NiCo-LDH hollow nanocages show excellent OER catalytic activity, which can stabilize and efficiently produce ROS and enhance the ECL emission. Additionally, mechanistic exploration suggests that the ROS involved in the co-reaction of the luminol-H2 O system are derived from the OER reaction process, and there is a positive correlation between ECL intensity and the OER catalytic activity of the co-reaction promoter. The selection of catalysts with excellent OER catalytic activity is a key factor in improving ECL emission. Finally, a dual-mode immunosensor is constructed for the detection and analysis of alpha-fetoprotein (AFP) based on the promoting effect of NiCo-LDH hollow nanocages on the luminol-H2 O ECL system.

8.
Small ; : e2401394, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38709222

RESUMO

Transition metal silicates (TMSs) are attempted for the electrocatalyst of oxygen evolution reaction (OER) due to their special layered structure in recent years. However, defects such as low theoretical activity and conductivity limit their application. Researchers always prefer to composite TMSs with other functional materials to make up for their deficiency, but rarely focus on the effect of intrinsic structure adjustment on their catalytic activity, especially anion structure regulation. Herein, applying the method of interference hydrolysis and vacancy reserve, new silicate vacancies (anionic regulation) are introduced in cobalt silicate hydroxide (CoSi), named SV-CoSi, to enlarge the number and enhance the activity of catalytic sites. The overpotential of SV-CoSi declines to 301 mV at 10 mA cm-2 compared to 438 mV of CoSi. Source of such improvement is verified to be not only the increase of active sites, but also the positive effect on the intrinsic activity due to the enhancement of cobalt-oxygen covalence with the variation of anion structure by density functional theory (DFT) method. This work demonstrates that the feasible intrinsic anion structure regulation can improve OER performance of TMSs and provides an effective idea for the development of non-noble metal catalyst for OER.

9.
Small ; 20(28): e2311182, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38332446

RESUMO

Layered double hydroxides (LDHs), promising bifunctional electrocatalysts for overall water splitting, are hindered by their poor conductivity and sluggish electrochemical reaction kinetics. Herein, a hierarchical Cu-doped NiCo LDH/NiCo alloy heterostructure with rich oxygen vacancies by electronic modulation is tactfully designed. It extraordinarily effectively drives both the oxygen evolution reaction (151 mV@10 mA cm-2) and the hydrogen evolution reaction (73 mV@10 mA cm-2) in an alkaline medium. As bifunctional electrodes for overall water splitting, a low cell voltage of 1.51 V at 10 mA cm-2 and remarkable long-term stability for 100 h are achieved. The experimental and theoretical results reveal that Cu doping and NiCo alloy recombination can improve the conductivity and reaction kinetics of NiCo LDH with surface charge redistribution and reduced Gibbs free energy barriers. This work provides a new inspiration for further design and construction of nonprecious metal-based bifunctional electrocatalysts based on electronic structure modulation strategies.

10.
Small ; 20(30): e2312168, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38377284

RESUMO

Hydroxides are the archetype of layered crystals with metal-oxygen (M-O) octahedron units, which have been widely investigated as oxygen evolution reaction (OER) catalysts. However, the better crystallinity of hydroxide materials, the more perfect octahedral symmetry and atomic ordering, resulting in the less exposed metal sites and limited electrocatalytic activity. Herein, a glassy state hydroxide material featuring with short-range order and long-range disorder structure is developed to achieve high intrinsic activity for OER. Specifically, a rapid freezing point precipitation method is utilized to fabricate amorphous multi-component hydroxide. Owing to the freezing-point crystallization environment and chaotic M-O (M = Ni/Fe/Co/Mn/Cr etc.) structures, the as-fabricated NiFeCoMnCr hydroxide exhibit a highly-disordered glassy structure, as-confirmed by X-ray/electron diffraction, enthalpic response, and pair distribution function analysis. The as-achieved glassy-state hydroxide materials display a low OER overpotential of 269 mV at 20 mA cm-2 with a small Tafel slope of 33.3 mV dec-1, outperform the benchmark noble-metal RuO2 catalyst (341 mV, 84.9 mV dec-1) . Operando Raman and density functional theory studies reveal that the glassy state hydroxide converted into disordered active oxyhydroxide phase with optimized oxygen intermediates adsorption under low OER overpotentials, thus boosting the intrinsic electrocatalytic activity.

11.
Small ; 20(33): e2400652, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38552224

RESUMO

Designing a reasonable heterojunction is an efficient path to improve the separation of photogenerated charges and enhance photocatalytic activity. In this study, Cu2-xS@NiFe-LDH hollow nanoboxes with core-shell structure are successfully prepared. The results show that Cu2-xS@NiFe-LDH with broad-spectrum response has good photothermal and photocatalytic activity, and the photocatalytic activity and stability of the catalyst are enhanced by the establishment of unique hollow structure and core-shell heterojunction structure. Transient PL spectra (TRPL) indicates that constructing Cu2-xS@NiFe-LDH heterojunction can prolong carrier lifetime obviously. Cu2-xS@NiFe-LDH shows a high photocatalytic hydrogen production efficiency (5176.93 µmol h-1 g-1), and tetracycline degradation efficiency (98.3%), and its hydrogen production rate is ≈10-12 times that of pure Cu2-xS and NiFe-LDH. In situ X-ray photoelectron spectroscopy (XPS) and electron spin resonance (ESR) provide proofs of the S-scheme electron transfer path. The S-scheme heterojunction achieves high spatial charge separation and exhibits strong photoredox ability, thus improving the photocatalytic performance.

12.
Small ; 20(34): e2400850, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38616735

RESUMO

Membrane-based osmotic energy harvesting is a promising technology with zero carbon footprint. High-performance ion-selective membranes (ISMs) are the core components in such applications. Recent advancement in 2D nanomaterials opens new avenues for building highly efficient ISMs. However, the majority of the explored 2D nanomaterials have a negative surface charge, which selectively enhances cation transport, resulting in the underutilization of half of the available ions. In this study, ISMs based on layered double hydroxide (LDH) with tunable positive surface charge are studied. The membranes preferentially facilitate anion transport with high selectivity. Osmotic energy harvesting device based on these membranes reached a power density of 2.31 W m-2 under simulated river/sea water, about eight times versus that of a commercial membrane tested under the same conditions, and up to 7.05 W m-2 under elevated temperature and simulated brine/sea water, and long-term stability with consistent performance over a 40-day period. A prototype reverse electrodialysis energy harvesting device, comprising a pair of LDH membranes and commercial cation-selective membranes, is able to simultaneously harvest energy from both cations and anions achieving a power density of 6.38 W m-2 in simulated river/sea water, demonstrating its potential as building blocks for future energy harvesting systems.

13.
Small ; 20(35): e2400782, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38644229

RESUMO

Efficient and stable photocathodes are crucial for the development of photoelectrochemical (PEC) water-splitting devices. Silicon heterojunction (SHJ) solar cell is one of the most advanced photovoltaic cells. However, due to the instability of its outermost indium tin oxide (ITO) layers in the electrolyte, a protective layer needs to be introduced on its surface. Previously reported high-quality protective layers almost all involved the use of expensive thin film manufacturing techniques such as atomic layer deposition (ALD). In this work, for the first time, a new strategy is proposed of modifying SHJ-based photocathode with yttrium hydroxide (Y(OH)3) through two-step solution methods to simultaneously improve the stability and activity. The optimized SHJ photocathode exhibits a high applied bias photon-to-current efficiency (ABPE) of 8.4% under simulated 100 mW cm-2 (1 Sun) with an AM 1.5G filter in 0.5 m KOH. Furthermore, the obtained SHJ photocathode demonstrates excellent stability of at least 110 h at 0.3 V versus RHE. In this work, combining facile direct current magnetron sputtering with a solution treatment technique provides a novel design strategy, which lowers the threshold for preparing high-quality protective layer, and paves the way for developing economic, efficient, and stable SHJ-based PEC devices.

14.
Small ; 20(26): e2309689, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38258384

RESUMO

Developing efficient water-splitting electrocatalysts to accelerate the slow oxygen evolution reaction (OER) kinetics is urgently desired for hydrogen production. Herein, ultralow phosphorus (P)-doped NiFe LDH (NiFePx LDH) with mild compressive strain is synthesized as an efficient OER electrocatalyst. Remarkably, NiFePx LDH with the phosphorus mass ratio of 0.32 wt.% and compressive strain ratio of 2.53% (denoted as NiFeP0.32 LDH) exhibits extraordinary OER activity with an overpotential as low as 210 mV, which is superior to that of commercial IrO2 and other reported P-based OER electrocatalysts. Both experimental performance and density function theory (DFT) calculation demonstrate that the doping of P atoms can generate covalent Fe─P coordination bonds and lattice distortion, thus resulting in the consequent depletion of electrons around the Fe active center and the downward shift of the d-band center, which can lead to a weaker adsorption ability of *O intermediate to improve the catalytic performance of NiFeP0.32 LDH for OER. This work provides novel insights into the distinctive coordinated configuration of P in NiFePx LDH, which can result in superior catalytic performance for OER.

15.
Small ; 20(26): e2310811, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38299466

RESUMO

Osmotic energy, as a renewable clean energy with huge energy density and stable yield, has received widespread attention over the past decades. Reverse electrodialysis (RED) based on ion-exchange membranes is an important method of obtaining osmotic energy from salinity gradients. The preparation of ion-exchange membranes with both high ion selectivity and ion permeability is in constant exploration. In this work, metal hydroxide-organic framework (MHOF) membranes are successfully prepared onto porous anodic aluminum oxide (AAO) membranes by a facile hydrothermal method to form Ni2(OH)2@AAO composite membranes, used for osmotic energy conversion. The surface is negatively charged with cation selectivity, and the asymmetric structure and extreme hydrophilicity enhance the ionic flux for effective capture of osmotic energy. The maximum output power density of 5.65 W m-2 at a 50-fold KCl concentration gradient is achieved, which exceeds the commercial benchmark of 5 W m-2. Meanwhile, the composite membrane can also show good performance in different electrolyte solutions and acid-base environments. This work provides a new avenue for the construction and application of MHOF membranes in efficient osmotic energy conversion.

16.
Small ; 20(25): e2310380, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38189520

RESUMO

Supported noble metal nanoparticles (NMNPs) are appealing for energy and environment catalysis. To facilitate the loading of NMNPs, in situ reduction of Mn+ on the support with extra reductants/surfactants is adopted, but typically results in aggregated NMNPs with uneven size distributions or blocked active sites of the NMNPs. Herein, the use of cobalt layered double hydroxide (Co-LDH) is proposed as both support and reductant for the preparation of supported NMNPs with ultrasmall sizes and even distributions. The resultant Co-LDH-supported NMNPs exhibit excellent catalytic performance and stability. For example, Ir/Co-LDH displays a low overpotential of 188 mV (10 mA cm-2) for electrocatalytic oxygen evolution reaction and a long-term stability over 100 h (100 mA cm-2) in overall water splitting. Ru/Co-LDH can achieve a 4-nitrophenol reduction with high rate of 0.36 min-1 and S2- detection with low limit of detection (LOD) of 0.34 µm. Overall, this work provides a green and effective strategy to fabricate supported NMNPs with greatly improved catalytic performances.

17.
Small ; : e2401592, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38805745

RESUMO

In anion exchange membrane (AEM) water electrolyzers, AEMs separate hydrogen and oxygen, but should efficiently transport hydroxide ions. In the electrodes, catalyst nanoparticles are mechanically bonded to the porous transport layer or membrane by a polymeric binder. Since these binders form a thin layer on the catalyst particles, they should not only transport hydroxide ions and water to the catalyst particles, but should also transport the nascating gases away. In the worst case, if formation of gases is >> than gas transport, a gas pocket between catalyst surface and the binder may form and hinder access to reactants (hydroxide ions, water). In this work, the ion conductive binder SEBS-DABCO is blended with PIM-1, a highly permeable polymer of intrinsic microporosity. With increasing amount of PIM-1 in the blends, the permeability for water (selected to represent small molecules) increases. Simultaneously, swelling and conductivity decrease, due to the increased hydrophobicity. Ex situ data and electrochemical data indicate that blends with 50% PIM-1 have better properties than blends with 25% or 75% PIM-1, and tests in the electrolyzer confirm an improved performance when the SEBS-DABCO binder contains 50% PIM-1.

18.
Small ; 20(28): e2310642, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38708896

RESUMO

Neutral electrolysis to produce hydrogen is prime challenging owing to the sluggish kinetics of water dissociation for the electrochemical reduction of water to molecular hydrogen. An ion-enriched electrode/electrolyte interface for electrocatalytic reactions can efficiently obtain a stable electrolysis system. Herein, we found that interfacial accumulated fluoride ions and the anchored Pt single atoms/nanoparticles in catalysts can improve hydrogen evolution reaction (HER) activity of NiFe-based hydroxide catalysts, prolonging the operating stability at high current density in neutral conditions. NiFe hydroxide electrode obtains an outstanding performance of 1000 mA cm-2 at low overpotential of 218 mV with 1000 h operation at 100 mA cm-2. Electrochemical experiments and theoretical calculations have demonstrated that the interfacial fluoride contributes to promote the adsorption of Pt to proton for sustaining a large current density at low potential, while the Pt single atoms/nanoparticles provide H adsorption sites. The synergy effect of F and Pt species promotes the formation of Pt─H and F─H bonds, which accelerate the adsorption and dissociation process of H2O and promote the HER reaction with a long-term durability in neutral conditions.

19.
Small ; 20(6): e2305288, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37775328

RESUMO

Clever and rational design of structural hierarchy, along with precise component adjustment, holds profound significance for the construction of high-performance supercapacitor electrode materials. In this study, a binder-free self-supported CCO@N0.5 C0.5 OH/NF cathode material is constructed with hierarchical hetero-core-shell honeycomb nanostructure by first growing CuCo2 O4 (CCO) nanopin arrays uniformly on highly conductive nickel foam (NF) substrate, and then anchoring Ni0.5 Co0.5 (OH)2 (N0.5 C0.5 OH) bimetallic hydroxide nanosheet arrays on the CCO nanopin arrays by adjusting the molar ratio of Ni(OH)2 and Co(OH)2 . The constructed CCO@N0.5 C0.5 OH/NF electrode material showcases a wealth of multivalent metal ions and mesopores, along with good electrical conductivity, excellent electrochemical reaction rates, and robust long-term performance (capacitance retention rate of 87.2%). The CCO@N0.5 C0.5 OH/NF electrode, benefiting from the hierarchical structure of the material and the exceptional synergy between multiple components, demonstrates an excellent specific capacitance (2553.6 F g-1 at 1 A g-1 ). Furthermore, the assembled asymmetric CCO@N0.5 C0.5 OH/NF//AC/NF supercapacitor demonstrates a high energy density (70.1 Wh kg-1 at 850 W kg-1 ), and maintains robust capacitance cycling stability performance (83.7%) after undergoing 10 000 successive charges and discharges. It is noteworthy that the assembled supercapacitor exhibits an operating voltage (1.7 V) that is well above the theoretical value (1.5 V).

20.
Chemistry ; 30(31): e202400982, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38533890

RESUMO

Glucose holds significant importance in disease diagnosis as well as beverage quality monitoring. The high-efficiency electrochemical sensor plays a crucial role in the electrochemical conversion technology. Ni(OH)2 nanosheets are provided with high specific surface area and redox activity that are widely used in electrochemistry. Conductive metal-organic frameworks (cMOFs) perfectly combine the structural controllability of organic materials with the long-range ordering of inorganic materials that possess the characteristic of high electron mobility. Based on the above considerations, the combination of Ni(OH)2 and Ni-HHTP (HHTP=2,3,6,7,10,11-hexahydroxytriphenylene) as an electrode modification material is designed to enhance electrochemical performance. In this work, to improve glucose detection, a sequence of Ni(OH)2@NiCo-HHTP and NiM-LDH@Ni-HHTP (M=Co2+, Mn2+, Cu2+, LDH=layered double hydroxide) are successfully synthesised by doping metals into Ni-HHTP and Ni(OH)2, respectively. As a result, NiCu-LDH@Ni-HHTP showed the best excellent glucose detection sensitivity.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa